
GENERATING FUNCTIONS FOR HOPF BIFURCATION WITH

Sn-SYMMETRY

ANA PAULA S. DIAS, PAUL C. MATTHEWS AND ANA RODRIGUES

Abstract. Hopf bifurcation in the presence of the symmetric group Sn (acting naturally by

permutation of coordinates) is a problem with relevance to coupled oscillatory systems. To

study this bifurcation it is important to construct the Taylor expansion of the equivariant

vector field in normal form. We derive generating functions for the numbers of linearly

independent invariants and equivariants of any degree, and obtain recurrence relations for

these functions. This enables us to determine the number of invariants and equivariants

for all n, and show that this number is independent of n for sufficiently large n. We also

explicitly construct the equivariants of degree three and degree five, which are valid for

arbitrary n.

1. Introduction. One of the few classic problems in equivariant bifurcation theory that

has not been completely investigated is Hopf bifurcation with Sn-symmetry. This problem is

relevant to, for example, the behaviour of all-to-all coupled nonlinear oscillators [9]. Consider

the symmetric group Sn consisting of all bijections from {1, 2, . . . , n} to itself using the usual

composition of functions as the group operation. The standard irreducible representation of

Sn can be realized by considering the restriction of the action of Sn on R
n by permutation of

coordinates to the invariant subspace given by the vectors with coordinates summing zero,

denoted by R
n,0. It follows then that Hopf bifurcation occurs for the sum of two isomorphic

copies of such representation. Moreover, R
n,0 ⊕ R

n,0 is isomorphic to the subspace of C
n

given by the vectors with complex coordinates summing zero, denoted by C
n,0 and where Sn

acts by permutation of the coordinates. When studying Hopf bifurcation, it is important to

find the truncation of appropriate degree of the Taylor expansion at the bifurcation point of

the commuting vector field assumed in Birkhoff normal form. Also, we need to consider the

equivariance under the circle group S1; it can be assumed that the action of S1 on C
n,0 is

given by multiplication by eiθ for θ ∈ S1. See Golubitsky et al. [7, Section XVI 3].

When Hopf bifurcation occurs for problems posed on C
n,0, the Equivariant Hopf Theo-

rem [7, Theorem XVI 4.1] guarantees the generic existence of branches of periodic solutions

for each isotropy subgroup of Sn × S1 with two-dimensional fixed-point subspace. These

isotropy subgroups are called C-axial, have been calculated by Stewart [14] and are formed

by the spatio-temporal symmetries of the periodic solutions. In order to investigate the

stability of these periodic solutions, we need to construct the polynomial invariant functions
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and the equivariant mappings with polynomial components under Sn. Previous work has

done this for the specific cases n = 3 [3] and n = 4 [2].

In this paper we ask how many invariants and equivariants for Sn×S1 there are, degree by

degree. We give the answer by constructing generating functions for finite n and using these

to find recursive relations. With these relations we obtain results for general n. Rodrigues [11]

proves that when n ≥ 5, degree 5 terms of the vector field in Birkhoff normal form are

necessary to determine the stability of the periodic solutions guaranteed by the Equivariant

Hopf Theorem. We show explicit generators for equivariant mappings with cubic and quintic

homogeneous polynomial components under Sn × S1.

The paper is organized in the following way. In Section 2 we review a few facts about

generating functions, Hilbert-Poincaré series, Cohen-Macaulay rings and the standard irre-

ducible representation of Sn. In Section 3 we present Hilbert-Poincaré series for the ring

of invariant polynomial functions and the module of equivariant mappings with polynomial

components under the standard irreducible representation of Sn. Section 4 reviews recently

obtained formulas for invariants and equivariants under Sn ×S1 on C
n,0. In particular, gen-

erating functions for Sn × S1 can be obtained by averaging over S1 the generating functions

for the ring of invariants and module of equivariants for Sn acting on the real vector space

C
n by permutation of complex coordinates.

Section 5 contains our main results. We obtain recursive formulas for deriving the generat-

ing functions for Sn from the generating functions for Sk, k < n (Theorem 5.1, Corollary 5.4

and Proposition 5.8). Using these we relate in Theorem 5.5 and Corollaries 5.6, 5.9 the

generating functions for Sn and Sn−1, leading to general results for arbitrary n. In Section 6

we use our results of Section 5 to derive the numbers of polynomial invariant functions and

equivariant mappings with polynomial components of degree less than 10 for Hopf bifurca-

tion with Sn-symmetry. We finish with Section 7 where we give explicit generators for the

vector spaces of equivariant mappings with polynomial components of degree 3 and 5 under

the action of the group Sn × S1 on C
n,0.

2. Background. The aim of this section is to set up notation and review a few facts about

generating functions, Hilbert-Poincaré series and the standard irreducible representation of

Sn.

2.1. Generating Functions. We start by introducing generating functions. See for exam-

ple Sagan [12, Chapter 4] and references therein.

Definition 2.1. Given a sequence (an)n≥0 = a0, a1, a2, . . . of complex numbers, the corre-

sponding generating function is the power series

f(t) =
∑

n≥0

ant
n.

If the an enumerate some set of combinatorial objects, then f(t) is said to be the generating

function for those objects. 3
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To obtain information about a sequence it is often easier to manipulate its generating

function. Moreover, sometimes there is no known simple expression for an and yet f(t) is

easy to compute.

Example 2.2. A partition of n is a sequence λ = (λ1, . . . , λl) where the λi are weakly

decreasing and
∑l

i=1 λi = n. The generating function
∑

n≥0 p(n)tn, where p(n) is the number

of partitions of n is
1

1 − t

1

1 − t2
1

1 − t3
· · ·

This result is a famous theorem of Euler [4]. There is no known closed-form formula for p(n)

itself. In the context of the symmetric group Sn, p(n) is the number of conjugacy classes

(and hence also the number of irreducible representations). 3

2.2. Hilbert-Poincaré Series. Let G be a compact Lie group acting linearly on a finite-

dimensional real or complex vector space V . In what follows, K = R or K = C and to

simplify notation we denote the linear action of g ∈ G on a vector v ∈ V by gv.

A polynomial function f : V → K is invariant under G if f(gv) = f(v) for all g ∈ G, v ∈ V .

A polynomial mapping F : V → V is equivariant under G if F (gv) = gF (v) for all g ∈ G,

v ∈ V . The vector space PV (G) of G-invariant polynomials is a sub-algebra of the algebra

of all polynomial functions PV on V and Pk
V (G) = PV (G) ∩ Pk

V is the vector space of

homogeneous G-invariant polynomials of degree k.

The space of G-equivariant polynomial mappings from V to V is a module over the ring

PV (G), and we denote it by ~PV (G). Similarly, the space of homogeneous G-equivariant

polynomial maps from V to V of degree k is ~Pk
V (G) = ~PV (G) ∩ ~Pk

V .

We are interested in calculating the number of linearly independent homogeneous G-

invariants or G-equivariants of a certain degree. Generating functions for these dimensions

are generally known as “Molien functions” or “Hilbert-Poincaré series”.

The original definition of Hilbert-Poincaré series is for complex representations. In this

paper we are interested in real representations. As we explain (see Remark 2.3 below) the

‘real’ and ‘complex’ Hilbert-Poincaré series are the same.

Let G be a compact Lie group acting on V = R
m. Without loss of generality, we can

assume that G acts orthogonally and linearly on V , so that any g ∈ G acts as an orthogonal

matrix Mg with real entries. Moreover, we can view it as a matrix acting on V C = C
m. If

(x1, . . . , xm) denote real coordinates on R
m, xj ∈ R, then we obtain complex coordinates on

C
m by permitting the xj to be complex. Note that there is a natural inclusion

R[x1, . . . , xm] ⊆ C[x1, . . . , xm]

where these are the rings of polynomials in the xj with coefficients in R, C respectively.

Remark 2.3. Every real-valued G-invariant in R[x1, . . . , xm] is also a complex-valued G-

invariant in C[x1, . . . , xm]. Conversely, the real and imaginary parts of a complex valued

invariant are real invariants (because the matrices Mg have real entries). Therefore a basis
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over R for the real vector space of degree k real-valued invariants is also a basis over C

for the complex vector space of degree k C-valued invariants. Similar remarks apply to the

equivariants. 3

We suppose now that V is a m-dimensional vector space over C, where x1, . . . , xm denote

coordinates relative to a basis for V , and G ⊆ GL(V ) is a compact Lie group acting on

V . Let PV (G) denote the sub-algebra of C[x1, . . . , xm] formed by the invariant polynomials

under G (over C). Note that C[x1, . . . , xm] is graded:

C[x1, . . . , xm] = R0 ⊕ R1 ⊕ R2 ⊕ · · ·

where Rk consists of all homogeneous polynomials of degree k. Now observe that if f(x) ∈ Rk

for some k then f(gx) ∈ Rk for all g ∈ G. Therefore the space PV (G) has the structure

PV (G) = P0
V (G) ⊕P1

V (G) ⊕ P2
V (G) ⊕ · · ·

of a graded C-algebra given by Pk
V (G) = Rk ∩ PV (G).

The Hilbert-Poincaré series of the graded algebra PV (G) is a generating function for the

dimension of the vector space of invariants at each degree defined by

ΦG(t) =

∞
∑

d=0

(dimPd
V (G))td.

Consider the normalised Haar measure µG defined on G and denote by
∫

G
f the integral

with respect to µG of a continuous function f defined on G. Molien’s Theorem gives an

explicit formula for ΦG:

ΦG(t) =

∫

G

1

det(1 − gt)
dµG(g) .

See Molien [10] for the original proof of the finite case, and Sattinger [13] for the extension

to a compact group.

If G is finite, the Molien formula for the Hilbert-Poincaré series of PV (G) is

ΦG(t) =
1

|G|

∑

g∈G

1

det(1 − gt)
. (2.1)

The Hilbert series for the graded module ~PV (G) over the ring PV (G) is the generating

function

ΨG(t) =

∞
∑

d=0

dim( ~Pd
V (G))td

and an explicit formula for ΨG is given by:

ΨG(t) =

∫

G

χ(g−1)

det(1 − gt)
dµG(g) (2.2)

where χ is the character for the G action on V [13]. Observe that if the action of G on V is

orthogonal then g−1 = gt and χ(g−1) = χ(g).
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2.3. The Cohen-Macaulay Property. Invariant rings admit a nice decomposition: they

are Cohen-Macaulay. We review a few concepts and results related with this. See for example

Sturmfels [15, Section 2.3] and references therein.

Let p1, p2, . . . , pk be algebraically independent elements of C[x1, . . . , xm] which are homo-

geneous of degrees d1, d2, . . . , dk, respectively. Then the Hilbert series of the graded ring

subring C[p1, . . . , pk] is

1

(1 − td1)(1 − td2) · · · (1 − tdk)
(2.3)

(see for example [15, Lemma 2.2.3]).

Let R = R0⊕R1⊕R2⊕· · · be a graded C-algebra of dimension n. Thus R0 = C, Ri ·Rj ⊆

Ri+j and n is the maximal number of elements of R which are algebraically independent over

C. The number n is called the Krull dimension of R. A set {θ1, . . . , θn} of homogeneous

elements of positive degree in R is said to be a homogeneous system of parameters (h.s.o.p.)

provided R is finitely generated as a module over its subring C[θ1, . . . , θn]. In particular this

implies that θ1, . . . , θn are algebraically independent. A basic result of commutative algebra,

the Noether Normalization Lemma, implies that an h.s.o.p. for R always exists. Moreover,

the following result from commutative algebra [15, Theorem 2.3.1] holds:

If θ1, . . . , θn is an h.s.o.p. for R, then the following conditions are equivalent:

(a) R is a finitely generated free module over C[θ1, . . . , θn]. That is, there exist η1, . . . , ηt ∈ R

(which may be chosen to be homogeneous) such that

R =

t
⊕

i=1

ηiC[θ1, . . . , θn]. (2.4)

(b) For every h.s.o.p. φ1, . . . , φn of R, the ring R is a finitely-generated free C[φ1, . . . , φn]-

module.

A graded C-algebra R satisfying the conditions (a) and (b) above is said to be Cohen-

Macaulay. The decomposition (2.4) is called a Hironaka decomposition of the Cohen-Macaulay

algebra R. If we know the explicit decomposition (2.4) then the Hilbert series of R is

t
∑

i=1

tdeg ηi

n
∏

j=1

(1 − tdeg θj )

. (2.5)

If G is compact then the invariant ring PV (G) is Cohen-Macaulay. See Hochster and

Roberts [8], or Sturmfels [15, Theorem 2.3.5] for the case of finite groups. If

PV (G) =
t
⊕

i=1

ηiC[θ1, . . . , θn]
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then every invariant I(x) can be written uniquely as

I(x) =
t
⊕

i=1

ηi(x)pi(θ1(x), . . . , θn(x))

where p1, . . . , pt are suitable n-variate polynomials. Moreover, {θ1, . . . , θn, η1, . . . , ηt} is a

set of fundamental invariants for G, also called a Hilbert basis of the ring PV (G). The

polynomials θi in the h.s.o.p. are called primary invariants and the ηj are called secondary

invariants. Note that for a given group G there are many different Hironaka decompositions

and also the degrees of the primary and secondary invariants are not unique.

2.4. Standard Irreducible Representation of Sn. Here we review some classic results

about the standard action of Sn [12].

Consider Sn acting on R
n by permutation of coordinates:

σ (x1, x2, . . . , xn) =
(

xσ−1(1), xσ−1(2), . . . , xσ−1(n)

)

(2.6)

for σ ∈ Sn and x = (x1, . . . , xn) ∈ R
n. The action of Sn is reducible, and decomposes R

n

into the direct sum of two distinct irreducible Sn-invariant spaces:

R
n = R

n,0 ⊕ U (2.7)

where

R
n,0 = {x ∈ R

n : x1 + x2 + · · ·+ xn = 0}, U = {(x, x, . . . , x) : x ∈ R} .

The action of Sn is trivial on U and absolutely irreducible on R
n,0. A representation is

said to be absolutely irreducible if the only equivariant linear maps are scalar multiples of

the identity. Also, absolute irreducibility implies irreducibility. To prove that the action

on R
n,0 is absolutely irreducible, let L : R

n,0 → R
n,0 be linear and Sn-equivariant. Write

it as L(x) = (L1(x), . . . , Ln(x)) and so L1(x) + · · · + Ln(x) = 0 when
∑n

i=1 xi = 0. Now

observe that Sn is generated by the transpositions (12), (13), . . . , (1n). From the equivariance

conditions

L((1j)x) = (1j)L(x)

for all x ∈ R
n,0 and j = 2, . . . , n, it follows in particular that

Lj(x) = L1((1j)x)

for j = 1, . . . , n. Thus in order L to be Sn-equivariant it is necessary that L has the following

form:

L(x) = (L1(x), L1((12)x), . . . , L1((1n)x)) . (2.8)

We claim that L in the above form is Sn-equivariant if and only if L1 is Sn−1-invariant in

the n − 1 coordinates x2, . . . , xn. Therefore L1(x) = ax1 + b(x2 + · · · + xn) for some real

constants a, b ∈ R and so

L(x) = (a − b)x + b
n
∑

i=1

xi(1, . . . , 1) .
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As x ∈ R
n,0 and so

∑n
i=1 xi = 0 we have that

L(x) = (a − b)x,

that is, L is a scalar multiple of identity on R
n,0. Thus R

n,0 is Sn-absolutely irreducible.

To prove the claim, use for example the equivariance of (2.8) under the transposition (12):

from (12)L(x) = L((12)x) for all x ∈ R
n,0 it follows that L1 ((1q)x) = L1 ((1q)(12)x) for any

q ≥ 3 and so L1(y) = L1 ((1q)(12)(1q)y) = L1 ((2q)y). Thus L1 is Sn−1-invariant in the last

n − 1 coordinates. Obviously if we take L as in (2.8) where L1 satisfies this Sn−1-invariance

condition then L is Sn-equivariant.

Denoting by χS the character of the representation of Sn on the Sn-invariant space S, we

have then that

χR
n(σ) = χU(σ) + χ

R
n,0(σ) = 1 + χ

R
n,0(σ) (2.9)

for σ ∈ Sn.

3. Hilbert-Poincaré Series for Sn- Equivariant Steady-State Theory. Consider Sn

acting on R
n as in (2.6). It is known that PR

n(Sn) is a polynomial ring generated for

example by the algebraically independent polynomials xi
1 + xi

2 + · · · + xi
n for i = 1, . . . , n.

Moreover, ~PR
n(Sn) is a free module over the ring PR

n(Sn) generated by the equivariant

mappings Ei : R
n → R

n defined by Ei(x) = (xi
1, x

i
2, . . . , x

i
n)t for i = 0, . . . , n − 1. See for

example Golubitsky and Stewart [6, Proposition 2.27]. That is,

PR
n(Sn) = R[x1 + x2 + · · ·+ xn, . . . , xn

1 + xn
2 + · · · + xn

n],

~PR
n(Sn) =

n−1
⊕

i=0

EiR[x1 + x2 + · · ·+ xn, . . . , xn
1 + xn

2 + · · ·+ xn
n].

Denoting by fn, gn the Hilbert-Poincaré series of PR
n(Sn) and ~PR

n(Sn), respectively, it

follows then by (2.3) and (2.5) that

fn(t) =
1

(1 − t)(1 − t2) · · · (1 − tn)
(3.10)

and

gn(t) =
1 + t + t2 + · · ·+ tn−1

(1 − t)(1 − t2) · · · (1 − tn)
.

Remark 3.1. By an analogous argument to the one used in Section 2.4, we have that a

polynomial function f = (f1, . . . , fn) : R
n → R

n is Sn-equivariant if and only if f1 : R
n → R

is invariant under the permutation group Sn−1 in the last n−1-variables and fi(x) = f1((1i)x)

for i = 2, . . . , n. Thus, the number of linearly independent Sn-equivariant mappings with

polynomial homogeneous components of a given degree d is equal to the number of linearly

independent Sn−1-invariant polynomial functions from R
n to R where Sn−1 acts trivially on
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x1 and permutes the last coordinates x2, . . . , xn. Thus an alternative way to describe the

generating function gn for ~PR
n(Sn) is given by

gn(t) =
1

1 − t
fn−1(t) =

1

1 − t

1

(1 − t) (1 − t2) . . . (1 − tn−1)

which is the generating function for the polynomial ring R[x1, x2 + · · · + xn, . . . , xn−1
2 +

· · ·+ xn−1
n ]. 3

We are now interested in the restriction of the action (2.6) of Sn on R
n to the absolutely

irreducible space R
n,0. We make the following observations:

Remarks 3.2. (a) The restriction to R
n,0 of a Sn-invariant polynomial function on R

n is

a Sn-invariant on R
n,0. Moreover, any Sn-invariant polynomial function on R

n,0 is the

restriction to R
n,0 of a Sn-invariant polynomial function on R

n. Equivalently, if we denote

by v = (v1, u) coordinates on R
n according to the decomposition (2.7), then the function

F : PR
n(Sn) → P

R
n,0(Sn) defined by

F (f)(v1) = f(v1, 0)
(

f ∈ PR
n(Sn)

)

is well defined and it is a surjection.

(b) The restriction to R
n,0 of a Sn-equivariant polynomial function on R

n followed by projec-

tion according to the decomposition (2.7) onto R
n,0 is a Sn-equivariant polynomial func-

tion on R
n,0. Conversely, any Sn-equivariant polynomial function on R

n,0 is the restriction

to R
n,0 of a Sn-equivariant polynomial function on R

n followed by projection according to

the decomposition (2.7) onto R
n,0. Equivalently, the function H : ~PR

n(Sn) → ~P
R

n,0(Sn)

defined by

H(f)(v1) = f1(v1, 0)

for f = (f1, f2) : R
n → R

n, is well-defined and it is a surjection.

3

Denote by Fn, Gn the generating functions for P
R

n,0(Sn), ~P
R

n,0(Sn), respectively. We have

then the following result:

Theorem 3.3. (a) The ring P
R

n,0(Sn) is a polynomial ring generated by pi : R
n,0 → R for

i = 2, . . . , n defined by pi(x1, . . . , xn) = xi
1 + xi

2 + · · ·+ xi
n. Its generating function is

Fn(t) =
1

(1 − t2) · · · (1 − tn)
. (3.11)

(b) The module ~P
R

n,0(Sn) over the ring P
R

n,0(Sn) is free and it is generated by the functions

Hi : R
n,0 → R

n,0 for i = 1, . . . , n − 1, defined by

H1(x) = (x1, x2, . . . , xn)t, Hi(x) = (xi
1, x

i
2, . . . , x

i
n)t −

1

n
(xi

1 + xi
2 + · · · + xi

n)(1, 1, . . . , 1)t

for i ≥ 2. Its generating function Gn is

Gn(t) =
t + t2 + · · ·+ tn−1

(1 − t2) · · · (1 − tn)
=

t − tn

(1 − t) · · · (1 − tn)
. (3.12)
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Proof. It follows directly from Remarks 3.2 and from the facts that PR
n(Sn) is a polynomial

ring generated by xi
1+xi

2+· · ·+xi
n for i = 1, . . . , n and ~PR

n(Sn) is a free module over the ring

PR
n(Sn) generated by the equivariant functions Ei(x) = (xi

1, x
i
2, . . . , x

i
n)t for i = 0, . . . , n−1.

An alternative way to prove this theorem is by using the Molien formulas (2.1) and (2.2)

and the decomposition of the reducible representation described in Section 2.4. Since det(1−

σt)Rn = (1 − t) det(1 − σt)
R

n,0 ,

fn(t) =
1

(1 − t)
Fn(t)

which is (3.11). By (2.9) we have that χR
n(σ−1) = 1 + χ

R
n,0(σ−1) and thus

gn(t) =
1

(1 − t)
(Fn(t) + Gn(t)) ,

which can be rearranged to give (3.12).

4. Hilbert-Poincaré Series for Sn-Equivariant Hopf Theory. Consider now the action

of Sn on the 2n-dimensional real vector C
n given by

σ (z1, z2, . . . , zn) =
(

zσ−1(1), zσ−1(2), . . . , zσ−1(n)

)

(4.13)

for σ ∈ Sn and (z1, z2, . . . , zn) ∈ C
n. When studying Hopf bifurcation, we consider the action

of Sn × S1, where the circle group S1 acts by

θ (z1, z2, . . . , zn) =
(

eiθz1, e
iθz2, . . . , e

iθzn

)

(4.14)

for θ ∈ S1. Observe that if we write z = (z1, . . . , zn) and use multi-indices, any polynomial

function p : C
n → R can be written as

p(z, z) =
∑

α,β

aαβzαzβ (4.15)

where α, β ∈ (Z+
0 )n, zα = zα1

1 zα2

2 . . . zαn
n and the coefficients aαβ may be required to be

complex. Moreover, p is S1-invariant if and only if for each α, β such that aαβ 6= 0 we have

|α| = |β|. In particular, it follows that p has even degree in z, z. Similarly, if g : C
n → C

n

has components

gj(z, z) =
∑

α,β

bαβzαzβ

then the S1-equivariance is equivalent to having |α| = |β| + 1 if bαβ 6= 0. This is [7, Lemma

XVI 9.3]. Therefore g has odd degree components in z, z.

Applying the formulas obtained by Antoneli et al. [1] we have that for fixed n and degree

2k, the number of Sn × S1-invariant homogeneous polynomials of degree 2k is given by

dimR P2k

C
n(Sn × S1) =

1

n!

∑

σ∈Sn

χ(k)(σ)2.
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Also, the number of Sn×S1-equivariant polynomial functions with homogeneous components

of degree 2k + 1 is

dimC
~P2k+1

C
n (Sn × S1) =

1

n!

∑

σ∈Sn

χ(k+1)(σ) χ(k)(σ) χ(σ) .

Here, χ(k) denotes the character of the induced action of Sn on the k-th symmetric tensor

power SkR
n of R

n. Observe that if we have a representation of a group G on a vector

space V , then there is a natural representation of G on the tensor product V ⊗ V given by

g(v⊗w) = gv⊗ gw. By iteration of this construction one obtains an action of G on the k-th

tensor powers V ⊗k. By restriction, one obtains a representation of G on the k-th symmetric

tensor power SkV , since it is an invariant subspace of V ⊗k under the action of G.

We use now the concept of bigraded Hilbert-Poincaré series introduced by Forger [5].

Denoting by cq,r the dimension of the space of real Sn-invariant functions from C
n → R of

bidegree (q, r), the generating function of two variables

fn(t, s) =
∞
∑

q,r =0

cq,rt
qsr

is the bigraded Hilbert-Poincaré series for PC
n(Sn). The two variables t and s correspond

to z and z in (4.15). Moreover, Forger [5] obtains the following integral form:

fn(t, s) =
1

n!

∑

σ∈Sn

1

det(1 − σt) det(1 − σs)
. (4.16)

Here, σ denotes the matrix representing the action of σ on R
n.

Antoneli et al. [1] generalize this concept to the equivariants. Denoting by eq,r the com-

plex dimension of the space of Sn-equivariant mappings from C
n → C

n with homogeneous

polynomial components of bidegree (q, r), the generating function of two variables

gn(t, s) =

∞
∑

q,r =0

eq,rt
qsr

is the bigraded Hilbert-Poincaré series of ~PC
n(Sn) and the integral form for that is:

gn(t, s) =
1

n!

∑

σ∈Sn

χ
(

σ−1
)

det(1 − σt) det
(

1 − σs
) (4.17)

where χ is the character of the representation of Sn on R
n.

Another result of [1] is that the bigraded Hilbert-Poincaré series for PC
n(Sn ×S1) and for

~PC
n(Sn × S1) are given by

ΦSn×S1(t, s) =
1

2π

∫ 2π

0

fn

(

eiθt, e−iθs
)

dθ (4.18)

and

ΨSn×S1(t, s) =
1

2π

∫ 2π

0

e−iθgn

(

eiθt, e−iθs
)

dθ, (4.19)



GENERATING FUNCTIONS FOR HOPF BIFURCATION WITH Sn-SYMMETRY 11

where fn and gn are as in (4.16) and (4.17), respectively. Note that (4.18) extracts from

fn those terms which have the same degree in t and s, that is, those that satisfy the S1-

invariance condition |α| = |β|; hence ΦSn×S1(t, s) in fact depends only on the single variable

ts. Similarly, (4.19) selects the terms that satisfy the S1-equivariance condition |α| = |β|+1.

These results can also be used when taking Sn acting on the Sn-invariant space C
n,0 =

{z ∈ C
n : z1 + z2 + · · · + zn = 0}. In (4.18) and (4.19), instead of using the generating

functions fn, gn, we use the generating functions for the ring P
C

n,0(Sn) and the module

~P
C

n,0(Sn) that we will denote by Fn, Gn, respectively.

These formulas (4.18) and (4.19) show that the generating functions for the invariants

and equivariants for Sn × S1 are obtained by integrating over the group S1 the two-variable

generating functions for Sn. In the next section we obtain recursive formulas for fn, gn, Fn, Gn

(for the Sn reducible and irreducible cases). In bifurcation theory we are interested in the

irreducible case; but it is easier to start from the reducible case.

5. Generating Functions for Sn Hopf Bifurcation. Throughout we consider Sn acting

on the real vector space C
n by permutation of the coordinates as in (4.13). As before, we

denote by fn(t, s) the bigraded generating function for the ring of Sn-invariant polynomial

functions C
n → R and gn(t, s) the bigraded generating function for the module of the Sn-

equivariant mappings with polynomial components C
n → C

n.

There is no simple criterion for writing down the generating functions for the case of Hopf

bifurcation as in the steady-state case. The ring of invariants is not a polynomial ring.

Moreover, the module of the equivariants is not a free module over the ring of the invariants.

Using the Molien formula (4.16) we can derive explicit formulas for specific values of n.

For n = 2 we have

f2(t, s) =
1

2

[

1

(1 − t)2(1 − s)2
+

1

(1 − t2)(1 − s2)

]

=
1 + ts

(1 − t)(1 − s)(1 − t2)(1 − s2)

indicating that there are four primary invariants: two of degree 1, one in the variables z1, z2

and the other in the variables z1, z2; and two of degree 2, again, one in the variables z1, z2

and the other in the variables z1, z2. Moreover, there is a secondary invariant of degree 2.

We can take the degree 1 primary invariant generators: z1 +z2, z1 +z2; the degree 2 primary

invariant generators: z2
1 + z2

2 , z2
1 + z2

2; it can be easily checked that the ring of polynomial

S2-invariant functions C
2 → R has the Hironaka decomposition:

P
C

2(S2) = C[z1+z2, z1+z2, z2
1 +z2

2, z2
1+z2

2] ⊕ (z1z1+z2z2) C[z1+z2, z1+z2, z2
1 +z2

2 , z2
1+z2

2] .

The integral (4.18) can be evaluated using standard contour integral techniques, substituting

z = eiθ and using the Cauchy residue theorem, and the result is

ΦS2×S1(t, s) =
1 + t2s2

(1 − ts)2(1 − t2s2)
.
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For n = 3, using (4.16) we get

f3(t, s) =
1

6

[

1

(1 − t)3(1 − s)3
+

3

(1 − t)(1 − s)(1 − t2)(1 − s2)
+

2

(1 − t3)(1 − s3)

]

=
1 + ts + t2s + ts2 + t2s2 + t3s3

(1 − t)(1 − s)(1 − t2)(1 − s2)(1 − t3)(1 − s3)
.

As we increase n we have more complicated formulas where the number of primary and

secondary invariants increase. We present here a useful recursive formula that permits the

derivation of fn in terms of fi for i < n.

Theorem 5.1. Let n ≥ 1. We have the following recursive formula for the two variable

generating function fn of the ring of the Sn-invariant polynomial functions from C
n to R:

nfn(t, s) =

n
∑

k=1

1

1 − tk
1

1 − sk
fn−k(t, s). (5.20)

Proof. By (4.16) we have that

fn(t, s) =
1

n!

∑

σ∈Sn

1

det(1 − σt) det(1 − σs)
.

For k = 1, 2, . . . , n, let Pk denote the set of permutations of Sn that have the integer 1 in

a k-cycle. We have then that Sn decomposes into the disjoint union

Sn = P1 ∪̇P2 ∪̇ · · · ∪̇Pn

and

n fn(t, s) =
1

(n − 1)!

n
∑

k=1

∑

σ∈Pk

1

det(1 − σt) det(1 − σs)
. (5.21)

Given k between 1 and n, we calculate now

∑

σ∈Pk

1

det(1 − σt) det(1 − σs)
.

Observe that the number of k-cycles that have a 1 from n symbols is (n− 1)(n− 2) · · · (n−

k + 1) = (n − 1)!/(n − k)!. As the order of Sn−k is (n − k)!, we have that the cardinality of

the set Pk is

(n − 1)!

(n − k)!
(n − k)! = (n − 1)! .
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Choose the subset of Pk formed by the permutations of Pk that include in their cycle

decomposition the k-cycle (123 . . . k). Denote that subset by (123 . . . k)S{k+1,...,n}. Then

∑

σ∈(123...k)S{k+1,...,n}

1

det(1 − σt) det(1 − σs)

=
1

1 − tk
1

1 − sk

∑

σ∈S{k+1,...,n}

1

det(1 − σt) det(1 − σs)

=
(n − k)!

(1 − tk)(1 − sk)
fn−k(t, s).

Observe that if we choose any other subset of Pk given by a specific k-cycle including 1

we will get the same answer. That is, if i2, i3, . . . , in are any distinct integers of the set

{2, 3, . . . , n} then

∑

σ∈(1i2i3...ik)S{1,2,...,n}\{1,i2,...,ik}

1

det(1 − σt) det(1 − σs)
=

(n − k)!

(1 − tk)(1 − sk)
fn−k(t, s).

Since the number of k-cycles that have a 1 from n symbols is (n − 1)!/(n − k)!, we have

that
∑

σ∈Pk

1

det(1 − σt) det(1 − σs)

=
(n − 1)!

(n − k)!

(n − k)!

(1 − tk)(1 − sk)
fn−k(t, s)

= (n − 1)!
1

(1 − tk)(1 − sk)
fn−k(t, s).

Finally, using (5.21),

nfn(t, s) =
1

(n − 1)!

n
∑

k=1

(n − 1)!
1

(1 − tk)(1 − sk)
fn−k(t, s)

=
n
∑

k=1

1

(1 − tk)(1 − sk)
fn−k(t, s).

Remark 5.2. In one variable, when Sn acts on R
n by permutation of coordinates, if fn(t)

denotes the one-variable generating function for the ring of Sn-invariant polynomial functions

R
n → R, we have

nfn(t) =
n
∑

k=1

1

1 − tk
fn−k(t).

Now recall that there is an explicit formula for fn(t) given by (3.10) and so fn(t) =
1

1−tn
fn−1(t).
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3

Lemma 5.3. Let n ≥ 1. The two variable generating function gn of the module of the

Sn-equivariant polynomial functions C
n → C

n is related to fn in the following way:

gn(t, s) =
1

1 − t

1

1 − s
fn−1(t, s). (5.22)

Proof. Observe that the number of linearly independent polynomial mappings C
n → C

n

which are Sn-equivariant and have homogeneous components of degree d is equal to the

number of linearly independent polynomial functions C
n → C of degree d that have the

form

p(z1, z1) q(z2, . . . , zn, z2, . . . , zn)

where p(z1, z1) is a polynomial in the variables z1, z1 and q(z2, . . . , zn, z2, . . . , zn) is a poly-

nomial Sn−1-invariant.

Corollary 5.4. Let n ≥ 1. The recursive formula for gn is given by

(n − 1) gn(t, s) =
n−1
∑

k=1

1

1 − tk
1

1 − sk
gn−k(t, s).

Proof. Direct application of Lemma 5.3 and Theorem 5.1 leads to the above recursive for-

mula.

In the next theorem, O(n) means a polynomial where every term is greater or equal to n

in total degree.

Theorem 5.5. For n ≥ 1 we have:

fn(t, s) − fn−1(t, s) = O(n). (5.23)

Proof. We prove by induction that fn(t, s) − fn−1(t, s) = O(n) for all n ≥ 1. For n = 1 we

have

f1(t, s) − f0(t, s) =
1

(1 − t)(1 − s)
− 1 =

t + s − ts

(1 − t)(1 − s)
= O(1)

and so (5.23) is true for n = 1. Assume (5.23) is true for 1 ≤ n ≤ k. We prove now that it

is true for n = k + 1. By Theorem 5.1 we have that

(k + 1)fk+1(t, s) =
k+1
∑

i=1

1

(1 − ti)(1 − si)
fk+1−i(t, s),

kfk(t, s) =
k
∑

i=1

1

(1 − ti)(1 − si)
fk−i(t, s).
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Subtracting the above expressions, we obtain

k (fk+1(t, s) − fk(t, s)) + fk+1(t, s)

=

k
∑

i=1

1

(1 − ti)(1 − si)
(fk+1−i(t, s) − fk−i(t, s)) +

1

(1 − tk+1)(1 − sk+1)
f0(t, s)

=

k
∑

i=1

(1 + O(i)) (fk+1−i(t, s) − fk−i(t, s)) + (1 + O(k + 1)) f0(t, s) .

As k+1−i ≤ k for i = 1, . . . , k, by the induction hypothesis, we have fk+1−i(t, s)−fk−i(t, s) =

O(k + 1 − i). Thus

k (fk+1(t, s) − fk(t, s)) + fk+1(t, s)

=
k
∑

i=1

(fk+1−i(t, s) − fk−i(t, s)) +
k
∑

i=1

O(i)O(k + 1 − i) + (1 + O(k + 1)) f0(t, s)

= fk(t, s) − f0(t, s) + O(k + 1) + f0(t, s) + O(k + 1) .

We have then that

(k + 1) (fk+1(t, s) − fk(t, s)) = O(k + 1)

and so fk+1(t, s) − fk(t, s) = O(k + 1).

Corollary 5.6. For n ≥ 1 we have

gn(t, s) − gn−1(t, s) = O(n − 1).

Proof. From Lemma 5.3 and the above theorem we obtain the formula.

Remarks 5.7. (a) From Theorem 5.5, we have that Sn and Sn−1 have the same number

of invariants for degree d < n. Fixing the degree d, for all n ≥ d, the number of

Sn-invariants of degree d is the same. Therefore we have results for Sn for arbitrary n.

(b) From Corollary 5.6, we have that Sn and Sn−1 have the same number of equivariants for

degree d < n − 1. Thus, for all n such that n − 1 ≥ d, the number of Sn-equivariants of

degree d is the same. 3

See Section 6 for the numbers of polynomial invariant functions and equivariant mappings

with polynomial components of several degrees for Sn Hopf bifurcation.

All of the above results are for the reducible representation; we now obtain the analogous

results for the irreducible representation.

Proposition 5.8. Let n ≥ 1. Consider the restriction of the action (4.13) of Sn on C
n to

the subspace C
n,0 formed by the vectors satisfying z1 + · · ·+ zn = 0. The generating function

for the ring of Sn-invariant polynomial functions C
n,0 → R is

Fn(t, s) = (1 − t)(1 − s)fn(t, s) (5.24)

and the generating function for the module of Sn-equivariant mappings C
n,0 → C

n,0 with

polynomial components is

Gn(t, s) = fn−1(t, s) − (1 − t)(1 − s)fn(t, s) . (5.25)
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Proof. Recall from Section 2.4 that the reducible representation of Sn on R
n decomposes

into a trivial one-dimensional representation and the irreducible on R
n,0 (2.7). So the action

of any σ splits into its trivial action on U and its action on R
n,0. Thus det(1 − σt)Rn =

(1 − t) det(1 − σt)
R

n,0 , for all σ ∈ Sn. Hence by applying (4.16) we obtain

fn(t, s) = Fn(t, s)/(1 − t)(1 − s).

For the generating function for the equivariants, we apply (4.17) to the reducible repre-

sentation, and make use of (2.9). This gives

gn(t, s) =
1

n!

∑

σ∈G

1 + χ
R

n,0

(

σ−1
)

(1 − t) det(1 − σt)
R

n,0(1 − s) det(1 − σs)
R

n,0

which can be written as

gn(t, s) =
1

(1 − t)(1 − s)
(Fn(t, s) + Gn(t, s)).

Rearranging this formula and making use of (5.22) and (5.24) gives the result (5.25).

Using Proposition 5.8 and Theorem 5.5 we obtain:

Corollary 5.9. For n ≥ 1 we have the following formulas:

Fn(t, s) − Fn−1(t, s) = O(n),

Gn(t, s) − Gn−1(t, s) = O(n − 1).

Example 5.10. Consider the case n = 3. Note that it is the generating function Gn(t, s)

for the number of equivariants in the irreducible representation that is of most interest for

bifurcation theory. Using (5.25) and the explicit formulas for f2(t, s) and f3(t, s) given at

the beginning of section 5, we obtain

G3(t, s) =
t + s − st + ts2 + st2

(1 − t)(1 − s)(1 − t3)(1 − s3)
.

Carrying out the integral analogous to (4.19) using contour integration gives the result

ΨSn×S1(t, s) =
t(1 + t2s2)

(1 − ts)2(1 − t3s3)
= t + 2t2s + 4t3s2 + 7t4s3 + . . . ,

so we deduce that for the Hopf bifurcation with S3 symmetry there are two linearly indepen-

dent equivariants of degree three, four of degree five, and seven of degree seven. These results

are consistent with the work of Dias and Paiva [3] who studied this bifurcation problem in

detail.
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6. Numbers of Invariants and Equivariants for Sn Hopf Bifurcation. In this section

we present the numbers of polynomial invariant functions and equivariant mappings with

polynomial components of all degrees d < 10 for Hopf bifurcation with Sn-symmetry, for all

n. We do this both for the reducible representation of Sn × S1 on C
n and for the standard

irreducible representation of Sn × S1 on C
n,0. Recall that the action of Sn on C

n,0 is Sn-

simple, that is, C
n,0 is the sum of two isomorphic absolutely irreducible representations of

Sn. In what follows, we refer to the first and the second actions as reducible and irreducible,

respectively, for Hopf bifurcation with Sn-symmetry.

Table 1 gives the numbers of invariants in the reducible representation. These are found

by using the recurrence relation (5.20) to construct the generating function fn(t, s), and

then taking the term in td/2sd/2 in its Taylor expansion (using Maple). Recall Theorem 5.1,

Remark 5.7 (a) and the discussion in Section 4. Alternatively, we may first evaluate the

integral (4.18), after which only a one-variable Taylor expansion is required.

For the equivariants in Table 2, we use the generating function (5.22) obtained in Lemma 5.3

and then pick terms in x(d+1)/2y(d−1)/2 in its Taylor expansion.

For the irreducible representation we use the formulas obtained in Proposition 5.8: (5.24)

for the number of invariants in Table 3, and (5.25) for the number equivariants in Table 4.

Remarks 6.1. (a) From Theorem 5.5, we have that for a fixed degree d, the number of

Sn × S1-invariant polynomial functions on the reducible space C
n is constant for n ≥ d.

Also from Corollary 5.6, the number of Sn × S1-equivariant mappings with polynomial

components on C
n is constant for n − 1 ≥ d. In particular, using Table 2, we conclude

that for n ≥ 4 there are 11 linearly independent Sn × S1-equivariants of degree three

(this result was proved using a different method in [1]). Moreover, for n ≥ 6, there are

52 linearly independent Sn × S1-equivariants of degree five.

(b) By Corollary 5.9, we have that for a fixed degree d, the number of Sn × S1-invariant

polynomial functions on the irreducible space C
n,0 is constant for n ≥ d. Also the

number of Sn×S1-equivariant mappings with polynomial components on C
n,0 is constant

for n−1 ≥ d. Using Table 4, we conclude that for n ≥ 4 there are 3 linearly independent

Sn × S1-equivariants of degree three, and for n ≥ 6, there are 12 linearly independent

Sn × S1-equivariants of degree five.

3

d\n 2 3 4 5 6 7 8 9 ≥10

2 2 2 2 2 2 2 2 2 2

4 5 8 9 9 9 9 9 9 9

6 8 19 27 30 31 31 31 31 31

8 13 42 74 95 105 108 109 109 109
Table 1. Number of reducible invariants of degrees d = 2, 4, 6, 8, for Sn Hopf bifurcation.
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d\n 2 3 4 5 6 7 8 9 ≥10

3 6 10 11 11 11 11 11 11 11

5 12 32 46 51 52 52 52 52 52

7 20 78 145 188 206 211 212 212 212

9 30 162 382 581 703 758 777 782 783
Table 2. Number of reducible equivariants of degrees d = 3, 5, 7, 9, for Sn

Hopf bifurcation.

d\n 2 3 4 5 6 7 8 9 ≥10

2 1 1 1 1 1 1 1 1 1

4 1 2 3 3 3 3 3 3 3

6 1 3 6 7 8 8 8 8 8

8 1 5 13 19 24 25 26 26 26
Table 3. Number of irreducible invariants of degrees d = 2, 4, 6, 8, for Sn

Hopf bifurcation.

d\n 2 3 4 5 6 7 8 9 ≥10

3 1 2 3 3 3 3 3 3 3

5 1 4 9 11 12 12 12 12 12

7 1 7 21 33 41 43 44 44 44

9 1 10 43 84 119 137 146 148 149
Table 4. Number of irreducible equivariants of degrees d = 3, 5, 7, 9, for Sn

Hopf bifurcation.

7. Cubic and Quintic Equivariants for Sn Hopf Bifurcation. In this section we obtain

bases for the complex vector spaces of Sn × S1-equivariant mappings from C
n,0 to C

n,0 with

cubic and quintic homogeneous polynomial components. This is done by explicit construc-

tion, which is greatly facilitated by the fact that we know the correct number of independent

terms from Table 4.

Theorem 7.1. Suppose n ≥ 4. Consider the action of Sn × S1 on C
n,0 defined by the

restrictions to C
n,0 of the actions (4.13) and (4.14) on C

n. Then the following functions

Hi : C
n,0 → C

n,0 for i = 1, 2, 3 constitute a basis of the complex vector space of the Sn ×S1-

equivariant functions with homogeneous polynomial components of degree 3:

Hi(z) = (hi(z), hi((12)z), . . . , hi((1n)z))
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where z = (z1, . . . , zn) ∈ C
n,0 and

h1(z) = |z1|
2z1 −

1

n

n
∑

j=1

|zj |
2zj ,

h2(z) = z1

n
∑

j=1

z2
j ,

h3(z) = z1

n
∑

j=1

|zj |
2 .

Proof. The Sn × S1-equivariant functions with homogeneous polynomial components of de-

gree 3 are obtained by restriction to C
n,0 and projection onto C

n,0 of the Sn ×S1-equivariant

functions from C
n to C

n with homogeneous polynomial components of degree 3.

Observe that with respect to the direct sum decomposition of C
n into Sn-invariant spaces,

C
n = {(z, z, . . . , z) : z ∈ R} ⊕ C

n,0,

the projection vector of z = (z1, . . . , zn) ∈ C
n onto C

n,0 is:

z −
1

n
(z1 + · · · + zn) (1, . . . , 1) .

Thus given a Sn × S1-equivariant function f : C
n → C

n where f = (f1, . . . , fn) for fi :

C
n → C, the restriction of f to C

n,0 and projection onto C
n,0 is given by

f |
C

n,0 −
1

n

n
∑

i=1

fi|Cn,0 (1, . . . , 1) .

By Remark 6.1 (a), we have that there are 11 linearly independent functions from C
n to

C
n with homogeneous polynomial components of degree 3 that are Sn ×S1-equivariant. Let

f : C
n → C

n be Sn × S1-equivariant with homogeneous polynomial components of degree

3. The equivariance of f under Sn is equivalent to the invariance say of the first component

f1 under Sn−1 in the last n − 1 coordinates z2, . . . , zn, and then

f(z) = (f1(z1, z2, . . . , zn−1, zn), f1(z2, z1, . . . , zn−1, zn), . . . , f1(zn, z2, . . . , zn−1, z1)) .

This follows from

f ((1i)(z1, z2, . . . , zn)) = (1i)f (z1, z2, . . . , zn)

for i = 2, 3, . . . , n. Now using the S1-equivariance, for z = (z1, . . . , zn), taking z = (z1, . . . , zn)

and using multi-indices, we have that f1 can be written as

f1(z) =
∑

aαβzαzβ

with |α| = |β| + 1, as discussed in section 4, so for terms of degree 3, |α| = 2 and |β| = 1.

The rest of the proof consists in characterizing the first component f1. That is, we describe

the homogeneous polynomials of degree 3 that are Sn−1-invariant in the last n−1-coordinates

z2, . . . , zn and are S1-equivariant. We consider the Sn × S1-equivariants where the first

component is an homogeneous polynomial of degree 3 which can be written as

za
1z1

bp(z2, . . . , zn)
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where a, b ∈ Z
+
0 , a+b ≥ 0 and p is Sn−1-invariant. See [11, Theorems 4.2, 4.6] for details.

Remark 7.2. Table 4 shows that for n = 3 there are only two linearly independent equiv-

ariants, indicating that h1(z), h2(z), h3(z), are not linearly independent for n = 3. In fact

it can easily be shown that

6H1(z) − H2(z) − 2H3(z) = 0 for n = 3, z ∈ C
3,0.

3

As shown by Rodrigues [11, Section 4], when studying Hopf bifurcation with Sn-symmetry

posed on the standard Sn-simple space C
n,0, the quintic terms of the Taylor expansion at

the bifurcation point of a general Sn ×S1-equivariant Birkhoff normal form are necessary to

determine the stability of the branches of periodic solutions guaranteed by the Equivariant

Hopf Theorem [7, Theorem XVI 4.1]. That is, the cubic terms of the normal form are

too degenerate to determine the stability in certain directions. Moreover, the quintic terms

determine completely the stability for most of those branches. See [11, Theorem 4.13] for

details. By Remark 6.1 (b) we have that for n ≥ 6 there are 12 linearly independent Sn×S1-

equivariants with quintic polynomial components.

Theorem 7.3. Suppose n ≥ 6. Consider the action of Sn × S1 on C
n,0 defined by the

restrictions to C
n,0 of the actions (4.13) and (4.14) on C

n. Then the following functions

Hi : C
n,0 → C

n,0 for i = 1, . . . , 12 constitute a basis of the complex vector space of the

Sn × S1-equivariant functions with homogeneous polynomial components of degree 5:

Hi(z) = (hi(z), hi((12)z), . . . , hi((1n)z))

where z = (z1, . . . , zn) ∈ C
n,0 and

h1(z) = |z1|
4z1 −

1

n

n
∑

i=1

|zi|
4zi, h2(z) =

n
∑

i=1

|zi|
4z1,

h3(z) =

n
∑

i=1

z2
i

n
∑

j=1

z2
j z1, h4(z) =

(

n
∑

i=1

|zi|
2

)2

z1,

h5(z) =
n
∑

j=1

|zj |
2zj z2

1 −
1

n

n
∑

j=1

|zj |
2zj

n
∑

i=1

z2
i , h6(z) =

n
∑

j=1

z2
jz

3
1 −

1

n

n
∑

j=1

z2
j

n
∑

i=1

z3
i ,

h7(z) =
n
∑

i=1

|zi|
2

n
∑

j=1

z2
j z1, h8(z) =

n
∑

i=1

|zi|
2z2

i z1,

h9(z) =
n
∑

j=1

z3
j z

2
1 −

1

n

n
∑

j=1

z3
j

n
∑

i=1

z2
i , h10(z) =

n
∑

j=1

|zj|
2zj|z1|

2 −
1

n

n
∑

j=1

|zj|
2zj

n
∑

i=1

|zi|
2,

h11(z) =

n
∑

j=1

|zj |
2|z1|

2z1 −
1

n

n
∑

j=1

|zj |
2

n
∑

i=1

|zi|
2zi, h12(z) =

n
∑

j=1

z2
j |z1|

2z1 −
1

n

n
∑

j=1

z2
j

n
∑

i=1

|zi|
2zi .

Proof. The proof follows the lines of the proof of Theorem 7.1. Now recall Remark 6.1 (b)

where we conclude that there are 12 linearly independent Sn × S1-equivariant functions on
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C
n,0. By Remark 6.1 (a), we know that 52 is the number of linearly independent functions

from C
n to C

n with homogeneous polynomial components of degree 5 and Sn×S1-equivariant.

See [11, Theorems 4.5, 4.10] for details.

Remark 7.4. With the notation of Theorem 7.3, for n = 5 we have

H9(z) = 30H1(z) − 9
2
H2(z) + 3

4
H3(z) + 3

2
H4(z) − 3H5(z) − 3

2
H6(z)+

3
2
H7(z) − 3H8(z) − 6H10(z) − 9H11(z) − 9

2
H12(z)

where z ∈ C
5,0 and so we obtain (over the complex field) only eleven linearly independent

S5 × S1-equivariants on C
5,0 with homogeneous polynomial components of degree five. This

is consistent with Table 4. 3
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