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ABSTRACT. It is well known that prepivoting reduces level error
of confidence sets. We adapt this method to the context of the
tail index estimation, introducing a procedure that we call tail
prepivoting. We apply this procedure to the Hill estimator and
establish its consistency.

1. INTRODUCTION

Let Xi,Xs,... be independent nonnegative random variables (r.v.)
with continuous common cumulative distribution function (c.d.f.) F.
Assume that 1 — F is regularly varying in the upper tail, namely there
exists 0 < ¢ < oo, such that, for any t > 0,

lim sup i(ta:) =
T—r-+00 1 - F(i[}) ’
or equivalently
1 — F(z) =2 °L(z), for z > 0, (1.1)
where L is a slowly varying function at infinity. Denoting by F'~! the
left continuous inverse of F, i.e., F~1(s) := inf{x: F(z) > s}, (1.1) is
equivalent to

FY (1 —s) = s Y°L(s), 0<s<l, (1.2)
where L is a slowly varying function at zero (see e.g. de Haan (1970)).

The problem of estimating ¢ or related tail indices has received con-
siderable attention and common applications may be found in a large
variety of domains, as for example in economics, applied finance, in-
surance, business, industry, telecommunications, traffic, geology, mete-
orology and hydrology. An important application to the field of risk
theory was studied in Csorgé and Steinebach (1991), where the authors
related the problem of estimating the adjustment coefficient with the
estimation of a certain exponential tail index. We also mention an
application to rainfalls developed by Carreau et al. (2009). Another
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important application in the domain of seismology was developed in
Brito et al. (2015), where the authors estimated the tail parameters
of the seismic moment distribution. In the past few years, Extreme
Value Theory has been also applied to stochastic processes arising from
chaotic dynamical systems. Initially, this flourished by giving a differ-
ent approach and insight into the statistical properties of such erratic
systems and specially about its extremal behaviour. It turned out that
these statistical features are tied with the recurrence properties of the
system (see Freitas et al. (2010)). Moreover, for systems carrying a
strange attractor, Extreme Value Analysis proved to be useful to re-
cover information about the geometry of the attractor itself. In this
particular application of EVT, the estimation of tail index is rather
important since it was shown in Lucarini et al. (2012) that it depends
directly on the dimension of the attractor. This means that good esti-
mates for the tail index are also important in this setting.

One of the most commonly used estimators for 1/c is the Hill estimator
(1975), given by

k
~ 1 <
H(kn) = - D log Xis1n — 108 X gy,
" oi=1

where X;, < X,, < ... < X, denote the order statistics (o.s.)

of the sample X1, X5...,X,, and k, is a sequence of positive integers
satisfying
1<k,<mn, limk,=o00 and lim k,/n=0. (1.3)
n—oo n—oo

The asymptotic properties of H (k) have been much studied. It is well
known that, under some regularity conditions, H (k) is strongly consis-
tent (cf Deheuvels et al. (1988)) and asymptotically normal with con-

vergence rate ky, 2 when properly normalized (cf Haeusler and Teugels
(1985)).

Consider then the normalized estimator

T, = ck./? <ﬁ1(k»n) - %) . (1.4)

Let ¢, be a nondecreasing sequence of positive integers and denote by
Wiy, Wy, ..., W,, the ¢, exceedances of the random level log X,,_¢, n,
that is

Wi =108 Xp_,rim — 108 Xty 1 <i <0, (1.5)

The tail bootstrap is based on resampling, with replacement, the sam-
ple Wi, Wy, ..., W,, instead of the initial sample X1, Xs,..., X,,. If we
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take ¢, = k,, n € N, then we may write
1
H(k,) = — Wi.
=3

By the above representation for H (kn), we can derive the correspond-
ing bootstrap version in an obvious way. Consider the sample W =
(Wh,...,Wy,) and let W* = (Wl*, ,W,;‘n) be a sample drawn with
replacement from Wy, ... Wy . The tail bootstrap version of the esti-
mator is given by

k
. 1 &n
H*(k,) = — W 1.6
(k)= 5 W (1.6
The standardised sequence = (2 )k;}/ 2 (ﬁ *(kn) — H(ky)

converges  weakly to the same limit as  that  of
cky/? (ﬁ(k‘n) - l) as stated in Bacro and Brito (1998).

c Y

Motivated by least squares considerations, Brito and Freitas (2006,
2008) introduced some consistent estimators for c. We consider here:

~ 1 &
R(k,) = k_nzlm2—<k—nzlm>

Observe that E*Q(kzn) is the sample variance of W which makes its use
appropriate to standardise the bootstrap version of the root-n T,,:

T* = R(k,)k (Er*(kn) - ﬁ(kn)) . (1.7)

~1/2

Using the result above of Bacro and Brito (1998) we immediately obtain
that the tail bootstrap root-n T'* defined in (1.7) converges weakly to
the same limit as that of T,,.

Beran (1987) introduced the notion of prepivoting, which corresponds
to the transformation of a root by its estimated bootstrap cumulative
c.d.f. He has also shown that this procedure produces smaller error
than the original bootstrap introduced by Efron (1979). The idea is
that by prepivoting the root we get a “smoother” new root, in the sense
that the dependence on the original distribution of the population is
reduced. Then one naturally expects that the bootstrap approximation
of the sampling distribution of this new prepivoted root is sharper than
the corresponding one for the original root.

In the context of the tail estimation is rather important to improve
the accuracy of the approximations for the estimators’ distribution.
In order to obtain such better approximations, we adapt the origi-
nal prepivoting method of Beran to this context of tail estimation.
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To illustrate the validity of this adjusted version of previtoting, that
we call tail prepivoting, we show its consistency when applied to the
common Hill’s estimator. Although there are much more recent and
better performing estimators, our purpose here is just to show that the
method works and produces indeed better approximations for the Hill’s
estimator, which is still the base of comparison for almost every new
estimator or new method introduced. We note that our approach may
be applied to estimators that may be represented in terms of ratios of
uniform o.s. as considered in (2.1), like the geometric-type estimator
introduced in Brito and Freitas (2003). Moreover, we believe that the
method should work and provide better approximations for more gen-
eral estimators depending only on the higher o.s. of the sample, even
if they cannot be written in terms of such ratios, in which case, the
argument would need to be adapted. One of the advantages of this tail
prepivoting procedure that we introduce here is that it reduces error, as
it can be seen in the simulation results for the Hill estimator presented
below, in spite of the small number of observations considered, which
are actually used for resampling.

We adapt the prepivoting procedure to this context of tail index esti-
mation, by considering the new tail prepivoted root-n

T = PIT; < Tol(Xokm, W, (1.8)

whose asymptotic c.d.f. is the uniform distribution, U(0, 1), and its
tail bootstrap version:

%* = P[T;* < T;|(Xn—kn,mW*)]v
where N R R
T," = R (ks )k1/2(H**(k ) — H"(kn)),
. . o\ —1/2
. 1 AN
R*(ky,) = . > W (k— >w; )
i=1 "o=1
and W* = ( . ) s a sample drawn with replacement from
Wi, Wy

We will establish the consistency of the tail prepivoting procedure.
Namely, we show that the root-n Z* converges weakly to the same
limit as that of .7,.

The paper is organized as follows. In Section 2 we state the main
results. In Section 3 we present a small simulation study in order
to analyse and compare the asymptotic, empirical and tail bootstrap
c.d.f.s for T,, and .7,. In Section 4 we prove the results of the paper.
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2. STATEMENT OF RESULTS

In the sequel, Ly and 2 stand, respectively, for convergence and equal-
ity in distribution. Moreover, we denote the standard normal c.d.f. by
®, its density by ¢ and the uniform U(0, 1) c.d.f. by % .

Before presenting the results it is convenient to introduce some nota-
tion. We assume that Uy, Us, ... is a sequence of independent uniform
U(0,1) r.v.. We denote the o.s. of the sample (Uy,Us,...,U,) by

Ui < Uy < ... < U,y Since X 2 FYU;), i > 1, the k, ex-
ceedances of the random level log X,,_y, ., defined in (1.5), may be
written in the following form, without loss of generality,

VVi = log F_l(Un—kn—l—i,n) - 108; F_l(Un—kn,n)a 1<1< kn-
As in Bacro and Brito (1998) (cf Theorem 1) we shall make use of the

following equivalent representation for W;, i =1,...,k,:
1 L(Yi(1L = Un gy
W; = ——logY; + log (i o )), (2.1)
c L(1 = Up—gyn)
where LU
Y:l__g—n"“;n" fori=1,... k. (2.2)

We recall also that (Y;)i<;<k, is distributed as the vector of the o.s.

of an i.i.d. k,-sample from an uniform U(0,1) distribution. Now, we

define N

log =
(%)

n

J(ky) == kY?  sup

Yp, <y<1

(2.3)

In the following result we show the validity of the tail prepivoting, that
is, we show that .7 * converges weakly to the uniform c.d.f., in the sense
of (2.5). Recall that the weak limit of the root-n 7, defined in (1.8) is
the uniform c.d.f. because 7T converges to the same weak limit of 7},.

Theorem 1. Assume that F' satisfies (1.1) and k,, is a sequence of
positive integers such that (1.3) holds. If we suppose that, as n — oo,

uniformly in t on compact sets of (0,00), then, for all z € (0,1),

kY2 sup — 0 (2.4)

1/’€nSyS1

P <x|(Xpn—kpms---> Xnn)] L2 as n— 0. (2.5)

In order to provide an example of application of the result above, we
consider the important model introduced by Hall (1982):

1—F(z)=Dr {14+ 0"}, =>0, (2.6)
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where D and (8 are positive constants. This model can also be written
in the equivalent form

F Y 1—s)=s"L(s), 0<s<1, (2.7)

where
L(s) = DY{1+ O(s"/)}.

Corollary 1. Assume that (2.6) holds and k, is a sequence of posi-
tive integers satisfying (1.3). For sequences k, — oo such that k, =
o (n??/P+)) " we have that, for all x € (0,1),

PlT" < x|(Xn—knns-- s Xnn)l Lo as n— oo

3. SIMULATION STUDY

We perform here a small simulation study where we considered the
Hall’s family (2.7) with ¢ =1 and L(s) = 1 + s%.

For this distribution, we generated 1000 samples of size n = 1000 which
gave rise to an empirical approximation of the c.d.f. of the r.v. Tjggg.
We considered the value k,, = 70 for the number of high o.s. taken into
account. This choice corresponds to a value in the range where the
Hill’s estimator presents small bias, as it can be seen in Figure 1, and
which are not too small to produce satisfactorily accurate approxima-
tions for the c.d.f.s of Tigoo and of the prepivoted root Figg (We may
note that, in real cases, where the true value of 1/c is unknown, we may
choose a reasonable number of o.s. k, in the range where the estimator
presents a stabilised behaviour). For each sample we resampled the &,
largest o.s. 1000 times in order to obtain both an approximation for
the tail bootstrap c.d.f. of T,, and an empirical approximation of the
c.d.f. of the r.v. .7,. Finally, each tail bootstrap sample, obtained by
resampling the £, largest o.s. of the original sample, was resampled
1000 times to produce an approximation of the tail bootstrap c.d.f. of

7
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FIGURE 1. H(k,) for different values of k,

v |Gr, =@ |Gp, —GL || = |Gz — %] |Gg — G,
—2.3263  0.0080 0.0039 0.0100  0.0030 0.0007
—1.9600  0.0070 0.0010 0.0250  0.0030 0.0006
—1.6449  0.0010 0.0066 0.0500  0.0040 0.0072
—1.4395  0.0090 0.0025 0.0750  0.0030 0.0009
—1.2816  0.0010 0.0051 0.1000  0.0010 0.0030
—0.8416  0.0210 0.0184 0.2000  0.0130 0.0102
—0.5244  0.0170 0.0078 0.3000  0.0110 0.0036
—0.2533  0.0260 0.0134 0.4000  0.0220 0.0118

0.0000 0.0180 0.0044 0.5000  0.0110 0.0001
0.2533 0.0220 0.0101 0.6000  0.0050 0.0048
0.5244 0.0050 0.0037 0.7000  0.0070 0.0040
0.8416 0.0100 0.0132 0.8000  0.0090 0.0118
1.2816 0.0080 0.0048 0.9000  0.0040 0.0017
1.4395 0.0070 0.0025 0.9250  0.0030 0.0002
1.6449 0.0100 0.0046 0.9500  0.0020 0.0019
1.9600 0.0090 0.0038 0.9750  0.0020 0.0014
2.3263 0.0070 0.0031 0.9900  0.0020 0.0009

TABLE 1. Differences between the asymptotic, empirical
and tail bootstrap c.d.f.s for 7, and .7, with k,, = 70.

In Table 1 we present the differences between the asymptotic c.d.f. and
the empirical c.d.f. as well as between the later and the tail bootstrap
c.d.f. of both T, and .7,, for the case k, = 70. We used the notation
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@Tn, G 7, for the empirical c.d.f. of T,, and .7},, respectively, and G*Tn,
@}n for the respective tail bootstrap c.d.f. approximations.

In Figures 2 and 3, the dashed line has been used for the asymptotic
approximations of the c.d.f. of 7, (standard normal c.d.f.) and the
prepivoted .7, (uniform c.d.f.); the solid line was kept for the approx-
imations given by the respective empirical c.d.f.s; the dotted line was
left for the tail bootstrap approximations.

104

. L L L
-2 1 1 2

FIGURE 2. Approximations for the c.d.f. of T, k, = 70.

0.2 04 0.6 08 10

FI1GURE 3. Approximations for the c.d.f. of .7, k, = 70.
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As it can be seen, there is a good adjustment between the asymptotic
normal c.d.f. and the empirical c.d.f. of T}, as well as between the later
and tail bootstrap c.d.f. approximation. Moreover, the tail bootstrap
approximation is in general better than the asymptotic one, which is
particularly clear in the tails of the distributions.

We may observe that there is a very good adjustment between the tail
bootstrap c.d.f. of .7, and the uniform c.d.f., and the tail bootstrap
c.d.f. seems to provide a better approximation of the empirical c.d.f.
of 7, when compared to the asymptotic one.

4. PROOFS

We will start by introducing some general notation. Let Z;, 25, ... be
an arbitrary sequence of r.v.. We denote by Z the sample mean of
Z=(2,...,2,), that is,

1
zzﬁ;zi.

We define, for i =1,... k,,

1 L(Yi(1 = Untyn
& = ——logy;, Z; :=log <~ ( i, )>,
c L(1—=Up,n)
where Y; is defined as in (2.2) and write £ = (&1,...,&,) and Z =
(Z1,...,2Zy,). Notice that c¢€ has the same distribution as the vector
of o.s. of k,, independent standard exponential r.v..

Now, let Y* := (Y}",...,Y}’ ) be a sample of r.v. drawn with replace-
ment from (Y3,...,Y},). The bootstrap versions of £ and Z are then
given respectively by

1 LY (1= Uy n
E=—"logV’,  Z':=log (7 i, )), i=1,... kn
c L(l — Un,kmn)

We define similarly the corresponding iterated bootstrap versions £**
and Z**, based on a sample (Y™,...,Y;”) drawn with replacement
from the sample Y*.

Let Zy,2,,... and Z], 2}, ... be two arbitrary sequences of r.v.. We
denote by S2(Z) the sample variance of Z = (Z,...,2,) and by
Sn(Z,2') the sample covariance between Z and 2’ = (Z],...,2]),
that is,

$2(2) =5 (2 - 2)?

n
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and
n

Su(Z,2) = % S (z-2)E-2)).

i=1
Lemma 1. Assume that F satisfies condition (1.1) and k,, is a sequence

of positive integers satisfying (1.3). If J(k,) = Op(1), where J(ky) is
the r.v. defined in (2.3), then we have

Rlk,) = (2, (€))? (1 Ly + OP<A<kn>>) ,

where

Proof. Note that

R(k,) = (S2.(€)+S2(Z)+25,,(E.2) "
= (SL(E)H (1 + Alka)) ™,
which implies the first result, if we prove that A(k,) = op(1). Since
St (c€) is the sample variance of a k,-sample from a standard ex-

ponential distribution, we have S? (€) = (1/¢)*(1 + op(1)) and thus,
Sin(E,2Z) = Op(S; (Z)). Moreover,

2

kn
_ i o 1ogz(Y’ (1_Un—k n ii L _Un kn ,n)) ’
Fin i=1 z(kn/n) ken = (k’ /n)

~ 2
1 L Uk n)
Fn 4 1<l ATy )

- 2
sup log Ly (1 = Un—kan)) ,
Yi,, <y<1 L (kn/n)

S (Z) < kY2 T(ky).

IN

Mpr

IN

that is,

So,
Aky) = Op(k V%) T (kn).

and it follows that A(k,) = op(1), completing the proof of the Lemma.
U
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We give now a result analogue to Lemma 1 for the bootstrapped version
R*(k,). Write

R () = (7, (€))7 (14 A%(ka) ™2,
where A*(k,) is defined as A(k,) replacing € and Z by £* and Z*, re-

spectively and denote by P* the conditional probability, given
Un—knms Y1, Ya,.

By Theorem 2.1 of Bickel and Freedman (1981), Sk, (") = (1/¢)(1 +
op+(1)) almost surely. Using now a similar argument as in the proof of
Lemma 1, we obtain:

Lemma 2. Assume that F' satisfies condition (1.1) and k,, is a sequence
of positive integers satisfying (1.3). If J(k,) = Op(1), where J(ky) is
the r.v. defined in (2.3), then we have
1

—A*(ky) 4 ops (A" (kp)))-

R (k) = (SE, (€)1 = 5

Moreover, ky'* A*(ky) = Op(J(ky)).

Proof of Theorem 1. By Lemma 2, noting that A*(k,) = op«(1),
we may write

Ty = (S, (€))7 (ki — &) + ekl (@7 — 7)) (1+ 0p-(1).

Since (Yi,...,Yy,) is independent of U, g, ., we also have that
(Y,..., Y} ) is independent of U,,_y, , and thus we have (see e.g. Hall
(1992), Section 3.11):

P[kim(CF - C?) S x|(Unfkn,na Y?a s 7Yk>‘;)] =
PkY? (€7 — c€) <a|(Yy,...,Y)] 25 @) as. (4.1)

Now, we will show that for every e > 0,
P(|ckY*(Z —Z7)| > €|(Un—tpn, Vi, Y ) = 0pe (1), (4.2)

Since Y} > Y{' > Y, we first note that

7= -7 < 2 su lo —
| = Visyst | L (%)

Thus,
k2|2 — 77| < 2¢J(ky).
Consequently,
Pllcky/*(Z = Z)| > €|(Un—pn, Y1's - V2]
< PlJ(kn) > €|(Un—kpm, Y15, Vi)l (€ =¢€/2¢)

=K (]—{J(kn)>e’}|(Un7k‘n,n7 lea s 7Ykn7 }/1*7 s ’Y/:;)) : (43)
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Next, choose (A1, Ag) €]1, +00[x]1, +00[ and consider the event

B(Ai, A2) = {>\11 < k;ﬁ

On B, (A1, A\2) we have

(1 - Unfkn,n> S )\17 )\El S knYkn S )\2} .

Ly(1 —U,_
Jk) = kY2 sup flog UL Unctun))
Yo, Sy<1 L(ky/n)
L
< kY2 sup sup logw ’ (4.4)
L<y<t o<ty L(kn/n)

which converges to zero as n — oo, by condition (2.4). Since

P{B,(A1,A2)} — 1 as n — oo, J(k,) - 0 and so, using (4.3) we
obtain (4.2).

Therefore, by (4.1) and (4.2), we have that

PIT < 2|(Up o, Y1 -, Vi) 2 D(x),

which implies that
Ay = |PIT < T {(Un o, Y-, Vi) = O(T0)] 25 0,
1.€.,
Ve >0 PIA > €|(Unoom, Y1, .., Y, )] — 0. (4.5)

Since R(k,) L ¢, by Theorem 1 of Bacro and Brito (1998), we have
that

PIO(T) < 2|(Up—pos Y, -+, Ya)] — .
Finally, by (4.5), it follows that

P [P[T < TH(Up oy Yi's o Vi) < 2| (Unpoms Vi, -+, Vi )] — .

g

Proof of Corollary 1. For the family (2.6), L(s) = DY*{1+0(s/)},
0<s<l1.

In this case, we easily obtain that

(5 (5))

So, condition (2.4) is verified if k, = o(n?#/(28+9)). O

sup
1/kn<y<1
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