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Abstract

Our object of study is the dynamics that arises in generic perturbations of an asymp-
totically stable heteroclinic cycle in S3. The cycle involves two saddle-foci of different type
and is structurally stable within the class of (Z2 ⊕ Z2)–symmetric vector fields. The cycle
contains a two-dimensional connection that persists as a transverse intersection of invariant
surfaces under symmetry-breaking perturbations.

Gradually breaking the symmetry in a two-parameter family we get a wide range of
dynamical behaviour: an attracting periodic trajectory; other heteroclinic trajectories; ho-
moclinic orbits; n-pulses; suspended horseshoes and cascades of bifurcations of periodic
trajectories near an unstable homoclinic cycle of Shilnikov type. We also show that, gener-
ically, the coexistence of linked homoclinic orbits at the two saddle-foci has codimension 2
and takes place arbitrarily close to the symmetric cycle.

1 Introduction

Symmetry, exact or approximate, plays an important role in the analysis of non-linear physical
systems. Reflectional and rotational symmetries, for instance, are relevant to a wide range of
experiments in physics, with the canonical example arising in the context of rotating Rayleigh–
Bénard convection [8]; see also Melbourne et al [33]. Models are first constructed with perfect
symmetry, leading to the existence of invariant subspaces and thus to the existence of heteroclinic
cycles and networks and their robustness with respect to symmetric perturbations. Equivariant
bifurcation theory developed by several authors (see for instance Golubitsky et al [21]) has
produced results that agree well with physical systems.

Nevertheless, reality usually has less perfect symmetry. Thus it would be desirable to under-
stand the dynamics that persists under small symmetry-breaking perturbations. In the context
of equivariant dynamics, it corresponds to the explicit addition of specific terms that break the
symmetry of the system — forced symmetry-breaking. This is the subject of the present article.
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by the Portuguese Government through the Fundação para a Ciência e a Tecnologia (FCT) under the project
PEst-C/MAT/UI0144/2011. A.A.P. Rodrigues was supported by the grant SFRH/BD/28936/2006 of FCT.
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In the space of all smooth vector fields on Rn endowed with the C1 Whitney topology and
the topological equivalence, a vector field is structurally stable if it belongs to the interior of its
equivalence class. The set of non-structurally stable systems is called the bifurcation set and
the study of its structure is a big challenge; even for differential equations in three dimensions,
the structure of the bifurcation set might be very complicated. Symmetric vector fields are not
structurally stable and provide a good starting point for this study.

Particular effects of small symmetry-breaking have already been studied by several authors
and aspects related to the question of how much of the dynamics persists under the inclusion of
small noise have also been considered. However details vary greatly between the different exam-
ples. For instance, Kirk and Rucklidge [28] consider small symmetry-breaking for a system with
an asymptotically stable heteroclinic network, Chossat [13] investigates the effect of symmetry-
breaking near a symmetric homoclinic cycle and Melbourne [32] analyses small perturbations
near a system whose dynamics contains a heteroclinic cycle between three symmetric periodic
solutions (associated to non-trivial closed trajectories).

The construction of explicit examples of vector fields whose flow has asymptotically stable
heteroclinic networks has been done by Aguiar et al [4] and Rodrigues et al [36]; adding terms
that break the symmetry, the authors found examples with spontaneous bifurcation to chaos.
This route to chaos corresponds to an interaction of symmetry-breaking, robust switching and
chaotic cycling.

In this article, we study the dynamics observed in a (Z2 ⊕ Z2)–symmetric system in S3;
we look at properties that persist under symmetry-breaking perturbations and we characterize
the set of non-wandering points. Our results appeal to generic properties of the system and
are valid for any (Z2 ⊕ Z2)– equivariant system satisfying these properties. This analysis was
partially motivated by a system constructed by Aguiar [2], whose flow contains a heteroclinic
network connecting two saddle-foci of different types, where one heteroclinic connection is one-
dimensional and the other is two-dimensional and both lie in different fixed point subspaces.

Our work also forms part of a program, started by Bykov [9] in the eighties, of systematic
study of the dynamics near networks of equilibria whose linearization has a pair of non-real
eigenvalues — rotating equilibria.

The main results of the article are stated in section 2. To make the paper self contained and
readable, we recall some definitions and results about equivariance, heteroclinic switching and
homo/heteroclinic bifurcations, adapted to our interests.

We consider a smooth two-parameter family of vector fields f on Rn with flow given by the
unique solution x(t) = ϕ(t, x0) ∈ Rn of

ẋ = f(x, λ1, λ2) x(0) = x0, (1.1)

where λ1 and λ2 are real parameters.
Given two hyperbolic equilibria A and B, an m-dimensional heteroclinic connection from A

to B, denoted [A → B], is an m-dimensional connected and flow-invariant manifold contained
in W u(A) ∩W s(B). There may be more than one connection from A to B.

Let S ={Aj : j ∈ {1, . . . , k}} be a finite ordered set of hyperbolic equilibria. We say that
there is a heteroclinic cycle associated to S if

∀j ∈ {1, . . . , k},W u(Aj) ∩W s(Aj+1) 6= ∅ (mod k).

If k = 1 we say that there is a homoclinic cycle associated to A1. In other words, there is
a connection whose trajectories tend to A1 in both backward and forward time. A heteroclinic
network is a connected set consisting of a finite union of heteroclinic cycles.
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Heteroclinic networks appear frequently in the context of symmetry. Given a compact Lie
group Γ acting linearly on Rn, a vector field f is Γ−equivariant if for all γ ∈ Γ and x ∈ Rn,
we have f(γx) = γf(x). In this case γ ∈ Γ is said to be a symmetry of f and all elements of
the subgroup 〈γ〉 generated by γ are also symmetries of f . We refer the reader to Golubitsky,
Stewart and Schaeffer [21] for more information on differential equations with symmetry.

The Γ-orbit of x0 ∈ Rn is the set Γ(x0) = {γx0, γ ∈ Γ}. If x0 is an equilibrium of (1.1), so
are the elements in its Γ-orbit.

The isotropy subgroup of x0 ∈ Rn is Γx0
= {γ ∈ Γ, γx0 = x0}. For an isotropy subgroup

Σ of Γ, its fixed point subspace is

Fix(Σ) = {x ∈ Rn : ∀γ ∈ Σ, γx = x}.

If f is Γ-equivariant and Σ is an isotropy subgroup, then Fix(Γ) is a flow-invariant vector space.
This is the reason for the persistence of heteroclinic networks in symmetric flows: connections
taking place inside a flow-invariant subspace may be robust to perturbations that preserve this
subspace, even though they may be destroyed by more general perturbations.

2 Statement of Results

2.1 Description of the problem

The starting point of the analysis is a differential equation on the unit sphere S3 ⊂ R4

ẋ = f0(x) (2.2)

where f0 : S
3 → TS3 is a smooth1 vector field with the following properties:

(P1) The organizing centre f0 is equivariant under the action of Γ = Z2 ⊕Z2 on S3 induced by
the action on R4 of

γ1(x1, x2, x3, x4) = (−x1,−x2, x3, x4)

and
γ2(x1, x2, x3, x4) = (x1, x2,−x3, x4).

From now on, for a subgroup ∆ of Γ, we denote by Fix(∆) the sphere

{x ∈ S3 : δx = x, ∀δ ∈ ∆}.

In particular,
Fix(Γ) = {(0, 0, 0, 1) ≡ v, (0, 0, 0,−1) ≡ w} .

(P2) The equilibria v and w in Fix(Γ) are hyperbolic saddle-foci where the eigenvalues of
df0|x=X are:

• −Cv ± αvi and Ev with αv 6= 0, Cv > Ev > 0 for X = v

• Ew ± αwi and −Cw with αw 6= 0, Cw > Ew > 0 for X = w.

(P3) Within Fix(〈γ1〉) the only equilibria are v and w, a source and a sink, respectively. It
follows that there are two heteroclinic trajectories (〈γ2〉-symmetric) from v to w (see case
(a) of figure 1) that we denote by [v → w].

(P4) Within Fix(〈γ2〉) the only equilibria are v and w, a sink and a source, respectively. Thus,
there is a two-dimensional heteroclinic connection from w to v (see case (b) of figure 1).
This connection together with the equilibria is the two-sphere Fix(〈γ2〉).

1By smooth we mean a map of class Ck, for a large enough k. In most places, C1 suffices.
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Figure 1: Heteroclinic connections for the organizing center f0. (a) From properties (P1)–(P3), the
invariant circle Fix(〈γ1〉) consists of the two equilibria v and w and two trajectories connecting them.
(b) The invariant sphere Fix(〈γ2〉) forms a two-dimensional connection [w → v] by property (P4). The
arrows represent the coordinate system in which the heteroclinic connections lie.

Our object of study is a germ at (λ1, λ2) = (0, 0) of a two-parameter family of vector fields
of f(., λ1, λ2) that unfolds the symmetry-breaking of the organizing center f0(x) = f(x, 0, 0).
We denote by f any of the vector fields

x 7→ f(x, λ1, λ2),

when the choice of λ1 and λ2 is clear from the context. The parameters λ1 and λ2 control the
type of symmetry-breaking. Specifically, if λ1 6= 0, we are perturbing the (Z2 ⊕Z2)–equivariant
vector field by breaking the symmetry γ2 and preserving γ1 (see Table 1). Analogously, if λ2 6= 0,
we destroy the equivariance under γ1 and preserve γ2. Throughout this article, we are assuming
that these parameters act independently.

Since v and w are hyperbolic equilibria, then for each λ1 and λ2 close to 0, the vector field
f still has two equilibria with eigenvalues satisfying (P2). When there is no loss of generality
we ignore their dependence on λ1 and λ2. In particular, the dimensions of the local stable and
unstable manifolds of v and w do not change, but generically the heteroclinic connections may
be destroyed, since the fixed point subsets are no longer flow-invariant. More precisely, we are
assuming:

(P5) Depending on the values of λ1 and λ2, the vector field f has the symmetries indicated in
Table 1.

Parameters Symmetries preserved Symmetries broken

λ1 = λ2 = 0 Z2 ⊕ Z2 none

λ1 6= 0 and λ2 = 0 〈γ1〉 〈γ2〉

λ1 = 0 and λ2 6= 0 〈γ2〉 〈γ1〉

λ1 6= 0 and λ2 6= 0 Identity Z2 ⊕ Z2

Table 1: The type of symmetry breaking depends on the parameters.
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The following property states that the invariant manifolds W u(w) and W s(v) meet trans-
versely. Generically, the intersection of the manifolds consists of a finite number of trajectories.

(P6) [Transversality] For λ1 6= 0, the two-dimensional manifolds W u(w) and W s(v) intersect
transversely at a finite number of trajectories.

(P7) [Non-degeneracy] For λ2 6= 0, the heteroclinic connections [v → w] are broken.

Note that (P1)–(P4) are satisfied on a C1–open subset of smooth Γ–equivariant vector fields
on S3 and that (P5)–(P7) hold for a C1–open subset of two parameter families of vector fields
unfolding a Γ–equivariant differential equation on the sphere. Our results are still valid on
any manifold C1–diffeomorphic to S3 if instead of (P1) we assume that f0 commutes with two
involutions γ1 and γ2 that fix, respectively, a circle and a two-sphere, that only meet at {v,w}.

2.2 Organizing centre

When λ1 = λ2 = 0, there is a heteroclinic network (that we denote by Σ), in S3, associated to
the two saddle-foci v and w . The network Σ is the union of two heteroclinic cycles related by
the γ2–symmetry.

In order to describe the dynamics near Σ when the symmetry is broken, we start breaking
part of the symmetry, as outlined in Table 2.

Parameters dim([v → w]) dim([w → v]) Section

λ1 = λ2 = 0 1 2 2.2

λ1 6= 0 and λ2 = 0 1 1 4 and 2.3

λ1 = 0 and λ2 6= 0 Not defined 2 5 and 2.4

λ1 6= 0 and λ2 6= 0 Not defined 1 6 and 2.5

Table 2: Dependence of heteroclinic connections on the symmetry and on the parameters.

The heteroclinic connections in the network are contained in fixed point subspaces such that
the hypothesis (H1) of Krupa & Melbourne [30] is satisfied. Since the inequality CvCw > EvEw

holds, the Krupa and Melbourne stability criterion ([30]) may be applied to Σ and we have:

Proposition 1 Under conditions (P1)–(P4) the heteroclinic network Σ associated to v and w
is asymptotically stable.

The previous result means that there exists an open neighbourhood VΣ of the network Σ
such that every trajectory starting in VΣ is forward asymptotic to the network. Due to the
〈γ2〉-equivariance, trajectories whose initial condition starts outside the invariant subspaces will
approach in positive time one of the cycles. The time spent near each equilibrium increases
geometrically. The ratio of this geometrical series is related to the eigenvalues of df0(x, 0, 0) at
the equilibria. The fixed point hyperplanes prevent jumps between the two cycles; in particular,
random visits to both cycles require breaking the symmetry (and thus the breaking of the
invariant subspaces).

2.3 Breaking the two-dimensional connection

When (P6) holds with λ2 = 0 and λ1 6= 0 the network Σ⋆ consists of two copies of the simplest
heteroclinic cycle between two saddle-foci, where one heteroclinic connection is structurally
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Figure 2: Bykov cycle: heteroclinic cycle associated to two saddle-foci of different types, in which
the one-dimensional invariant manifolds coincide and the two-dimensional invariant manifolds have a
transverse intersection.

stable and the other is not. This cycle, called a Bykov cycle, has been first studied in the
eighties by Bykov [9] and by Glendinning and Sparrow [20].

A Bykov cycle is a cycle with two saddle-foci of different types, in which the one-dimensional
invariant manifolds coincide and the two-dimensional invariant manifolds have a transversal
intersection (see figure 2). It arises as a bifurcation of codimension 2. In the Z2–symmetric
context, Bykov cycles are generic. The study of bifurcations arising in the unfolding Bykov
cycles, called also T–points in the literature is done in [14]. We also refer Knobloch et al [29]
who study heteroclinic cycles similar to Σ⋆ in the context of hamiltonian systems with one
transverse intersection.

Recently, there has been a renewal of interest in this type of heteroclinic bifurcation in
different contexts – see Sánchez et al [15], Homburg and Natiello [24], Ibáñez and Rodriguez [25].
Heteroclinic bifurcations of this type have also been reported to arise on models of Josephson
junctions [11] and Michelson system [12]. Our approach is similar to that of Lamb et al [31],
although they study Z2–reversible systems and we study the 〈γ1〉-equivariant case and then
break the symmetry.

There are two different possibilities for the geometry of the flow around Σ⋆, depending on
the direction trajectories turn around the connection [v → w]. Throughout this article, we only
consider the case where each trajectory when close to v turns in the same direction as when close
to w. A simpler formulation of this will be given in Section 3.1 below, after we have established
some notation, but for the moment we are assuming:

(P8) There are open neighbourhoods V and W of v and w, respectively, such that, for any
trajectory going from V to W , the direction of its turning around the connection [v → w]
is the same in V and in W (see figure 3).

This is the situation in the reversible case studied by Lamb et al [31], where the anti-
symmetry is a rotation by π. The condition would not hold if the anti-symmetry were a reflection.

In a more general setting the dynamics around heteroclinic cycles has been studied by Aguiar
et al [5]. The main result of [5] is that, close to what remains of the network Σ after perturbation,
there are trajectories that visit neighbourhoods of the saddles following all the heteroclinic
connections in any given order. This is the concept of heteroclinic switching; the next paragraph
gives a set-up of switching near a heteroclinic network. Recently, Homburg and Knobloch
[23] gave an equivalent definition of switching for a heteroclinic network, using the notion of
connectivity matrix (which characterizes the admissible sequences) and symbolic dynamics.
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Figure 3: There are two different possibilities for the geometry of the flow around Σ⋆ depending on
the direction trajectories turn around the heteroclinic connection [v → w]. Throughout this paper, we
restrict our study to the case where the direction of turning around [v → w] is the same in V and W .

For a heteroclinic network Σ with node set A, a path of order k on Σ is a finite sequence
sk = (cj)j∈{1,...,k} of connections cj = [Aj → Bj ] in Σ such that Aj , Bj ∈ A and Bj = Aj+1 i.e.
cj = [Aj → Aj+1]. For an infinite path, take any j ∈ N.

Let NΣ be a neighbourhood of the network Σ and let UA be a neighbourhood of each node A
in Σ. For each heteroclinic connection in Σ, consider a point p on it and a small neighbourhood
V of p. The neighbourhoods of the nodes should be pairwise disjoint, as well for those of points
in connections. Given neighbourhoods as above, the point q, or its trajectory ϕ(t), follows the
finite path sk = (cj)j∈{1,...,k} of order k, if there exist two monotonically increasing sequences of
times (ti)i∈{1,...,k+1} and (zi)i∈{1,...,k} such that for all i ∈ {1, . . . , k}, we have ti < zi < ti+1 and:

• ϕ(t) ⊂ NΣ for all t ∈ (t1, tk+1);

• ϕ(ti) ∈ UAi
and ϕ(zi) ∈ Vi and

• for all t ∈ (zi, zi+1), ϕ(t) does not visit the neighbourhood of any other node except that
of Ai+1.

There is finite switching near Σ if for each finite path there is a trajectory that follows
it. Analogously, we define infinite switching near Σ by requiring that each infinite path is
followed by a trajectory. In other words, for any given forward infinite sequence of heteroclinic
connections (cj)j∈N such that the ω-limit of any point in cj coincide with the α-limit of any
points in cj+1, there exists at least one trajectory that remains very close to the network and
follows the sequence (see figure 4).

Proposition 2 If a vector field f0 satisfies (P1)–(P4) and (P8), then the following properties
are satisfied by all vector fields in an open neighbourhood of f0 in the space of 〈γ1〉-equivariant
vector fields of class C1 on S3:

1. the only heteroclinic connections from v to w are the original ones;

2. there are no homoclinic connections;

3. there is infinite switching;

4. the finite switching may be realized by an n-pulse heteroclinic connection [w → v];
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Figure 4: Trajectory shadowing two heteroclinic connections.

5. there exists an increasing nested chain of suspended uniformly hyperbolic compact sets
(Gi)i∈N topologically conjugate to a full shift over a finite number of symbols, which accu-
mulates on the cycle (see figure 5).

In the restriction to a uniformly hyperbolic invariant compact set whose existence is assured
by item 5 of proposition 2, the dynamics is conjugated to a full shift over a finite alphabet. In
particular, since the ceiling function associated to the suspension of any horseshoe is bounded
above and below (in a compact set), it follows that the topological entropy of the corresponding
flow is positive. This means that there is a positive exponential growth rate for the number of
orbits, for the first return map, distinguishable with fine but finite precision – see Abramov [1]
and Katok [26].

The nested chain of horseshoes is illustrated in figure 5: a vertical rectangle in the wall of
V , later called H in

v , first returns to the wall as several rectangles transverse to the original one.
If the height of the rectangle is increased by moving its lower boundary closer to W s(v), then
the number of returning rectangles (legs of the horseshoe) increases; continuing the rectangle all
the way down to W s(v) creates infinitely many legs.

A challenge in topological dynamics is to decide whether periodic solutions can be separated
by homotopies, or not. Roughly speaking, a link is a collection of disjoint one-spheres in S3. A
knot is a link with one connected component. Two links L1 ⊂ S3 and L2 ⊂ S3 are equivalent
if there exists an isotopy {Ht}t∈[0,1] of S

3 such that H0 = IdS3 and H1(L1) = L2. We may use
the following result:

Theorem 3 (Franks and Williams [16], 1985) If Φt is a Cr flow on R3 or S3 such that
either:

• r > 1 and Φt has a hyperbolic periodic orbit with a transverse homoclinic point, or

• r > 2 and Φt has a compact invariant set with positive topological entropy,

then among the closed orbits there are infinitely many distinct knot types.

It follows that among all the closed orbits which appear in the nested chain of horseshoes,
there are many distinct inequivalent knot types. In particular, we may conclude that:

Corollary 4 If a vector field f0 satisfies (P1)–(P4) and (P8) then, for the flow associated to
all vector fields in an open neighbourhood of f0 in the space of 〈γ1〉–equivariant vector fields of
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Figure 5: The presence of a transverse intersection creates a nested chain of uniformly hyperbolic
horseshoes, which is accumulating on the cycle. Observe that horizontal strips si and their first return
images by Ψw,v ◦ Φw ◦Ψv,w ◦ Φv intersect in a transverse way.

class C1 on S3, there are closed orbits linked to each of the cycles in Σ⋆ exhibiting infinitely
many knot types.

The previous result shows that among all the periodic solutions, there are many distinct
inequivalent knot types. Nevertheless, we do not know if these horseshoes induce all link types.
For example, neither the standard horseshoe (with two strips) nor its second iterate induces all
types of links. The third iterate of the Smale horseshoe induces all link types - see Kin [27].
Based on the paper of Hirasawa and Kin [22], we solved affirmatively the problem using the
concepts of generalized horseshoes and twist signature.

Corollary 5 If a vector field f0 satisfies (P1)–(P4) and (P8) then, for the flow associated to
all vector fields in an open neighbourhood of f0 in the space of 〈γ1〉–equivariant vector fields of
class C1 on S3, there are closed orbits linked to each of the cycles in Σ⋆ inducing all link types.

We address the proof of corollary 5 in section 4. Observe that for each n–pulse heteroclinic
connection from w to v, we may define a new n-heteroclinic cycle and thus a subsidiary Bykov
cycle. Hence, these new cycles have the same structure in their unfolding as the original cycles.

In the context of a heteroclinic cycle associated to non-trivial periodic solutions, Rodrigues et
al [36] describe the phenomenon of chaotic cycling : there are trajectories that follow the cycle
making any prescribed number of turns near the periodic solutions, for any given bi-infinite
sequence of turns. The rigorous definition of this concept requires an open neighbourhood VΣ⋆

of Σ⋆, a set of neighbourhoods of the saddles (isolating blocks) and a set of Poincaré sections
near each limit cycle (counting sections). Given these sets, it is possible to code with an infinite
word over a finite alphabet each trajectory that remains inside VΣ for all time. Each repetition
of a letter corresponds to a new turn inside the neighbourhood of the limit cycle; an infinite
repetition (resp. periodic word) corresponds to a trajectory lying in an invariant manifold (resp.
periodic solution). Coding trajectories that remain for all time in the neighbourhood of Σ⋆ is
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beyond the scope of this paper, but we point out that this technique may be naturally applied
to a heteroclinic cycle of saddle-foci.

2.4 Breaking the one-dimensional connection

For C1–vector fields on the plane, let Θ be an attracting heteroclinic network associated to two
equilibria with two cycles sharing one connection. Assuming that ξ is the splitting parameter
governing the common connection, it follows by Andronov-Leontovich theorem [6] that for suf-
ficiently small ξ > 0 there exists a unique stable hyperbolic limit cycle such that when ξ → 0,
the limit cycle approaches the locus of one of the cycles of Θ and its period tends to +∞.

The classical Shilnikov problem [38] in smooth three-dimensional systems states that small
C1–perturbations of an attracting homoclinic cycle associated to a saddle-focus could yield a
stable hyperbolic periodic solution with the same properties of that of Andronov-Leontovich on
the plane. The main goal of this section is to extend the classical Shilnikov problem for Bykov
cycles. The technique to tackle our problem is similar to that of Shilnikov: the reduction to the
Poincaré map.

When (P7) holds, with λ1 = 0 and λ2 6= 0, the heteroclinic cycles that existed in the fully
symmetric case disappear. The invariance of Fix(〈γ2〉) is not preserved and the asymptotically
stable heteroclinic network Σ is broken; nevertheless near the ghost of the original attractor
there will still exist some attracting structure.

We will prove that each cycle is replaced by an asymptotically stable closed trajectory that
lies near the original (attracting) heteroclinic cycle. One possibility would be to generate a
multi-pulse heteroclinic connection from v to w, that goes several times around close to where
the original heteroclinic connection was, in a sense that will be made precise in Section 5. This
is ruled out by the next result, proved in Section 5.

Theorem 6 If a vector field f0 satisfies (P1)–(P4), then the following properties are satisfied
by all vector fields in an open neighbourhood of f0 in the space of 〈γ2〉–equivariant vector fields
of class C1 on S3:

1. there are no multi-pulse heteroclinic connections from v to w;

2. near each of the two cycles present in the (Z2 ⊕ Z2)–symmetric equation, the perturbed
equations have a non-trivial asymptotically stable periodic solution.

In our context, Theorem 6 may be rephrased as follows: consider a generic 〈γ2〉-equivariant
one-parameter perturbation f(x, λ2) of the (Z2 ⊕ Z2)–symmetric organizing centre f0 that sat-
isfies (P7). Then, for each small λ2 6= 0 there is a pair of symmetry-related non-trivial asymp-
totically stable periodic solutions to ẋ = f(x, 0, λ2). As λ2 tends to 0 the closed trajectories
approach the two cycles in Σ and their period tends to +∞. In local coordinates (such as will
be assured by Samovol’s Theorem, see Section 3 below), the limit cycle of the stable periodic
trajectory winds increasingly around the local stable manifold of w and the time of flight inside
fixed neighbourhoods of v and of w tends to +∞.

2.5 Breaking the two heteroclinic connections

In this section we conclude that the Bykov cycle involving v and w may give rise to homoclinic
orbits involving saddle-focus. These homoclinic cycles are usually called Shilnikov homoclinic
orbits because the systematic study of the dynamics near them began with L. P. Shilnikov
[38] in 1965. The homoclinic orbits associated to a saddle-focus is one of the main sources of
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chaotic dynamics in three-dimensional flows. In several applications these homoclinicities play
an important role – see for example [10] in the setting of neuron model.

First of all, note that under perturbation the generalized horseshoes (Gi)i∈N which occur
near the Bykov cycle in proposition 2 survive for finitely many N . For each N , GN is uniformly
hyperbolic but

⋃

i∈NGi is not.

2.5.1 Dynamics near Shilnikov Homoclinic Orbits

In autonomous planar systems, a codimension 1 homoclinic bifurcation creates or destroys a
single closed orbit. However, when the dimension of the system is greater than 2, it is well
known that the appearance of a homoclinic orbit associated to a hyperbolic equilibrium may
give rise to a richness of periodic and aperiodic motions. A review of results on the dynamical
consequences of some homoclinic and heteroclinic motions in two, three and four dimensions is
described by Wiggins [41].

This subsection summarizes some well-known results about the dynamics near homoclinic
orbits associated to a hyperbolic equilibrium p0 in a three-dimensional manifold. All results will
be applied in the present work. We are assuming that dimW s(p0) = 2 = dimW u(p0) + 1. For
more details, see the books Shilnikov et al [39, 40].

In three-dimensional flows, if p0 is a saddle-focus of (2.2) such that:

• the eigenvalues of df , at p0, are λ
s+ iω and λu, where −λs 6= λu are positive numbers and

ω 6= 0;

• (non-linear condition) there is a homoclinic trajectory Γ connecting p0 to itself,

then Γ is said a Shilnikov homoclinic connection of p0. It is easy to see that p0 possesses a local
two-dimensional stable manifold and a local one-dimensional unstable manifold which intersect
non-transversely. If−λs < λu, we say that the homoclinic orbit Γ satisfies the Shilnikov condition
(see Gaspard [17]). Let Γ be a Shilnikov homoclinic connection to an equilibrium p0 of the flow
of (2.2).

1. If Γ satisfies the Shilnikov condition, then there exists a countable infinity of suspended
Smale horseshoes (accumulating on the homoclinic cycle) in any small cylindrical neigh-
bourhood of Γ. When the vector field is perturbed to break the homoclinic connection,
finitely many of these horseshoes remain and there appear persistent strange attractors
[34]. For each N ∈ N, N–homoclinic orbits exist for infinitely many parameter values.

2. If Γ does not satisfy the Shilnikov condition, then the homoclinic orbit is an attractor.
Under small C1– perturbations, there is one stable periodic orbit in a neighbourhood of
the homoclinic orbit.

In both cases, we assume that −λs 6= λu. Reverting the time, dual results may be obtained for
homoclinic orbits involving a saddle-focus p0 such that dimW u(p0) = 2 = dimW s(p0) + 1.

2.5.2 Homoclinic orbits near the ghost of the network

In general, the existence of a homoclinic orbit is not a robust property. Here, we prove that the
homoclinic orbits of v and w occur along lines in the two parameter space (λ1, λ2). There are
two main theorems in this section: the first one characterizes the dynamics near the homoclinic
orbits associated to v and the other states the similar results for w. Both follow from the
analysis of the bifurcation diagram depicted in figure 6.
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Figure 6: Bifurcation diagrams. (a) In the bifurcation diagram (λ1, λ2), there are infinitely many
tongues of attracting periodic trajectories accumulating on the line λ2 = 0. These periodic trajectories
are bifurcating from the attracting homoclinic orbit of v; (b) In the bifurcation diagram (λ1, λ2), near
each homoclinic orbit of w, there are infinitely many non-uniformly hyperbolic horseshoes which are
destroyed under small perturbations. The curves for which we observe the existence homoclinic orbits of
w are accumulating on the line λ2 = 0.

Theorem 7 Consider a vector field f0 satisfying (P1)–(P4) and (P8). A generic symmetry-
breaking family f(x, λ1, λ2) unfolding f0 satisfies (P5)–(P7) and its dynamics, for λ1 6= 0 and
for λ2 6= 0 sufficiently small satisfies:

1. for each λ1 > 0, there exists a sequence of positive numbers λk
2(v) such that if λ2 = λk

2(v)
there exists an attracting homoclinic orbit associated to v;

2. the homoclinic orbits which exist for λ2 = λk
2(v) and for λ2 = λk+2

2 (v) are distinguished
by the number of revolutions inside W around W s

loc(w);

3. for each λ1 > 0, either for λk
2(v) < λ2 < λk+1

2 (v) or for λk+1
2 (v) < λ2 < λk+2

2 (v), there
exists an attracting periodic solution near the locus of the homoclinic orbit;

4. in the bifurcation diagram, the tongues for which there are no attracting limit cycles (as-
sociated to bifurcations of homoclinic orbits of v) are alternated;

5. when λ2 → 0, the homoclinic orbits of v accumulate on the heteroclinic connection [v →
w].

Note that λk
2(v) depends on λ1. We omit this dependence to simplify the notation. From

a simple analysis of the bifurcation diagram, it follows that along a vertical line (λ1 = λ0
1), a

stable limit cycle is born from a simple homoclinic loop for λ2 = λk
2(λ

0
1); along the path, the

limit cycle decreases its period and increases once again until it reaches λ2 = λk+1
2 (λ0

1) where
the stable periodic solution becomes once again a homoclinic orbit of v.

We have the following result concerning homoclinicities of w:

12



Theorem 8 Consider a vector field f0 satisfying (P1)–(P4) and (P8). A generic symmetry-
breaking family f(x, λ1, λ2) unfolding f0 satisfies (P5)–(P7) and its dynamics, for λ1 6= 0 and
for λ2 6= 0 sufficiently small satisfies:

1. for each λ1 > 0, there exists a sequence of positive numbers λk
2, (w) such that if λ2 = λk

2(w)
there exists a homoclinic orbit associated to w;

2. the homoclinic orbits which exist for λ2 = λk
2(w) and for λ2 = λk+2

2 (w) are distinguished
by the number of revolutions inside V around W u

loc(v);

3. if λ2 = λk
2(w) there exists a horseshoe with an infinite number of periodic orbits;

4. when λ2 → 0, the sequence of homoclinic orbits of w accumulates on the cycle.

In the bifurcation diagram of figure 6, when we follow along a vertical line (λ1 = λ0
1), we

observe period-doubling cascade bifurcations that destabilize and restabilize the periodic orbits
leading to the full horseshoe which exists near the homoclinic orbit of w – see Glendinning
and Sparrow [19], Yorke and Alligood [43]. In [19], it has been demonstrated the existence of
a sequence of real numbers si, such that for λ2 = si one observe a double pulse homoclinic
orbit exhibiting the same behaviour as the main homoclinic orbit. This double pulse follows the
primary homoclinic cycle twice. The existence of n–pulse homoclinic orbits (n > 2) has been
also showed.

For dissipative systems, the process of creation and destruction of horseshoes can be accom-
panied by unfoldings of homoclinic tangencies to hyperbolic periodic solutions. The co-existence
of different types of behaviour in the flow has been investigated by many authors – see Bykov
[9], Xiao-Feng and Rui-hai [42], Glendinning, Abshagen and Mullin [18]. In the present paper,
from the analysis of the bifurcation diagrams, we may conclude that:

Corollary 9 For any family of differential equations satisfying (P1)–(P5) and (P8) the co-
existence of the homoclinic trajectories of v and w is a codimension 2 phenomenon. 2.

Note that the coexistence of homoclinic trajectories is not a true bifurcation since these tra-
jectories occur in different regions of the phase space. Due to the property (P8), the homoclinic
trajectories associated to v and w, when both coexist, must be linked; each one winds around
the other infinitely many times, inside the linearized neighbourhood defined in section 3.

3 Local Dynamics near the saddles

In this section, we establish local coordinates near the saddle-foci v and w and define some
notation that will be used in the rest of the paper. The starting point is an application of
Samovol’s Theorem [37] to linearize the flow around the equilibria and to introduce cylindrical
coordinates around each saddle-focus. These are used to define neighbourhoods with boundary
transverse to the linearized flow. For each saddle, we obtain the expression of the local map that
sends points in the boundary where the flow goes in, into points in the boundary where the flows
goes out. Finally, we establish a convention for the transition maps from one neighbourhood to
the other.

Note that when we refer to the stable/unstable manifold of an equilibrium point, we mean
the local stable/unstable manifold of that equilibrium.

2They occur at isolated points in parameter space, accumulating at the origin.
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3.1 Linearization near the equilibria

By Samovol’s Theorem [37] (see also section 6.4 Part I of Anosov et al [7] and Ren & Yang [35]),
around the saddle-foci, the vector field f is C1-conjugated to its linear part, since there are no
resonances of order 1. In cylindrical coordinates (ρ, θ, z) the linearizations at v and w take the
form, respectively:







ρ̇ = −Cvρ

θ̇ = αv

ż = Evz







ρ̇ = Ewρ

θ̇ = αw

ż = −Cwz.

(3.3)

We consider cylindrical neighbourhoods of v and w in S3 of radius ε > 0 and height 2ε that
we denote by V and W , respectively. Their boundaries consist of three components (see figure
7):

• The cylinder wall parametrized by x ∈ R (mod 2π) and |y| ≤ ε with the usual cover
(x, y) 7→ (ε, x, y) = (ρ, θ, z). Here x represents the angular coordinate and y is the height
of the cylinder.

• Two disks, the top and the bottom of the cylinder. We take polar coverings of these disks:
(r, ϕ) 7→ (r, ϕ, jε) = (ρ, θ, z) where j ∈ {−,+}, 0 ≤ r ≤ ε and ϕ ∈ R (mod 2π).

On these cross sections, we define the return maps to study the dynamics near the cycle.

Remark 1 Property (P8) concerning the direction of turning around the connection [v → w],
may be interpreted in terms of the sign of αv and αw: property (P8) holds when they have the
same signs.

3.2 Coordinates near v

The cylinder wall is denoted by H in
v . Trajectories starting at interior points of H in

v go into V in
positive time and H in

v ∩W s(v) is parametrized by y = 0. The set of points in H in
v with positive

(resp. negative) second coordinate is denoted by H
in,+
v (resp. H in,−

v ).
The top and the bottom of the cylinder are denoted, respectively, Hout,+

v and H
out,−
v . Tra-

jectories starting at interior points of Hout,+
v and H

out,−
v go inside the cylinder in negative time.

After linearization W u(v) is the z-axis, intersecting H
out,+
v at the origin of coordinates of

H
out,+
v . Trajectories starting at H in,j

v , j ∈ {+,−} leave V at Hout,j
v .

3.3 Coordinates near w

After linearization, W s(w) is the z -axis, intersecting the top and bottom of the cylinder at the
origin of its coordinates. We denote by H

in,j
w , j ∈ {−,+}, its two components. Trajectories

starting at interior points of H in,±
w go into W in positive time.

Trajectories starting at interior points of the cylinder wall Hout
w go into W in negative

time. The set of points in Hout
w whose second coordinate is positive (resp. negative) is denoted

H
out,+
w (resp. H

out,−
w ) and Hout

w ∩W u(w) is parametrized by y = 0. Trajectories that start at
H

in,j
w \W s(w), j ∈ {+,−} leave the cylindrical neighbourhood at Hout,j

w .
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Figure 7: Neighbourhoods of the saddle-foci. (a) Once the flow goes in the cylinder V transversely across
the wall Hin

v
\W s(v), it leaves transversely across the top or the bottom Hout

v
; (b) Once the flow goes in

the cylinder w transversely across the top or the bottom Hin
w
\W s(w), it leaves transversely across the

wall Hout
w

. Inside both cylinders, the vector field is linearized.

3.4 Local map near v

The local map Φv : H in,+
v → H

out,+
v near v is given by

Φv(x, y) = (c1y
δv ,−gv ln y + x+ c2) = (r, φ) (3.4)

where δv is the saddle index of v,

δv =
Cv

Ev

> 1, c1 = ε1−δv > 0, gv =
αv

Ev

and c2 = gv ln(ε).

The expression for the local map from H
in,−
v to H

out,−
v we obtain for y < 0, φv(x, y) =

φv(x,−y).

3.5 Local map near w

The local map Φw : H in,+
w \W s(w) → H

out,+
w near w is given by:

Φw(r, ϕ) = (c3 − gw ln r + ϕ, c4r
δw) = (x, y) ,

where δw is the saddle index of w,

δw =
Cw

Ew

> 1, gw =
αw

Ew

, c3 = gw ln ε and c4 = ε1−δw > 0.

The same expression holds for the local map from H
in,−
w \W s(w) to H

out,−
w .

3.6 Geometry near the saddle-foci v and w

The notation and constructions of previous subsections are now used to study the geometry
associated to the local dynamics around each saddle-focus.
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Definition 1 1. A segment β on H in
v or Hout

w is a smooth regular parametrized curve of
the type β : [0, 1] → H in

v or β : [0, 1] → Hout
w that meets W s

loc(v) or W
u
loc(w) transversely at

the point β(1) only and such that, writing β(s) = (x(s), y(s)), both x and y are monotonic
functions of s.

2. A spiral on Hout
v or H in

w around a point p is a curve α : [0, 1) → Hout
v or α : [0, 1) → H in

w

satisfying lim
s→1−

α(s) = p and such that, if α(s) = (α1(s), α2(s)) are its expressions in polar

coordinates (ρ, θ) around p, then α1 and α2 are monotonic, with lims→1− |α2(s)| = +∞.

3. Let a, b ∈ R such that a < b and let Hout
w be a surface parametrized by a covering (θ, h) ∈

R × [a, b] where θ is periodic. A helix on Hout
w accumulating on the circle h = h0 is a

curve γ : [0, 1) → H such that its coordinates (θ(s), h(s)) are monotonic functions of s
with lims→1− h(s) = h0 and lims→1− |θ(s)| = +∞.

At the item 2 of the previous definition, p will be seen as the intersection of the one-
dimensional local stable/unstable manifold of v or w with the considered cross section. At
the item 3, the curve is the intersection of the two-dimensional local unstable manifold of w
with the cross section Hout

w . Observing figure 8, the definitions become clear. The next lemma
summarizes some basic technical results about the geometry near the saddle-foci. The proof
may be found in section 6 of Aguiar et al [5] - this is why it will be omitted here.

Lemma 10 1. For j ∈ {+,−}, a segment β on H
in,j
v is mapped by φv into a spiral on H

out,j
v

around W u(v);

2. For j ∈ {+,−}, a segment β on H
out,j
w is mapped by φ−1

w into a spiral on H
in,j
w around

W s(w);

3. For j ∈ {+,−}, a spiral on H
in,j
w around W s(w) is mapped by φw into a helix on H

out,j
w

accumulating on the circle Hout
w ∩W u(w).

On the proof of item 3 of lemma 10, the authors of [5] used implicitly that the orientations
in which trajectories turn around in V and W are the same (i.e., they used implicitly property
(P8)).

3.7 Transition Maps

In the rest of this paper, we study the Poincaré first return map on the boundaries defined in
this section. Consider the transition maps

Ψv,w : Hout,j
v −→ H in,j

w j = +,− and Ψw,v : Hout
w −→ H in

v .

For λ1 = 0, the map Ψw,v may be taken to be the identity. For λ1 6= 0, the map can be seen
as a rotation by an angle α(λ1) with α(0) = 0. Without loss of generality, we use α ≡ π

2 , that
simplifies the expressions used.

For λ2 = 0 one of the connections [v → w] goes from H
out,+
v to H

in,+
w . For λ2 = 0, the linear

part of the map Ψv,w may be represented (in rectangular coordinates) as the composition of a
rotation of the coordinate axes and a change of scales. As in Bykov [9], after a rotation and a
uniform rescaling of the coordinates, we may assume without loss of generality that for λ2 6= 0,
Ψv,w is given by the map T (x, y) + L(x, y), where:

T (x, y) =

(

λ2

0

)

and L(x, y) =

(

a 0
0 1

a

)

a ∈ R+\{1}.
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Figure 8: Smooth structures referred in lemma 10. (a) A segment β on Hin,j
v

is mapped by φv into
a spiral on Hout,j

v
around Wu(v). (b) A segment β on Hout,j

w
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∩Wu(w). The double arrows on the segments, spiral and helix indicate correspondence

of orientation and not the flow.
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Figure 9: The transition map from v to w. We set that the transition map from v to w may be
approximated by a diagonal map.

Note that the map Ψv,w is given in rectangular coordinates. To compose this map with Φw, it
is required to change the coordinates. We address this issue later in section 5. We summarize
the above information in Table 3.

Parameters Symmetries preserved Ψv,w Ψw,v

λ1 = λ2 = 0 γ1, γ2 L Identity

λ1 6= 0 and λ2 = 0 γ1 L Rotation

λ1 = 0 and λ2 6= 0 γ2 T ◦ L Identity

λ1 6= 0 and λ2 6= 0 Identity T ◦ L Rotation

Table 3: The transition maps Ψv,w and Ψw,v depend on the type of symmetry breaking.

With this choice of local coordinates the maps Ψv and Ψw do not depend on λ1, λ2. The
transition map Ψw,v may be taken to depend on λ1 but not on λ2 and is written as Ψw,v(x, y, λ1).
The other transition map Ψv,w may be taken to depend on λ2 but not on λ1 and is written as
Ψv,w(r, ϕ, λ2) (see figure 9).
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4 Transverse Intersection of 2-dimensional manifolds

In this section, when we break the Z2(γ2) equivariance, using property (P6), we are assuming
that the heteroclinic connection between w and v becomes transverse and one-dimensional. We
still have a heteroclinic network of a different nature, which will be denoted by Σ⋆.

4.1 Proof of Proposition 2

Items 1 and 2 of proposition 2 follow from the three facts:

• the equilibria are hyperbolic;

• the fixed point subspace that contains the two connections [v → w] remains invariant;

• dim W u(v) ∩W s(w) = 1 and W u(v) ∩W s(w) ⊂ Fix 〈γ1〉.

Item 3 is a direct consequence of the main result about finite and infinite switching of Aguiar
et al [5]. Item 4 follows straightforwardly from the referred paper picking the segment β as
W u(w) ∩H in

v .
In order to prove item 5, we start with some terminology about horizontal and vertical strips.

Given a rectangular regionR inH in
v or inHout

w parametrized by a rectangle R = [w1, w2]×[z1, z2],
a horizontal strip in R will be parametrized by:

H = {(x, y) : x ∈ [w1, w2], y ∈ [u1(x), u2(x)]},

where
u1, u2 : [w1, w2] → [z1, z2]

are Lipschitz functions such that u1(x) < u2(x). The horizontal boundaries of the strip are
the lines parametrized by the graphs of the ui, the vertical boundaries are the lines {wi} ×
[u1(wi), u2(wi)] and its heigth is

h = max
x∈[w1,w2]

(u2(x)− u1(x)) .

When both u1(x) and u2(x) are constant functions we call H a horizontal rectangle across R. A
vertical strip across R, its width and a vertical rectangle have similar definitions, with the roles
of x and y reversed.

Item 5 follows from the construction of the Cantor sets presented in Aguiar et al [3] – if
Rv ⊂ H in

v is a rectangle containing [w → v] ∩ H in
v on its border, the initial conditions that

returns to H in
v are contained in a sequence of horizontal strips accumulating on the stable

manifold of v, whose heights tend to zero. Each one of these horizontal strips lying on the
rectangle Rv ⊂ H in

v , is mapped by Φw ◦Ψv,w ◦Φv into a horizontal strip across Hout
w . By (P6),

they are mapped by Ψv,w into vertical strips across Rw crossing transversely the original. This
gives rise to a nested chain of uniformly hyperbolic horseshoes, accumulating on the heteroclinic
connection, each one with positive topological entropy [16]. The hyperbolicity guarantees that
these invariant sets persist under symmetry breaking perturbations. An illustration of the way
these horseshoes are appearing is given in figure 5. However, note that among the infinitely
many nested horseshoes that occur when there is a heteroclinic network, only finitely many
persist under generic C1–perturbations.
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Figure 10: Pleated diagram associated to Gn, the spine of the generalized horseshoe: given two oriented
horizontal and vertical boundaries in Rv, h and v respectively, the pleated diagram associated to the
horseshoe is the union of the oriented arcs h∪Ψw,v ◦Φw ◦Ψv,w ◦Φv(v) (adapted definition of Hirasawa
and Kin [22]).

4.2 Proof of Corollary 5

The proof of Corollary 5 is connected with the geometry of the horseshoe Gn (with n strips)
which arises near the cycle (see item 5 of proposition 2). Each horizontal strip in H in

v is mapped
by the first return map into a vertical strip. This vertical strip intersects transversely n times
the original horizontal strip. As in Hirasawa et al [22], denoting the consecutive intersection
points by p1, . . . , pn, we are able to construct the twist signature of the horseshoe associated to
Gn: it is a finite sequence of integers (ai)i∈{1,...,n} satisfying the following conditions:

• a1 = 0;

• ai = ai−1 +1 if the oriented segment [pi−1, pi] goes around the counterclockwise direction;

• ai = ai−1 − 1 if the oriented segment [pi−1, pi] goes around the clockwise direction.

We will use the following result of Hirasawa and Kin [22] [adapted]:

Theorem 11 Let G a generalized horseshoe map with twist signature (a1, a2, . . . , an) . Then G

induces all link types if and only if one of the following is satisfied:

• each ai ≥ 0 and max{ai} ≥ 3.

• each ai ≤ 0 and max{ai} ≥ −3.

For n > 2, the generalized horseshoe Gn induces all links because the admissible signatures
are of the type (0, 1, 2, 3, . . . , n) or (0,−1,−2,−3, . . . ,−n) – the intersection of the horseshoes
is clear in the arrows in figure 10.

5 Proof of Theorem 6: existence of periodic trajectories

In this section, we treat the case λ1 = 0 and λ2 6= 0, when the two-dimensional manifolds W u(w)
and W s(v) coincide. We prove theorem 6 – the existence of a non-trivial closed trajectory – by
finding a fixed point of the Poincaré first return map R in H in

w .

5.1 Poincaré Map

Since λ1 = 0, then Ψw,v is the identity. The symmetry γ2 is preserved and thus the two half-
spheres in S3\Fix(〈γ2〉) are flow-invariant with symmetric dynamics. We look at one of them,
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where for λ2 = 0 the connection goes from H
out,+
v to H

in,+
w , omitting the redundant + signs to

lighten the notation. Consider the map:

R∗ = Φv ◦Ψw,v ◦ Φw : H in
w \W u

loc(w) −→ Hout
v

that in polar coordinates is given by

R∗(r, ϕ) =
(

c5r
δ, c6 + ϕ− c7 ln(r)

)

= (ρ, θ) (5.5)

where

c5 = c1c
δv
4 = ε1−δ, δ = δvδw c6 = −gv ln(c4) + c2 + c3 c7 = gvδw + gw

and, due to (P2), we have:

δ = δvδw =
CvCw

EvEw

> 1. (5.6)

It is worth noting that:
c7 = gvδw + gw > 0.

In Cartesian coordinates, we have R∗(r, ϕ) = (ρ cos θ, ρ sin θ) = (x, y). The Poincaré first return
map is λ2–dependent and given by R(r, ϕ) = Ψw,v(R∗(r, ϕ), λ2), where Ψw,v : Hout

v −→ H in
w is

given by Ψw,v(x, y) = (x+ λ2, y).

5.2 There are no multi-pulse heteroclinic connections [v → w]

In this section, we will prove the first assertion of theorem 6. Reminding that V and W are
neighbourhoods of v and w in which the vector field can be C1–linearized, we start by making
the statement of theorem 6 more precise:

Definition 2 Let A ⊂ V be a cross-section to the flow meeting W u(v). A one-dimensional
connection [v → w] that meets A at precisely k points is called a k–pulse heteroclinic connection
with respect to A. If k > 1 we call it a multi-pulse heteroclinic connection. A similar definition
holds for a cross-section B ⊂ W and for pairs of cross-sections A, B.

We intend to show that generically in a one-parameter unfolding satisfying (P1)–(P5) and
(P7), with λ1 = 0, there are no multi-pulse heteroclinic connections with respect to A = Hout

v .
Then a 2–pulse heteroclinic connection occurs for λ2 = λ∗ whenever R maps Ψv,w(0, 0, λ∗) ∈ H in

w

into the origin of Hout
w . A k–pulse connection arises when Rk (Ψv,w(0, 0, λ∗)) = (0, 0) and

Rj (Ψv,w(0, 0, λ∗)) 6= (0, 0) for 0 < j < k. Thus, in order to find a value λ∗ where there is a
multi-pulse connection one has to solve the two equations Rk (Ψv,w(0, 0, λ∗)) = (0, 0) for λ∗.
Generically the two equations do not have a common solution.

Remark 2 Note that for two-parameter families, i.e. λ2 ∈ R2, generically there would be
isolated values λk for which there would be k-pulse connections. In order to get branches of
multi-pulses arbitrarily close to λ2 = 0, one would need three parameters. This codimension 3
behaviour is beyond the scope of this paper.
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5.3 Existence of a fixed point of the Poincaré map

We start by finding the radial coordinate of the fixed point. For this we consider the maps
g± : (0, ε) −→ R (see figure 11)

g+(r) = r + ε
(r

ε

)δ

g−(r) = r − ε
(r

ε

)δ

.

Since δ > 1 both maps are of class C1 and

dg+

dr
(0) =

dg−

dr
(0) = 1. (5.7)

Lemma 12 If C is a circle of centre (0, 0) and radius r0 in H in
w , with 0 < r0 < ε, then R(C, λ2)

is a circle of centre (λ2, 0) and radius c5r
δ
0 < r0. Moreover:

• if λ2 ∈ (g−(r0), g
+(r0)), then R(C, λ2) ∩ C contains exactly two points;

• if either λ2 = g+(r0) or λ2 = g−(r0), then R(C, λ2) is tangent to C and thus R(C, λ2)∩C

contains a single point;

• if λ2 lies outside the interval [g−(r0), g
+(r0)], then R(C, λ2) ∩ C is empty.

Proof: Write C in polar coordinates as (r0, ϕ), where ϕ ∈ [0, 2π), r0 ∈ R+
0 is fixed, and let

R∗(r0, ϕ) = (ρ, θ). Then ρ = c5r
δ
0 is constant and θ = ϕ+ c6 − c7 ln(r0) varies in an interval of

length 2π. Hence, R∗(C) is a circle with centre (0, 0) and therefore, R(C, λ2) = Ψw,v ◦R∗(C) is

a circle with centre (λ2, 0) and radius ε
(

r0
ε

)δ
. Since r0 < ε and δ > 1, then this radius is less

that r0.
For λ2 = 0, the two circles C and R(C, λ2) are concentric. For a fixed r0 > 0, as λ2 increases

from zero, R(C, λ2) moves to the right and is contained in H in
w as long as λ2 ≤ ε

(

1−
(

r0
ε

)δ
)

.

As R(C, λ2) moves to the right it has first an internal tangency to C at λ2 = g+(r0), then the
two circles meet at exactly two points and at λ2 = g−(r0) they two points come together as C
and R(C, λ2) have an external tangency (figure 11).

Let a(λ2), b(λ2) be the inverses of the maps λ2 = g+(r) and λ2 = g−(r), respectively. Since
g− has a maximum at some point r∗ ∈ (0, ε) with g−(r∗) = λ∗

2, then b(λ2) is defined only for
0 < λ2 < λ∗

2 (see figure 11). For each r ∈ (a(λ2), b(λ2)), in the circle C with centre at the
origin and radius r there are two points whose images by R lie in the same circle. These points
P+(r) and P−(r) are symmetrically placed with respect to the line that contains the centres of
C and of R(C, λ2). In proposition 13 we show that for at least one of these points the angular
coordinate is also fixed by R and that this happens for each λ2 < λ∗

2.

Proposition 13 For any λ2 with 0 < λ2 ≤ λ∗
2 there is a point P ∈ H in

w such that R(P, λ2) = P .

Proof: Consider a fixed λ2 ∈ [0, λ∗
2]. For this proof, we need two systems of polar coordinates

in H in
w : one centered at W s(w)∩H in

w (that we call S1, coordinates (r, θ)) and the other centered
at W u(v) ∩H in

w (that we call S2, coordinates (ρ, ϕ)). The angular component of both systems
of coordinates starts at the line through the two centres; for S1 at the half-line that contains the
centre of S2, for S2 at the half-line that does not contain the centre of S1 (see figure 12). Both
angular coordinates ϕ and θ are taken in [−π, π] ( R (mod 2π)).
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ε

Figure 11: Thin line: graph of g+(r) = r+ ε
(

r
ε

)δ
where the circle C of radius r and the circle R(C, λ2)

have an external tangency; thick line: graph of g−(r) = r−ε
(

r
ε

)δ
where C and R(C, λ2) have an internal

tangency. Inside the wedge-shaped region between the two curves, C meets R(C, λ2) at two points,
outside it C ∩R(C, λ2) = ∅.
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φ
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P
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Figure 12: The two coordinate systems S1 and S2.
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Figure 13: For a fixed λ2 < λ∗
2, and for r = a(λ2) = a, the circles C and R(C, λ2) have an external

tangency (left). In this case, the intersection point has angular coordinate θ+ = θ− = 0 in S1 and
ϕ+ = π, ϕ− = −π in S2. For r = b(λ2) = b, the circles C and R(C, λ2) have an internal tangency
(right). Here, the intersection point has angular coordinate 0 in both coordinate systems. At the centre:
for r ∈ (a(λ2), b(λ2)), the angular coordinate in S2 of the upper (lower) intersection point decreases
(increases) to 0 as r increases.

We begin by measuring the angular component of the two intersection points P+ and P−

of the circles C and R(C, λ2). Let ϕ
+(r) and ϕ−(r) stand for the angular coordinates ϕ+(r) =

ϕ+(P+(r)) and ϕ−(r) = ϕ−(P−(r)), in the reference frame S2 (see Figure 13). Then the
functions

ϕ+ : [a(λ2), b(λ2)] −→ [0, π] ϕ− : [a(λ2), b(λ2)] −→ [−π, 0]

are both monotonic and satisfy

ϕ+(a(λ2)) = π ϕ+(b(λ2)) = 0 ϕ−(a(λ2)) = −π ϕ−(b(λ2)) = 0 . (5.8)

Similarly, θ+(r) = θ+(P+(r)) and θ−(r) = θ−(P−(r)) are measured in the reference frame S1

and define monotonic functions

θ+ : [a(λ2), b(λ2)] −→ [0, π] θ− : [a(λ2), b(λ2)] −→ [−π, 0]

such that
θ+(a(λ2)) = θ+(b(λ2)) = θ−(a(λ2)) = θ−(b(λ2)) = 0 . (5.9)

Finally, denoting by Ψ(r, θ) = c6 + θ − c7 ln r the angular coordinate of R(r, θ) measured in S2,
with θ measured in S1, let Ψ

+, Ψ− : [a(λ2), b(λ2)] −→ R be given by

Ψ+(r) = Ψ(r, θ+(r)) Ψ−(r) = Ψ(r, θ−(r)) .

Again, these are monotonic functions and they satisfy:

Ψ+(a(λ2)) = Ψ−(a(λ2)) and Ψ+(b(λ2)) = Ψ−(b(λ2)) . (5.10)

With this notation, if for some r0 ∈ [a(λ2), b(λ2)] we have ϕ+(r0) = Ψ+(r0) (mod 2π) then
the point with S2 coordinates (r0, ϕ

+(r0)) is a fixed point for R. Similarly, ϕ−(r0) = Ψ−(r0)
(mod 2π) implies that (r0, ϕ

−(r0)) is a fixed point for R (see figure 13).
Note that by (5.8) the union of the graphs of ϕ+ and ϕ− is a connected curve and this curve

divides the strip [a(λ2), b(λ2)] × R in three connected components. The limited component
contains the segment {a(λ2)} × (−π, π); each one of the unlimited components contains one of
the half-lines {b(λ2)} × (0,+∞) and {b(λ2)} × (−∞, 0). If either Ψ+(a(λ2)) = (2k + 1)π or

23



r
a b 


π

−π ϕ


r
a b

θ

ra
b

π

−π

ϕ
+

- θ

+

Ψ
+

Ψ
-

ra
b

π

−π

ra
b

π

−π

3π

−3π




ϕ
+

ϕ
-

Figure 14: When either ϕ+(r) = Ψ+(r) (mod 2π) or ϕ−(r) = Ψ−(r) (mod 2π) there is a fixed point for
the first return map R. Graphs are: thick lines for ϕ±, thin for Ψ±, solid lines for +, dashed for -, with
Ψ+(a(λ2)) ∈ (−π, π). Left: when Ψ+(b(λ2)) > 0 the graphs of ϕ+ and Ψ+ must cross. At the centre,
crossing of the graphs of ϕ− and Ψ− when Ψ+(b(λ2)) < 0. Right: for large λ2 new fixed points appear
in pairs as the graphs of Ψ± cross the graphs of ϕ± several times (mod 2π).

Ψ+(b(λ2)) = 2kπ for some k ∈ Z then either (a(λ2), ϕ
+(a(λ2))) or (b(λ2), ϕ

+(b(λ2))), respec-
tively, is fixed by R. When this is not the case, let N be an integer such that Ψ+(a(λ2))+2Nπ ∈
(−π, π), so (a(λ2),Ψ

+(a(λ2)) + 2Nπ) lies in the limited component of the strip. Since

(b(λ2),Ψ
+(b(λ2)) + 2Nπ) = (b(λ2),Ψ

−(b(λ2)) + 2Nπ)

lies in one of the unlimited components, then the graphs of Ψ+ and of Ψ− must cross the union
of the graphs of ϕ+ and ϕ− (see figure 14). If (b(λ2),Ψ

+(b(λ2))+2Nπ) lies in {b(λ2)}×(0,+∞),
then the graph of Ψ+(r)+2Nπ crosses the graph of ϕ+(r), otherwise the graphs of Ψ−(r)+2Nπ

and of ϕ−(r) must cross.

Several periodic trajectories may occur in two ways: first, there may be trajectories that
make more than one loop around the place where the original cycle was, appearing as fixed
points of some higher iterate RN of the Poincaré map R; second, the graphs of Ψ± may cross
the graphs of ϕ± several times (mod 2π), giving rise to several fixed points of the Poincaré map
R. We show next that the second possibility does not take place for small λ2.

Proposition 14 For small λ2 > 0 the Poincaré map has only one fixed point in H in
w .

Proof: For the map Ψ+ defined in the proof of proposition 13, using (5.9), we have

Ψ+(b(λ2))−Ψ+(a(λ2)) = c6+ θj(b(λ2))− c7 ln b(λ2)− c6− θj(a(λ2))+ c7 ln a(λ2) = c7 ln
a(λ2)

b(λ2)
.
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Then, since by (5.7),

lim
λ2→0

a(λ2) = lim
λ2→0

b(λ2) = 0 and lim
λ2→0

da

dλ2
(λ2) = lim

λ2→0

db

dλ2
= 1

we get
lim
λ2→0

(

Ψ+(b(λ2))−Ψ+(a(λ2))
)

= 0

even though, since c7 > 0

lim
λ2→0

Ψ+(b(λ2)) = lim
λ2→0

Ψ+(a(λ2)) = ∞ .

It follows that |Ψ+(b(λ2))−Ψ+(a(λ2))| << π for small λ2 > 0 and thus, since Ψ± and ϕ± are
monotonic, there is only one crossing (mod 2π) of either the graphs of Ψ+ and ϕ+ or of the
graphs of Ψ− and ϕ−. Therefore the fixed point of the Poincaré map is unique.

5.4 Stability of the fixed point

Proposition 15 For small λ2 > 0 the periodic solution corresponding to the unique fixed point
of Poincaré map in H in

w of Proposition 14 is asymptotically stable.

Proof: We want to estimate the eigenvalues of the derivative DR(X) of the Poincaré map
R : H in

w −→ H in
w . To do this we write R as a composition of maps

R(X) = P ◦R∗ ◦ h
−1(X)

whereR∗ = (ρ(r, ϕ), θ(r, ϕ)) is the expression (5.5) in polar coordinates, h(r, ϕ) = (r cosϕ, r sinϕ)
and P (ρ, θ) = (ρ cos θ + λ2, ρ sin θ). For X ∈ H in

w , X 6= (0, 0) we write h−1(X) = (r(X), ϕ(X)).
From the derivatives

DP (ρ, θ) =





cos θ −ρ sin θ

sin θ ρ cos θ



 DR∗(r, ϕ) =







c5δr
δ−1 0

−
c7

r
1







Dh−1(X) =









cosϕ(X) sinϕ(X)

−
sinϕ(X)

r(X)

cosϕ(X)

r(X)









it follows that DR(X) does not depend explicitly on λ2. Then, at X = h−1(r, ϕ) we have

detDR(X) = c25δr
2δ−2(X) .

The trace trDR(X), omitting the dependence on X, is given by

trDR(X) =
(

c5δr
δ−1 +

ρ

r

)

(cos θ cosϕ+ sin θ sinϕ) +
c7ρ

r
(sin θ cosϕ− cos θ sinϕ) .

We want to estimate detDR and trDR at points X(λ2) where R(X(λ2)) = X(λ2) for
small λ2 > 0. In polar coordinates we get h−1(X(λ2)) = (r(λ2), ϕ(λ2)) and we know that
limλ2→0 r(λ2) = 0. Then from the expression above, and since by (5.6) we have δ > 1,

lim
λ2→0

detDR(X)(λ2) = 0 .

25



For the trace, substituting the value of ρ(r, ϕ) = c5r
δ obtained in (5.5) we get

lim
r→0

ρ(r, ϕ)

r
= lim

r→0
c5r

δ−1 = 0

since δ > 1. Then at the limit cycle limλ2→0 trDR(X(λ2)) = 0. It follows that the eigenvalues
of DR(X(λ2)) also tend to zero and thus for small λ2 they lie within the disk of radius 1.

6 Proof of theorem 7: existence of homoclinic dynamics of

Shilnikov type

In general, vector fields with homoclinic cycles are structurally unstable and present fast tran-
sitions between different (and complex) dynamics. In this section, we are assuming that both
symmetries Z2(γ1) and Z2(γ2) are broken (i.e. λ1 6= 0 and λ2 6= 0) and that property (P8) is
satisfied. Without loss of generality, we assume that the transition map from v to w is just a
translation along the horizontal axis. Recall that the parameter λ2 controls the splitting of the
heteroclinic orbit [v → w] and λ1 is the parameter controlling the angle in H in

v of the transverse
intersection W u(w) and W s(v).

Near the heteroclinic network Σ⋆ which exists for λ1 6= 0 and λ2 = 0, there exists an
invariant Cantor set topologically equivalent to a full shift with an infinite countable set of
periodic solutions. It corresponds to infinitely many intersections of a vertical rectangle Rv

in H in
v with its image, under the first return map to H in

v . Only a finite number of them will
survive, under a small perturbation (i.e., the horseshoes which exist for λ2 = 0 lose infinitely
many legs).

If λ1 6= 0 6= λ2, the tips of the spirals Φ−1
w (W s(v)) ∩ H in

w and Ψv,w ◦ Φv(W
u(w)) ∩ H in

w

are separated and generically the center of the first curve does not intersect the second spiral.
Thus, the spirals have only a finite number of intersections and consequently the number of
heteroclinic connections from v to w is finite.

For λ1 6= 0 6= λ2, besides the existence of uniformly hyperbolic horseshoes, there are homo-
clinic orbits of v and w, whose coexistence we address in the present section. The existence
of these homoclinic loops is a phenomenon which depends on the right combination of the
parameters (λ1, λ2).

We start by a global description of Φ−1
w (W s(v))∩H in

w . The homoclinic connections are then
discussed separately: those in v in section 6.1 and those in w in section 6.2. For λ1 close to
zero, we are assuming that W s(v) intersects the wall Hout

w of the cylinder W in an ellipsis. This
is the expected unfolding from the coincidence of the invariant manifolds of the equilibria (see
figure 15).

We are assuming that W u(w)∩W s(v)∩Hout
w consists of two points P1 and P2 (see figure 15).

Each of these points W s(v) ∩Hout
w defines a segment and each segment may be approximated

by a line of slope ±λ1 parametrized by s (see figure 16) with either s ∈ (0, ε∗) or s ∈ (π− ε∗, π),
respectively, where ε∗ ∈ (0, ε). The points are Z2–related; this is an artifact of the broken
symmetry.

Near P1, the slope is λ1; near P2, the slope is −λ1. When λ1 = 0, the invariant manifolds
coincide; when λ1 6= 0, these two segments appear automatically. For assumption, we have:

lim
s→0+

s1(s) = P1 and lim
s→π−

s2(s) = P2.
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Figure 15: Both W s(v) ∩Hout
w

and Wu(w) ∩Hin
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are closed curves, approximated by ellipses for small
λ1.
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Figure 16: The cylinder Hout
w

is shown here opened into a rectangle to emphasize the fact that locally
W s(v) defines two lines on this wall.
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Figure 17: The backwards iterate Φ−1
w

(W s(v)) consists of two joined-up spirals in Hin
w

shown in red,
that divide Hin

w
in two components, mapped into the upper and lower parts of Hin

v
. As λ2 increases from

zero, Wu(v) ∩Hin
w

moves along the thick blue line (grey in print), whose image by Φw describes a helix
in Hout

w
. Arrows on W s(v) and on the blue line are just indications of orientation, not of flow.

By lemma 10, locally the curves Φ−1
w (s1(s)) and Φ−1

w (s2(s)) are disjoint spirals in H in
w accumu-

lating on the point W s
loc(w) ∩H in

w .
Globally, W s(v)∩Hout

w is a closed curve (x(s), y(s)), s ∈ [0, 2π], with two arcs where y(s) is
monotonic. Each arc is mapped diffeomorphically by Φ−1

w into a spiral and the two spirals meet
at the image of the maximum of y(s) (see figure 17).

6.1 Homoclinic connections of v - Tongues of Attracting Periodic Trajecto-

ries

Althought the existence of homoclinic orbits is not easy to prove, here we have been able to
characterize the curves for which we observe homoclinic cycles (of Shilnikov type) arising in the
unfolding of the heteroclinic network Σ⋆. Our study is consistent with the exhaustive study of
bifurcations arising in the unfolding of Bykov cycles done in [20] and [31].

Note that we are assuming that αv, αw > 0 since hypothesis (P8) is satisfied. The primary
homoclinicity of v occurs when the unstable manifold of v has a successful encounter with the
stable manifold of the same equilibrium on H in

w . Here, we will find the values λ2(v) of the
parameter λ2 for which system (2.2) has a homoclinic connection of v. This happens when
λ1 > 0 and either:

λ2(v) =

(

λ1s

c4

) 1

δw

and s− c3 +

(

αw

Cw

)

ln

(

λ1s

c4

)

= 2kπ, k ∈ Z (6.11)

or
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λ2(v) =

(

−
λ1(s− π)

c4

) 1

δw

and s− c3 +

(

αw

Cw

)

ln

(

−λ1(s− π)

c4

)

= 2kπ, k ∈ Z. (6.12)

Using the above equations, we may write the parameter λk
1 as function of λ2:

λk
1(λ2) =

c4λ
δw
2

2kπ + c3 −
αw

Ew

ln(λ2)
and s ∈ (0, ε⋆) (6.13)

or

λk
1(λ2) =

c4λ
δw
2

π + 2kπ + c3 −
αw

Ew

ln(λ2)
and s ∈ (π − ε⋆, π) (6.14)

Both equations (6.13) and (6.14) may be simplified as:

λk
1(λ2) =

c4λ
δw
2

kπ + c3 −
αw

Ew

ln(λ2)

where the denominator is either for the value of s or of π− s and only has meaning when it lies
in the interval (0, ε∗). For λ2 > 0, define:

k0(λ2) = min

{

k ∈ Z : 2kπ + c3 −
αw

Ew

ln(λ2) > 0

}

.

Further, we will use the information of the next lemma to depict the bifurcation diagram of
figure 18.

Lemma 16 1. limλ2→0 k0(λ2) = −∞

2. ∀k > k0,
dλk

1

dλ2
(0) = 0;

Proof:

1. It is immediate from the fact that when λ2 → 0, ln(λ2) → −∞.

2. Since δw > 1, observe that:

dλk
1

dλ2
(λ2) =

c4λ
δw−1
2

kπ + c3 −
αw

Ew

ln(λ2)
+

c4λ
δw−1
2

αw

Ew

(

kπ + c3 −
αw

Ew

ln(λ2)
)2 .

When λ2 → 0, the above expression tends to zero.

In a neighbourhood of the singular point (λ1, λ2) = (0, 0), the graph of λ1 as function of
λ2 is depicted in figure 18, for different values of k > k0. Recall that s ∈ [0, ε⋆]; in particular,
the end points of the graphs coincide with the intersection of the graphs of λk

1(λ2) with that of

λ1(λ2) =
c4λ

δw
2

ε⋆
(which represents the evolution of the end point of si of the linear approximation

of W s(v) ∩H
out,+
w ). When λ2 → 0+, the equation

kπ + c3 −
αw

Ew

ln(λ2) = 0

has infinitely many solutions (one for each k). In particular:
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Figure 18: Top: solid lines are the curves (λk
1(λ2), λ2) where there is a homoclinic connection to v,

dashed line is the limit s = ε∗ for the linear approximation of W s(v)∩Hout
w

. Bottom: Pairs of these lines
delimitate a tongue where there is a periodic trajectory.

Lemma 17 For all k sufficiently large, there exists λ⋆
2(k) such that

lim
λ2→λ⋆

2
(k)

λk
1(λ2) = +∞

and moreover limk→+∞ λ⋆
2(k) = 0. In other words, the graph of λk

1(λ2) has a vertical asymptote
for λ2 = λ⋆

2(k).

Observing closer the bifurcation diagram of figure 18, it follows that for a fixed λ2, there are
finitely many λ1 for which we observe homoclinic connections of v. We also conclude that for a
fixed λ2, there exists a λ⋆

1, such that for λ1 < λ⋆
1, there are no more homoclinic connections.

Remark 3 Note that the eigenvalues of v verify Cv > Ev and consequently the spectral as-
sumption of the attracting Shilnikov problem holds. For small variations of the parameters, the
equilibria are persistent and the same conditions on the eigenvalues are satisfied.

Assertions 1. and 2. of theorem 7 follow from lemmas 16 and 17. The other assertions of
theorem 7 follow from the results of Shilnikov [38], Glendinning and Sparrow [19] and Shilnikov
et al [39, 40].

Corollary 18 In the bifurcation diagram (λ1, λ2), there are infinitely many tongues of attracting
periodic trajectories accumulating on the line λ2 = 0. These periodic trajectories bifurcate from
the attracting homoclinic orbit of v.

It is straightforward that when λ2 → 0, the homoclinic orbits of v accumulate on the heteroclinic
connection [v → w].
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6.2 Homoclinic orbits of w - A cascade of horseshoes is only a participating

part!

In three-dimensions, the simplest homoclinic cycle that yield infinitely many transitions between
complicated dynamics is the classical Shilnikov problem (unstable version). In this section, we
prove the existence of homoclinic orbits in a neighbourhood of the ghost of the heteroclinic
network Σ⋆. Near these trajectories, there are infinitely many suspended horseshoes. When the
vector field is perturbed, generically the homoclinic orbits are destroyed and we conjecture that
persistent strange attractors might coexist. Among these sets, we are able to prove that along
specific curves in the bifurcation diagram, homoclinic trajectories of w exist.

Using the same argument as before, we assume the existence of two segments r1 and r2
(parametrized by s) which correspond to a linear approximation of W u(w) ∩ H in

v , in a neigh-
bourhood of the points W s(v) ∩ W u(w) ∩ H in

v (Q1 and Q2). The parameter λ1 > 0 is the
absolute value of the slope of r1 and r2; (near Q1, the slope is λ1; near Q2, the slope is −λ1).
Their parametrizations are given by:

r1 : r1(s) = (s, λ1s), for s ∈ [0, ε⋆]

and
r2 : r2(s) = (s,−λ1(s− π)), for s ∈ [π − ε⋆, π].

As before, we have:

Lemma 19 If λ1 6= 0, then φv(r1(s)) and φv(r2(s)) are disjoint logarithmic spirals in Hout
v

accumulating on the point W u
loc(v) ∩Hout

v .

Observing that:

φv(r1(s)) = φv(s, λ1s) = (c1(λ1s)
δv ;−gv ln(λ1s) + s+ c2) = (σ, φ)

and

φv(r2(s)) = φv(s,−λ1(s− π)) = (c1(−λ1(s− π))δv ;−gv ln(−λ1(s− π)) + s+ c2) = (σ, φ),

the homoclinic orbit associated to w (investigated on H in
w ) exists if and only if either

λ2(w) = c1(λ1s)
δv and s+ c2 −

(

αv

Ev

)

ln (λ1s) = 2kπ, k ∈ Z (6.15)

or

λ2(v) = c1 (−λ1(s− π))δv and s+ c2 −

(

αv

Cv

)

ln (−λ1(s− π)) = 2kπ, k ∈ Z. (6.16)

Using the above equations, we may write the parameter λk
1 as function of λ2 as either:

λk
1(λ2) =

c⋆1λ
1

δv

2

2kπ + c2 −
αv

Ev

ln(λ2)
and s ∈ (0, ε⋆)

or

λk
1(λ2) =

c⋆1λ
1

δv

2

π + 2kπ + c2 −
αv

Ev

ln(λ2)
and s ∈ (0, ε⋆).
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Figure 19: Top: Solid lines are the curves (λk
1(λ2), λ2) where there is a homoclinic connection to w,

dashed line is the limit s = ε∗ for the linear approximation of Wu(w) ∩ Hin
v
. Bottom: at each one of

these lines a horseshoe is created.

The proof of theorem 8 proceeds as that of Theorem 7, except that the curves (λk
1(λ2), λ2)

are tangent to the λ1–axis (see figure 19). It follows from results of Shilnikov [38] and Glendin-
ning and Sparrow [19], that a horseshoe bifurcates from each homoclinic connection. In the
neighbourhood of these homoclinic orbits, infinitely many periodic solutions of saddle type oc-
cur. These solutions are contained in suspended horseshoes that accumulate on the homoclinic
cycle, whose dynamics is conjugated to a subshift of finite type on an infinite number of symbols.
Multipulse homoclinic orbits and attracting 2-periodic solutions may unfold from the homoclinic
cycles, under additional hypothesis (Ew − 2Cw < 0).

Remark 4 Besides the interest of the study of the dynamics arising in generic unfoldings of an
attracting heteroclinic network, its analysis is important because in the fully non-equivariant case
(at first glance) the return map seems intractable. Here we are able to predict qualitative features
of the dynamics of the perturbed vector field by assuming that the perturbation is very close to
the organizing center. This is an important advantage of studying systems close to symmetry.
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