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Abstract

In this paper we study the solutions to the Schrödinger equation on
some conformally flat cylinders and on the n-torus. First we apply an
appropriate regularization procedure. Using the Clifford algebra calculus
with an appropriate Witt basis, the solutions can be expressed as multi-
periodic eigensolutions to the regularized parabolic-type Dirac operator.
We study their fundamental properties, give representation formulas of
all these solutions in terms of multiperiodic generalizations of the elliptic
functions in the context of the regularized parabolic-type Dirac operator.

Furthermore, we also develop some integral representation formulas.
In particular we set up a Green type formula for the solutions to the
homogeneous regularized Schrödinger equation on cylinders and n−tori.
Then we treat the inhomogeneous Schrödinger equation with prescribed
boundary conditions in Lipschitz domains on these manifolds, and we
present an Lp−decomposition where one of the components is the kernel
of the first order differential operator that factorizes the cylindrical (resp.
toroidal) Schrödinger operator. Finally, we study the behavior of our
results in the limit case where the regularization parameter tends to zero.
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1 Introduction

Time evolution problems are of extreme importance in mathematical physics.
However, there is still a strong need to develop further special techniques to
deal with these problems, in particular when non-linearities are involved.

For stationary problems in Clifford analysis setting, the theory developed
by K. Gürlebeck and W. Sprößig [8] and their upfollowing students, which is
based on an orthogonal decomposition of the L2−space into the subspace of
the null-solutions to the corresponding Dirac operator and its complement, has
been successfully applied to obtain new insightful structural results and new
efficient solution algorithms of a wide range of elliptic equations. These include
for instance the stationary Lamé-, Navier-Stokes-, Maxwell- and Schrödinger
equations. See also [4], [7], [8], [12] or [15]. Indeed this kind of L2-space de-
composition (when applicable) represents one of the most central aspects of
complex and hypercomplex analysis and turned out to be the key ingredient in
the development of the treatment of these PDEs.

Unfortunately, there is no simple way to extend this theory directly to non-
stationary problems. A first step in this direction has been made in [3] in which
the authors treated the instationary Navier-Stokes equation over time-varying
domains.

One of the main objectives of this paper is to obtain such a decomposition for
the case of the time-dependent Schrödinger equation on a class of conformally
flat cylinders and the n-torus with different spin structures.

In order to construct such a decomposition we will try to apply some of
the techniques developed for the elliptic equations that were used to study
the heat problem in the analysis of the Schrödinger problem. However, we
need to take into account that in many aspects the Schrödinger operator is
substantially different from the heat operator. First of all the Gallilean group is
the invariance group associated to the first equation, while the parabolic group is
the invariance group that is associated to the heat equation (see [16]). Secondly,
the Schrödinger equation is related to the Minkowski space-time metric, while
the heat equation is linked to the parabolic space-time metric (see [16]). More
important for us, under an analytical point of view, the singularity t = 0 of
the correspondent fundamental solutions is removable outside the origin in the
second case but it is not removable in the case of Schrödinger operator. To
overcome this problem we introduce a regularization procedure prior to the
development of a hypoelliptic analysis (see [1], [5], [16] and [17]). For a fixed
ε > 0 we consider the regularized Schrödinger operator ∆+k∂t, where k = ε+i

ε2+1 .

In the first part of this paper we construct the fundamental solution to the
regularized Schödinger operator on a class of conformally flat n-dimensional
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cylinders and tori with different spin structures in terms of hypoelliptic multi-
periodic generalizations of the Weierstraß ℘-function.

These geometric models belong to the most basic ones in modern quantum
theory and quantum gravity and serve as useful toy models in cosmology.

After having introduced the basic geometric concepts we study the basic
analytic properties of the generalized hypoelliptic Weierstraß ℘-function that
we introduced.

In the particular case of the n-torus we prove that we can represent ev-
ery solution to the regularized Schrödinger operator on the torus by a finite
sum consisting of linear combinations of that particular generalized hypoelliptic
Weierstraß ℘-function and of its partial derivatives. We get uniqueness up to
an entire real analytic function that only depends on the time variable t.

After that, we set up some integral representation formulas for the null-
solutions to the regularized Schrödinger operator on the different cylinders and
the n-tori. In particular we develop a Green’s integral formula for the solu-
tions to the homogeneous regularized Schrödinger equation on these manifolds.
Then we treat the inhomogeneous Schrödinger equation with prescribed bound-
ary conditions in Lipschitz domains on these manifolds. Next we prove an
Lp−decomposition where one of the components is the kernel of the first order
differential operator that factorizes the cylindrical (resp. toroidal) regularized
Schrödinger operator. Finally, we study the behavior of our results in the limit
case ε→ 0.

2 Preliminaries

2.1 Clifford algebras and hypoelliptic theory

We consider the n-dimensional vector space Rn endowed with an orthonormal
basis {e1, · · · , en}.

We define the universal Clifford algebra C`0,n as the 2n-dimensional asso-
ciative algebra which preserves the multiplication rules eiej + ejei = −2δi,j .
A basis for C`0,n is given by the elements e0 = 1 and eA = eh1

· · · ehk , where
A = {h1, . . . , hk} ⊂ M = {1, . . . , n}, for 1 ≤ h1 < · · · < hk ≤ n. Each el-
ement x ∈ C`0,n can be represented by x =

∑
A xAeA, xA ∈ R. The Clifford

conjugation is defined by ej = −ej for all j = 1, . . . , n and we have ab = ba.
We introduce the complexified Clifford algebra Cn as the tensor product

C⊗ C`0,n =

{
w =

∑
A

zAeA, zA ∈ C, A ⊂M

}

where the imaginary unit i interacts with the basis elements, that means iej =
eji for all j = 1, . . . , n. Notice that for a, b ∈ Cn we only have |ab| ≤ 2n|a||b|.
To avoid ambiguities with the Clifford conjugation we denote the complex con-
jugation mapping a complex scalar aA = aA0 + iaA1 onto aA = aA0 +−iaA1 by
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]. The complex conjugation leaves the elements ej invariant, i.e. e]j = ej for all
j = 1, . . . , n.

Next we introduce the Euclidean Dirac operator D =
∑n
j=1 ej∂xi . The

latter one factorizes the n-dimensional Euclidean Laplacian, that is, D2 = −∆.
A Cn-valued function that is defined on an open domain Ω, u : Ω ⊂ Rn 7→ Cn,
is called left-monogenic if it satisfies Du = 0 on Ω (resp. right-monogenic if it
satisfies uD = 0 on Ω).

A function u : Ω 7→ Cn has a representation u =
∑
A uAeA with C-valued

components uA. Properties such as continuity will be understood component-
wisely. In the sequel we will use the short notation Lp(Ω), Ck(Ω), etc., instead of
Lp(Ω,Cn), Ck(Ω,Cn) for the corresponding space. For more details on Clifford
analysis, we refer the interested reader for instance to [6, 8].

The space L2(Ω) can be endowed with the structure of a Hilbert Cn−module
by endowing it with the following inner product

< f, g > :=

∫
Ω

f(x, t)
]
g(x, t) dxdt, f, g ∈ L2(Ω).

Like in [3] we will imbed Rn into Rn+2. For that purpose we add two new
basis elements f and f† satisfying

f2 = f†
2

= 0, ff† + f†f = 1, fej + ejf = f†ej + ejf
† = 0, j = 1, · · · , n.

The extended basis is often called a Witt basis. This construction allows us to
use a suitable factorization of the time evolution operators where only partial
derivatives are used.

Following [1], a partial differential operator is hypoelliptic if and only if its
fundamental solution is a C∞ function in Rn × R+

0 \ {(0, 0)}.

2.2 Regularization of the Schrödinger operator

The following function e− defined by

e−(x, t) = i
H(t)

(4πit)
n
2

exp

(
−i |x|

2

4t

)
is the fundamental solution to the Schrödinger operator (see [5]). It has a sin-
gularity in all the points of the hyperplane t = 0. This is different from the
situation of deadling with the classical isolated point singularity for the hypoel-
liptic operators. Moreover, these singularities are not removable by standard
calculations methods. This causes additional problems in the study of some
integral operators or series that are constructed using these functions, because
we cannot guarantee the convergence in the classical sense.

In order to overcome this problem we need to regularize the fundamental
solution and the corresponding integral operators (see [16]). In the operators
and correspondent fundamental solutions one has to substitute the imaginary
unity by the parameter k = ε+i

ε2+1 . Hence we obtain a family of operators and
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correspondent fundamental solutions, which are locally integrable in Rn×R+
0 \

{(0, 0)}. Following [1], for each ε > 0, the operator (−∆− k∂t) is a hypoelliptic
operator. Its use and ensures the good behavior for the integral operators and
its associated function series, as we shall see later on. The fundamental solution
for this operator is given by

eε−(x, t) = (ε+ i)e(x, (ε+ i)t)

= (ε+ i)
H(t)

(4π(ε+ i)t)
n
2

exp

(
− (ε− i)|x|2

4(ε2 + 1)t

)
, ε > 0.

This motivates us to consider the following regularized parabolic-type Dirac
operator

Definition 2.1. For a function u ∈ W a
p (Ω), with Ω ⊂ Rn+1, 1 ≤ p < +∞ and

a ∈ N, we define the forward/backward regularized parabolic-type Dirac operator
as

Dε
±u = (D + f∂t ± kf†)u, (1)

where D stands for the usual (spatial) Euclidean Dirac operator that we intro-
duced before.

This operator factorizes the correspondent forward/backward regularized
Schrödinger operator, i. e.

(Dε
±)2u = (−∆± k∂t)u. (2)

This regularized operator satisfies that Dε
± : W 1

p (Ω) → Lp(Ω). For more
details about this regularization procedure, we refer the reader to the preceding
papers [5] and [18]. In all that follows in this paper we will restrict to consider
without loss of generality the backward operator. In [5] we proved the following
result:

Theorem 2.2. For the sequence of parabolic-type Dirac operators Dε
−, with

ε > 0, we have the following convergence

‖D− −Dε
−‖L1(Ω) → 0,

where D− = D + f∂t − if†, when ε→ 0.

We now present the family of regularized fundamental solutions for this first
order operator Dε

−

Definition 2.3. Given a fundamental solution eε− = eε−(x, t) of the operator
(2), then we have that the function Eε−(x, t) = Dε

−e
ε
−(x, t) is a fundamental

solution for the operator Dε
−

Easy calculations (see [5]) give

Eε−(x, t) = Dε
−e

ε
−(x, t)

= eε−(x, t)

[
−x

2(ε+ i)t
+ f

(
−n
2t

+
|x|2

4(ε+ i)t2

)
− kf†

]
. (3)
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In [5] the authors proved the following regularized Borel-Pompeiu type for-
mula ∫

∂Ω

Eε−(x− x0, t− t0)dσx,t u(x, t)

= u(x0, t0) +

∫
Ω

Eε−(x− x0, t− t0)(Dε
+u)(x, t)dxdt, (x0, t0) /∈ ∂Ω

. (4)

Here the surface element is given by the contraction of the homogeneous ope-
rator associated to Dε

− with the volume element, i.e., dσx,t = (Dx + f∂t)cdxdt.
Moreover, when u ∈ ker(Dε

+) the authors presented the following regularized
Cauchy type integral formula∫

∂Ω

Eε−(x− x0, t− t0)dσx,t u(x, t) = u(x0, t0). (5)

For more details about the application of this regularization procedure to
the Schrödinger operator in the context of Clifford analysis, see for instance [5]
and [18].

3 Generalized hypoelliptic multiperiodic func-
tions

In this section we construct for k = 1, . . . , n k-fold periodic regularized time-
holomorphic solutions in the kernel of Dε

−. For that we introduce the following
definitions

Definition 3.1. Let Ω ⊆ Rn+1 an open set. We say that a function f : Ω→ Cn
is regularized time-holomorphic in Ω if Dε

−f(x, t) = 0 holds for all (x, t) ∈ Ω.

Definition 3.2. Let k ∈ {1, . . . , n}. Suppose that v1, ..., vk are R-linear inde-
pendent vectors in Rn. The lattice generated by these vectors will be denoted by
V = Zv1 + ...+ Zvn. Let S ⊂ Rn+1 be a closed subset satisfying S + v = S, for
all v ∈ V . We call a function u : Rn+1 \ S → Cn which satisfies

(1) u(x+ v, t) = u(x, t) for all x ∈ V .

(2) u is regularized time-holomorphic except in the points of S.

a k-fold periodic regularized time-holomorphic function.

3.1 The generalized regularized ℘ε-function for Dε
−

In this subsection, we construct the simplest example of a non-trivial n-fold
periodic regularized time-holomorphic function. The same construction can be
applied to construct k-fold periodic functions with k < n.
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First we recall the following relation concerning to the L2−norm of the
regularized fundamental solution Eε− (for more details see Theorem 3.4 for p = 2
in [5]).

‖Eε−‖L2(Ω) = ‖Dε
−e

ε
−‖L2(Ω)

≤ ‖A1‖L2(Ω) + ‖A2‖L2(Ω) + ‖A3‖L2(Ω),

where
A1(x, t) = −eε−(x, t)

x

2(ε+ i)t

A2(x, t) = eε−(x, t) f

(
−n
2t

+
|x|2

4(ε+ i)t2

)
A3(x, t) = −eε−(x, t) kf†.

For simplicity, we restrict to consider the orthonormal lattice V := Ze1 +
...+ Zen. This lattice can be written as the union

V =

+∞⋃
m=0

Vm,

where

Vm := {v ∈ V : ‖v‖max = m}.

We further consider the following subsets of this lattice

Lm := {v ∈ Ω : ‖v‖max ≤ m}.

Obviously, the set Lm contains exactly (2m+1)n points. Hence, the cardinality
of Vm is ]Ωm = (2m + 1)n − (2m − 1)n. The Euclidian distance between the
set Vm+1 and Vm has the value dm := dist2(Vm+1, Vm) = 1. Now we are able to
prove

Theorem 3.3. For each ε > 0 the series

℘ε(x, t) :=
∑
v∈V

Eε−(x+ v, t) (6)

is normally convergent and represents a non-vanishing n-fold regularized peri-
odic time-holomorphic function in Rn+1 satisfying in each point of Rn+1 \S the
regularized backward Schrödinger equation (−∆− k∂t)℘

ε = 0, where S denotes
the set of points {(x, t) ∈ Rn+1 | t = 0}. Notice that S is indeed invariant under
translations of the period lattice lattice V as the latter one only induces shift in
the spatial dimensions. In each point of S the function ℘ε(x, t) has a singularity

of order
n

2
.
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Proof: To show the normal convergence of the series, let us consider an
arbitrary compact subset K ⊂ Rn+1\S. Then there exists a positive r ∈ R such
that all (x, t) ∈ K satisfy ‖(x, t)‖max ≤ ‖(x, t)‖L2(Ω) < r. Suppose now that
(x, t) is a point of K. Taking into account Theorem 3.4, for p = 2, in [5], we
have

+∞∑
m=[r]+1

∑
v∈Vm

‖Eε−(x+ v, t)‖L2(Ω) ≤

((2m+ 1)n+1 − (2m− 1)n+1)
[
‖A1(x+ v, t)‖L2(Ω) + ‖A2(x+ v, t)‖L2(Ω) + ‖A3(x+ v, t)‖L2(Ω)

]
,

where

A1(x+ v, t) = −eε−(x+ v, t)
x+ v

2(ε+ i)t

A2(x+ v, t) = eε−(x+ v, t) f

(
−n
2t

+
|x+ v|2

4(ε+ i)t2

)
A3(x+ v, t) = −eε−(x+ v, t) kf†,

Since the regularized fundamental solution Eε− is a function in L2 (for more
details see [5]) we can guarantee that the previous series is absolutely convergent.
Hence the series (6), which can be written as

℘ε0,...,0(x, t) :=

+∞∑
m=0

∑
v∈Vm

Eε−(x+ v, t) (7)

converges normally on Rn+1 \ V . Since Eε− belongs to the kernel of Dε
− in all

Rn \ {(0, 0)} and has a singularity of order
n

2
at the origin and exponential

decrease for ‖(x1, ..., xn)‖ → +∞, ‖t‖ → 0, with (x1, ..., xn, t) = (x, t). The
series ℘ε0,...,0(x, t) satisfies Dε

−℘
ε
0,...,0(x, t) = 0 in each (x, t) ∈ Rn+1 \ V and has

a singularity of order
n

2
in each point of S.

�

3.2 Generalized elliptic functions of higher singularity or-
der

Suppose that u is an n-fold periodic regularized time-holomorphic function with
respect to the period lattce V and that it satisfies Dε

−u = 0 in Rn+1 \ S where
again S denotes the set of singularities. Let m := (m1, ...,mn) ∈ Nn0 be a
multi index with length |m| := m1 + ... + mn. Then the function um(x, t) =
∂|m|u(x, t)

∂xm
is also an n-fold periodic regularized time-holomorphic with re-

spect to V and it also satisfies Dε
−um(x, t) = 0. In particular, the functions

℘εm(x, t) :=
∂|m|℘εm(x,t)

∂xm are n-fold periodic and satisfy Dε
−℘

ε
m(x, t) = 0 in each

point of Rn+1\S. In each point of S they have a singularity of order
n

2
−1+|m|.
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In view of the translation invariance of the operator Dε
−, we can construct n-fold

periodic functions that have singularities in a given set of points ai +S of order

Ni (i = 1, ..., l) with Ni ≥
n

2
by making the construction

l∑
i=1

℘εNi
(x− ai, t)bi, (8)

where Ni is a multi index of length Ni and where bi are arbitrary elements from
Cn.

Owing to the compactness of the fundamental period cell, one can only
construct regularized holomorphic elliptic functions with a finite number of iso-
lated singularities. It is also possible to construct hypoelliptic functions with
non-isolated singularities, as we shall mention below explicitly.

Notice that all constant functions u ≡ C, with C 6= 0, are not solutions of
Dε
−u = 0.

Now, we present the main results of this section. They completely de-
scribe the set of n-fold regularized periodic time-holomorphic functions with
non-essential singularities up to a space independent function φ = φ(t).

Theorem 3.4. Let a1, a2, ..., ap ∈ Rn+1 \ S be a finite set of points that are
incongruent modulo V. Suppose that u : Rn+1 \ {a1 + S, ..., ap + S} → Cn is an
n-fold regularized periodic time-holomorphic function which has at most singu-
larities at the points ai of the order Ki. Then there exists complexified Clifford
numbers b1, ..., bp ∈ Cn and a function φ(t) only depending on t such that

u(x, t) =

p∑
i=1

Ki−n∑
m=0

∑
m=m1+...+mn

[℘εm(x− ai, t)bi] + φ(t)

Proof: Since u is supposed to be regularized time-holomorphic with sin-
gularities at the points ai of order Ki, its singular parts of the local Laurent
series expansions are of the form eεm(x− ai, t)bi in each point ai + S, where

eεm(y, s) :=
∂|m|

∂ym
eε(y, s) +

∂|m|

∂sm
eε(y, s).

As a sum of n-fold periodic regularized time-holomorphic functions, the ex-
pression

g(x, t) =

p∑
i=1

Ki−n∑
m=0

∑
m=m1+...+mn

[℘εm(x− ai, t)bi]

is also n-fold regularized periodic time-holomorphic and has also the same prin-
cipal parts as u. Hence, the function h := g − u is also an n-fold periodic
regularized time-holomorphic holomorphic, but without singular parts, since
these are canceled out. The function h is hence an entire time-holomorphic
n-fold regularized periodic function.
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Let us now fix t = t0. Since h|t=t0 is n-fold regularized periodic time-
holomorphic it takes all its values in the n-dimensional fundamental period
cell with the edges 0, e1, e2, . . . , en, e1 + e2, . . . , e1 + · · · + en which is compact.
Since h|t=t0 is continuous it must be bounded on that fundamental cell. As a
consequence of the n-fold regularized periodicity, h must be a bounded function
on the whole space Rn. Since h is entire time-holomorphic on the extended
space Rn × R+ we can obtain a Fischer decomposition of h (for more details
see [19]), valid in whole space Rn+1. Taking into account that the regularized
fundamental solution (3) is unbounded relatively to the space coordinate, we
conclude that the polynomials of the Fischer decomposition vanish identically.
Hence h|t=t0 ≡ 0 and the assertion is hereby proven.

�

3.3 Hypoelliptic multiperiodic functions to the homoge-
neous regularized Schrödinger equation

From the n-fold regularized periodic time-holomorphic basic function ℘ε0,...,0
we can easily obtain n-fold regularized periodic solutions of the regularized
Schrödinger operator ∆−k∂t. Let C1, C2 be some arbitrary complexified Clifford
numbers from Cn. Then the scalar part of the functions

℘ε0,...,0(x, t) C1 and ℘−ε0,...,0(x, t) C2

as well as all its partial derivatives are n−fold periodic regularized time-holomorphic
and satisfy the homogeneous regularized time-dependent Schrödinger equation
(∆− k∂t)u = 0 in the whole space Rn+1 \ S.

We want to obtain a direct generalization of the Theorem 3.4 for n−fold
periodic regularized time-holomorphic solutions of the homogeneous regularized
Schrödinger equation. To this end we will consider the fundamental solution eε−,
which is the scalar part of the fundamental solution Eε−, and has a singularity
of order n

2 at the origin.
Hence, the analogy of Theorem 3.4 in this context gets form

Theorem 3.5. Let a1, a2, ..., ap ∈ Rn+1 \ S be a finite set of points that are
incongruent modulo V. Suppose that u : Rn+1 \ {a1 + S, ..., ap + S} → Cn is
a n−fold periodic regularized time-holomorphic function in the kernel of the
regularized Schrödinger operator which has at most singularities at the points ai
of the order Ki. Then there exists complexified Clifford numbers b1, ..., bp ∈ Cn
and a regular function φ = φ(t) such that

u(x, t) =

p∑
i=1

Ki−(n−1)∑
m=0

∑
m=m1+...+mn

[
℘e

ε

m(x− ai, t)bi
]

+ φ(t),

where ℘e
ε

m(x− ai, t)bi =
∑
w∈V

eε−(x+ w, t).

In the spirit of [9] one can adapt this formula to the case dealing with non-
isolated singularities.
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4 The regularized Schrödinger equation on the
conformally flat cylinders and tori

4.1 Construction of spinor bundles and spinor sections

Let Ωk := Zv1 + · · · + Zvk be a k-dimensional lattice where k ∈ {1, . . . , n}.
Again, to leave it simple we restrict to consider vi = ei for i = 1, . . . , k.

The space Rn is the universal covering space of the conformally flat manifolds
by Rn/Ωk which shall be denoted by Ck. In the case k = n we obtain a flat
n-torus and in the case n = 2, k = 1 the classical three-dimensional flat infinite
cylinder.

Consequently, there exists a well-defined projection map pk : Rn → Ck. As
in [10], we call an open subset U ⊂ Rn k-fold periodic if for each each x ∈ U
the point x + ω again lies in U for every ω ∈ Ωk. Then pk(U) =: U ′ is again
an open subset on the manifold Ck. Suppose that f : U × R+ → Cn is a k-
fold periodic function. Then the projection pk induces a well-defined function
pk(f) =: f ′ : U ′ × R+ → Cn on Ck defined by f((p−1

k (x)′), t) for each x′ ∈ U ′.
The associated functions

℘εk;0,...,0(y − x; t) :=
∑
v∈Ωk

Eε−(x+ v, t),

and
P εk;0,...,0(y − x; t) :=

∑
v∈Ωk

eε−(x+ v, t)

induce functionsGεk(y′−x′; t) (resp. Hk(y′−x′; t)) on Ck×R+ where x′ := pk(x)
and y′ := pk(y). These functions are defined on (Ck × Ck) × R+\diag(Ck ×
Ck) × R+. The projection map pk induces a projection of the operator Dε

− to
a differential operator D′

ε
− acting on differentiable functions on Ck × R+. The

operator D′
ε
− will be called the cylindrical (resp. toroidal) regularized parabolic-

type Dirac operator. Its null solutions will be called cylindrical (resp. toroidal)
regularized parabolic monogenic.

In the same way the projection map pk induces a projection of the regularized
Schrödinger operator (∆x−k∂t) to a second order operator (∆x′ −k∂t)

′ which
will be called the cylindrical (resp. toroidal) regularized Schrödinger operator.
Its null-solutions are the solutions to the regularized Schrödinger equation on
the manifold Ck.

More generally, as explained in [11], the decomposition of the lattice Ωk into
the direct sum of the sublattices Ωl := Ze1 + · · · + Zel and Ωk−l := Zel+1 +
· · · + Zek gives rise to k conformally inequivalent different spinor bundles E(l)

on Ck ∼= Rn/Ωk by simply making the identification (x, X) ⇐⇒ (x + m +
n, (−1)m1+...+mlX) with x ∈ Rn, X ∈ Cn. The projection pk of the associated
modifications of the hypoelliptic generalized ℘ function

℘εk;0,··· ,l(x; t) :=
∑
m∈Ωl

∑
n∈Ωk−l

(−1)m1+···+mlEε−;k(x +m+ n; t)
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then defines well defined regularized hypoelliptic spinor sections on the associ-
ated spinor bundles El of the Ck. The function ℘εk;0,··· ,l(x; t) satisfies

℘εk;0,··· ,l(x; t)(x+ ω; t) = (−1)m1+···+ml℘εk;0,··· ,l(x; t).

Its projection under pk will be denoted by Gεk,l. Similarly, the projection of the
modified function P εk;0,...,0;l(x; t) defined by

P εk;0,...,0,l(x; t) :=
∑
m∈Ωl

∑
n∈Ωk−l

(−1)m1+···+mleε−(x+m+ n; t)

defines well defined spinor sections Hε
k,l that are in the kernel of the associated

spinorial regularized Schrödinger operator whose nullsolutions take values in
the correspoding spinor bundles El of Ck. In the case where we take l = n and
where we make the trivial identification (x,X) with (x + ω,X) then we deal
with the trivial bundle on Ck. In all what follows we restrict to formulate the
results for the trivial bundle. For the other bundles the formulas can be adapted
correspondingly, by substituting the sections Gεk by Gεk,l (resp. Hε

k by Hε
k,l).

4.2 Integral representation formulas

Applying now the Borel-Pompeiu formula and Cauchy’s integral formula for the
regularized Dirac operator Dε

− in the Euclidean spaces presented in Section 2,
we obtain the following Cauchy integral formula for cylindrical (resp. toroidal)
regularized time-holomorphic functions:

Theorem 4.1. Suppose V ′ is a sub domain of a domain U ′ lying on Ck×R+ and
suppose that V ′ has a compact closure cl(V ′). Assume further that cl(V ′) ⊂ U ′
and that p−1

k (∂V ′) is a Lipschitz surface. Let f ′ : U ′ → Cn be a cylindrical
(resp. toroidal) left regularized time-holomorphic function. Then we have for
each pair (y′, t0)

f ′(y′, t0) =

∫
∂V ′

Gεk(x′ − y′; t)(dxpkn(x; t))f ′(x′; t)dS(x′; t), (9)

where dxpk is the derivative of pk at x.

Suppose now that Σ is a sufficiently smooth hypersurface lying in Ck × R+

and that U ′ is a domain whose boundary is Σ. Let u be an arbitrary Cn valued
function belonging to Lp(Σ). Then the integral∫

Σ

Gεk(x′ − y′; t)(dxpkn(x; t))u(x′; t)dS(x′; t)

defines a cylindrical (resp. toroidal) regularized time-holomorphic function
f ′(y′; t) on U ′. Notice that we only claim that u′ belongs to Lp. The latter
function does not necessarily need to have partial derivatives.

12



The cylindrical (resp. toroidal) regularized left time-holomorphic function f ′

lifts to a k-fold periodic regularized left time-holomorphic defined on the k-fold
periodic open set U = p−1

k (U ′).

The projection map pk also gives the following version of the Borel-Pompeiu
formula for cylindrical (resp. toroidal) regularized time-holomorphic functions.

Theorem 4.2. Suppose that V ′ is a domain in Ck → R+ with compact closure
and strongly Lipschitz boundary. Suppose also that θ : cl(V ′)→ Cn is a contin-
uous function and that θ|V ′ belongs to C1(V ′). Then for each pair (y′, t) ∈ V ′

θ(y′; t0) =
(∫

∂V ′
Gεk(x′ − y′; t)(dxpkn(x; t))θ(x′; t)dS(x′; t)

−
∫
V ′
Gεk(x′ − y′; t)D′ε+θ(x′; t)dµ(x′; t)

)
,

where µ is the projection of volume Lebesgue measure on Rn×R+ onto Ck×R+.

Let again U ′ be a sub domain of Ck×R+ with compact closure and θ : U ′ →
Cn be an Lp function with 1 < p <∞. Again, by adapting the results from [5]
obtained for the Euclidean space we readily obtain that on Ck holds

[D′
ε
+;Ck ]

∫
U ′
Gεk(y′ − x′; t)θ(x′; t)dµ(x′; t) = θ(y′; t)

for each (y′, t) ∈ U ′.

Finally, using the k-fold periodic basic function P εk;0,...,0 for the regularized
Schrödinger operator, we obtain a Green’s formula for solutions to the homoge-
neous regularized Schrödinger equation on Ck.

Theorem 4.3. Suppose that h : U ′ → Cn is a solution to the cylindrical (resp.
toroidal) regularized Schrödinger operator on the domain U ′ ⊂ Ck×R+. Suppose
also that V ′ is a relatively compact subdomain of U ′ and that cl(V ′) ⊂ U ′. Then
provided the boundary of V ′ is sufficiently smooth

h(y′; t0) =

∫
∂V ′

(Gεk(x′ − y′; t)(dxpkn(x; t))h(x′; t)

+Hε
k(y′ − x′; t)(dxpkn(x; t))D′

ε
+;kh(x′; t))dS(x′; t)

for each (y′, t) ∈ V ′.

5 The inhomogeneous regularized Schrödinger
equation on cylinders and tori

Throughout this section suppose that V ′ is a sub domain of an open subset
U ′ ⊂ Ck × R+ for k = 1, . . . , n) and that the closure of V ′ has a strongly
Lipschitz boundary ∂V ′. Suppose that f : V ′ → Cn is a function belonging to
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the Sobolev space W 2
p (V ′), with 1 ≤ p < +∞. Again let [∆x′ − k∂t]

′ be the
associated cylindrical (resp. toroidal) regularized Schrödinger operator.

The Borel-Pompeiu formula presented in Theorem 4.2 motivates us to intro-
duce the following definition

Definition 5.1. The cylindrical (resp. toroidal) regularized Teodorescu operator
is defined from W l

p(V
′) to W l

p+1(V ′), with 1 ≤ p < +∞, as

[TCk,ε− f ′(y′; t0)] = −
∫
V ′

Gεk(x′ − y′; t)f ′(x′; t)dV ′(x′)dt

where x′ and y′ are distinct points from V ′.

Notice that due to the exponentional decrease of the kernel function, the
Teodorescu transform is always an L2 bounded operator even if V ′ is an un-
bounded domain. Also from Theorem 4.2 we have

Definition 5.2. The cylindrical (resp. toroidal) regularized Cauchy operator is
defined from W l

p−1(∂V ′) to W l
p(V

′) ∩Ker(D′
ε
−), with 1 ≤ p < +∞, as

[FCk,ε− f ′(y′; t0)] =

∫
∂V ′

Gεk(x′ − y′; t)n(x′; t)dxpk(n(x; t))f ′(y′; t)dS′(x′; t).

Using the previous operators the Borel-Pompeiu formula presented in The-
orem 4.2 can now be reformulated in the classical form

f ′ = FCk,ε− f ′ + TCk,ε− D′
ε
−f
′,

as formulated for the Euclidean case in [8, 5] in the context of the elliptic
operators. Adapting the arguments from [5] that were explicitly worked out for
the Euclidean case, one can show that the following Hodge type decomposition
holds for the space of the Lp functions over a domain V ′ of the manifold Ck

Theorem 5.3. The space Lp(Ω), 1 ≤ p < +∞ admits the following decompo-
sition

Lp(V
′) =

(
Lp(V

′) ∩Ker(D′
ε
−)
)
⊕D′ε−

◦
W

1

p(V
′), (10)

for all ε > 0, and we can define the following projectors

PCk,ε− : Lp(Ω) → KerD′
ε
− ∩ Lp(V ′)

QCk,ε− : Lp(Ω) → D′
ε
−
◦
W

1

p(V
′),

where PCk,ε− is called cylindrical (rep. toroidal) regularized Bergman projector

and QCk,ε− = I − PCk,ε− is called cylindrical (rep. toroidal) regularized Pompeiu
projector .
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For the particular case of p = 2 this decomposition is orthogonal and the
space KerD′

ε
− ∩ L2(V ′) is a Banach space endowed with the L2 inner product

〈f ′, g′〉 :=

∫
V ′
f(x′; t)g(x′; t)dV (x′)dt.

Then, as a consequence of Cauchy’s integral formula that we established in
the previous section and Cauchy-Schwarz’ equality we can show that this space
has a continuous point evaluation and does hence possess a reproducing kernel
B(x′, y′; t), satisfying

f ′(y′; t0) =

∫
V ′

B(x′, y′; t)f(x′; t)dV (x′)dt ∀ f ′ ∈ KerD′
ε
− ∩ L2(V ′).

Let f be an arbitrary function from L2(V ′). Then the operator

[PCk,ε− f ′(y′; t)] =

∫
V ′

B(x′, y′; t)f(x′; t)dV (x′)dt

correspondes to the projector presented in Theorem 5.3 for p = 2. With these
operators we can represent in complete analogy to the Euclidean case treated
in [3] the solutions to the inhomogeneous regularized Schrödinger equation on
cylinders and tori. We establish

Theorem 5.4. Let V ′ be a domain on the manifold Ck (k = 1, . . . , n) and
f ∈W 2

p (V ′), with 1 ≤ p < +∞. The the system

(−∆x′ − k∂t)
′u′ = f ′ in V ′ (11)

u′ = 0 at ∂V ′ (12)

has a unique solution u ∈W 2
p+2,loc(V

′) of the form

u′ = TCk,ε− QCk,ε− TCk,ε− f ′. (13)

Proof. To the proof one applies the factorization (D′
ε
−)2 = (−∆x′−k∂t)

′. Equa-
tion (11) thus can be written in the form

(D′
ε
−)2u′ = f ′.

Now one applies the cylindrical (resp. toroidal) regularized Teodorescu trans-

form TCk,ε− to this equation which leads to

TCk,ε− (D′
ε
−)[(D′

ε
−)u′] = TCk,ε− f ′.

Next one applies the generalized Borel-Pompeiu’s formula in the cylindrical
(resp. toroidal) regularized version which leads to

D′
ε
−u
′ − FCk,ε− D′

ε
−u
′ = TCk,ε− f ′. (14)
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Now one applies the projector QCk,ε− to this equation which leads to

QCk,ε− D′
ε
−u
′ −QCk,ε− FCk,ε− D′

ε
−u
′ = QCk,ε− TCk,ε− f ′. (15)

Since FCk,ε− D′
ε
−u
′ ∈ KerD′

ε
− one has QCk,ε− FCk,ε− D′

ε
−u
′ = 0. Therefore,

equation (15) is equivalent to

QCk,ε− D′
ε
−u
′ = QCk,ε− TCk,ε− f ′.

Next we again apply the cylindrical (resp. toroidal) regularized Teodorescu
transform to this equation which leads to

TCk,ε− QCk,ε− D′
ε
−u
′ = TCk,ε− QCk,ε− TCk,ε− f ′.

Applying the specific mapping properties of these operators and again Borel-
Pompeiu’s formula, then the left hand-side of this equation simplifies to u′ so
that we finally obtain that

u′ = TCk,ε− QCk,ε− TCk,ε− f ′.

The assertion now follows.

By adapting the standard techniques from [8] to the setting of this paper we
have the following generalization of the previous result

Theorem 5.5. Let V ′ be a domain on the manifold Ck (k = 1, . . . , n), f ′ ∈
W 2
p (V ′) and g′ ∈W 2

p+3/2(∂V ′), with 1 ≤ p < +∞. Then the system

(∆x′ − k∂t)
′u′ = f ′ in V ′ (16)

u′ = g′ at ∂V ′ (17)

has a solution u ∈W 2
p+2,loc(V

′) of the form

u′ = FCk,ε− g′ + TCk,ε− PCk,ε− D′
ε
−h
′ + TCk,ε− QCk,ε− TCk,ε− f ′. (18)

where h′ is the unique W 2
p+2(V ′) extension of g′.

Remark: Again, as in [8] we can represent the cylindrical (resp. toroidal)
regularized Bergman projector in terms of algebraic expressions involving only
the cylindrical (resp. toroidal) regularized Cauchy and Teodorescu transform,
viz

PCk,ε− = FCk,ε− (trTCk,ε− FCk,ε− )−1trTCk,ε− ,

where tr is the usual trace operator. This formula allows us to represent the solu-
tions to the inhomogeneous cylindrical (resp. toroidal) regularized Schrödinger
equation in terms of the singular integral operators that we introduced in the
previous section.
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6 The limit case ε→ 0+

The aim of this section is to extend the results presented in the previous section
to the original operators D′− and (−∆x′ − i∂t)

′. In order to proceed in this
direction we start by recalling the following result from [5]

Theorem 6.1. For all 1 ≤ p < +∞, we have the following weak convergence,

in W
−n2−1
p (V ′), 〈

Eε−, ϕ
〉
→ 〈E−, ϕ〉 , ϕ ∈W

n
2 +1
p (V ′),

when ε→ 0. Here

E−(x, t) = e−(x, t)

[
−x
2it

+ f

(
−n
2t

+
|x|2

4it2

)
− if†

]
.

This theorem implies the following corrolary

Corolary 6.2. For all 1 ≤ p < +∞, we have the following weak convergence,

in W
−n2−1
p (V ′),

〈Gεk, ϕ〉 → 〈Gk, ϕ〉 , ϕ ∈W
n
2 +1
p (V ′),

when ε→ 0. Here Gk is the projection under pk of

℘k;0,··· ,l(x; t) :=
∑
m∈Ωl

∑
n∈Ωk−l

(−1)m1+···+mlE−;k(x +m+ n; t).

On the basis of these results we are in position to study the convergence
of the family of operators TCk,ε− and projectors QCk,ε− to the cylindrical (resp.
toroidal) Teodorescu operator and the cylindrical (resp. toroidal) Bergaman
projector associated to the cylindrical (resp. toroidal) Schrödinger operator
defined as

[TCk− f ′(y′; t0)] = −
∫
V ′

Gk(x′ − y′; t)f ′(x′; t)dV ′(x′)dt

QCk− = I − PCk−

= I −
∫
V ′

B(x′, y′; t)f(x′; t)dV (x′)dt,

where B(x′, y′; t) is a reproducing kernel, which satisfies

f ′(y′; t0) =

∫
V ′

B(x′, y′; t)f(x′; t)dV (x′)dt, ∀ f ′ ∈ KerD′− ∩ L2(V ′).
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Theorem 6.3. The family of cylindrical (resp. toroidal) regularized Teodorescu

operators TCk,ε− converges weakly to TCk− in W
n
2 +1
p (V ′), for all 1 ≤ p < +∞.

Proof. Let u ∈ Lp(V ′). From the previous theorem we may infer that we have

for every ϕ ∈W
n
2 +1
p (Ω),

lim
ε→0+

∣∣∣〈(TCk,ε− − TCk−
)
u, ϕ

〉∣∣∣ = lim
ε→0+

|〈(Gεk −Gk) ∗ u, ϕ〉|

=

∣∣∣∣〈 lim
ε→0+

(Gεk −Gk) , u ∗ ϕ
〉∣∣∣∣

= 0

Theorem 6.4. The family of projectors QCk,ε− is a fundamental family in

W
−n2−1
p (Ω), for all 1 ≤ p < +∞.

Proof. Let us start with the proof of the convergence. Consider u ∈ Lp(Ω) and

ϕ ∈ W
n
2 +1
p (Ω), where 1 ≤ p < +∞. Since for all ε > 0, (QCk,ε− )2 = QCk,ε− and

QCk,ε−

(
PCk,ε− u

)
= 0, we have for any ε1, ε2 > 0∣∣∣〈QCk,ε1− u−QCk,ε2− u, ϕ〉

∣∣∣ =
∣∣∣〈QCk,ε1− (PCk,ε1− u+QCk,ε1− u)−QCk,ε2− (PCk,ε1− u+QCk,ε1− u), ϕ〉

∣∣∣
=

∣∣∣〈QCk,ε1− u−QCk,ε2− PCk,ε2− u−QCk,ε2− QCk,ε1− u, ϕ〉
∣∣∣

≤
∣∣∣〈QCk,ε2− PCk,ε1− u, ϕ〉

∣∣∣︸ ︷︷ ︸
(K)

+
∣∣∣〈(I −QCk,ε2− )QCk,ε1− u, ϕ〉

∣∣∣︸ ︷︷ ︸
(L)

.

For PCk,ε− : Lp(Ω)→ KerD′
ε
− ∩Lp(V ′) the projectors defined previously, we

have for the term (K)∣∣∣〈QCk,ε2− PCk,ε1− u, ϕ〉
∣∣∣ =

∣∣∣〈QCk,ε2− (FCk,ε1− PCk,ε1− −QCk,ε2− F ε2− )PCk,ε1− 〉
∣∣∣

=
∣∣∣〈QCk,ε2− (I − TCk,ε1− D′

ε1
− − (I − TCk,ε2− D′

ε2
− ))PCk,ε1− u, ϕ〉

∣∣∣
=

∣∣∣〈QCk,ε2− (TCk,ε1− D′
ε1
− − T

Ck,ε2
− D′

ε2
− )PCk,ε1− u, ϕ〉

∣∣∣
=

∣∣∣〈QCk,ε2− (TCk,ε1− (D′
ε1
− −D′

ε2
− ) + (TCk,ε1− − TCk,ε2− )D′

ε2
− )PCk,ε1− u, ϕ〉

∣∣∣
From applying Theorem 2.2 and Theorem 6.3 we may deduce the weak

convergence of (K), in W
−n2−1
p (Ω) for all 1 ≤ p < +∞, of the right hand side

of the last expression to zero. Finally, since QCk,ε1− u ∈ D′−
( ◦
W 1
p (Ω)

)
, there
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exists g ∈
◦
W 1
p (Ω) such that u = D′

ε
−g. Therefore, (L) becomes∣∣∣〈(I −QCk,ε2− )QCk,ε1− u, ϕ〉

∣∣∣ =
∣∣∣〈(I −QCk,ε2− )D′

ε
−g, ϕ〉

∣∣∣
=

∣∣∣〈D′ε1− g −QCk,ε2− D′
ε1
− g +D′

ε2
− g −D′

ε2
− g ϕ〉

∣∣∣
=

∣∣∣〈QCk,ε2− (D′
ε
−g −D′−g) + (D′−g −D′

ε
−g), ϕ〉

∣∣∣
=

∣∣∣〈(D′−g −D′ε−g)(I −QCk,ε1− ), ϕ〉
∣∣∣ .

Once again, by Theorem 2.2 we conclude that the latter expression tends to
zero when ε→ 0.

Now it remains to prove that QCk− is idempotent. Hereby, we have

(QCk− )2 = lim
ε→0

(QCk,ε− )2 = lim
ε→0

QCk,ε− = Q−.

Theorem 6.5. For any given f ∈ Lp(Ω), consider the solutions (uε) for the
problem

(−∆x′ − k∂t)
′u′

ε
= f ′ in V ′ (19)

u′
ε

= 0 at ∂V ′ (20)

for each ε > 0.

Then, the family of those solutions (u′
ε
) is a fundamental family in W

−np−1
p (Ω),

for all 1 ≤ p < +∞.
Moreover, (D′

ε
−u
′ε) is a fundamental family in W

−np−1
p (Ω).

Proof. Let us consider ϕ ∈W
n
2 +1
p (Ω), f ∈ Lp(Ω) and a family of functions (u′

ε
),

such that u′
ε ∈ D′ε−(Ω) with ε > 0, and ε1, ε2 > 0. Since the elements of the

family are solutions of the problem (19), we have that u′
ε

= TCk,ε− QCk,ε− TCk,ε− f
(for more details about this assertion see [5]). Then∣∣〈u′ε1 − u′ε2 , ϕ〉∣∣ =

∣∣∣〈TCk,ε1− QCk,ε1− TCk,ε1− f − TCk,ε2− QCk,ε2− TCk,ε2− f, ϕ
〉∣∣∣

=
∣∣∣〈(TCk,ε1− QCk,ε1− TCk,ε1− − TCk,ε2− QCk,ε2− TCk,ε2−

)
f, ϕ

〉∣∣∣
≤

∣∣∣〈(TCk,ε1− QCk,ε1−

(
TCk,ε1− − TCk,ε2−

))
f, ϕ

〉∣∣∣
+
∣∣∣〈((TCk,ε1− − TCk,ε2−

)
QCk,ε2− TCk,ε2−

)
f, ϕ

〉∣∣∣
+
∣∣∣〈(TCk,ε1−

(
QCk,ε1− −QCk,ε2−

)
TCk,ε2−

)
f, ϕ

〉∣∣∣ .
By Theorem 6.3 and Theorem 6.4 we conclude that the right hand side of the
last inequality tends to zero when ε1, ε2 → 0.
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Theorem 6.5 now guarantees that there exists a function f ∈ Lp(Ω) such
that

D′
ε1
−u
′ε1 = QCk,ε1− TCk,ε1− f and D′

ε2
−u
′ε2 = QCk,ε2− TCk,ε2− f.

This in turn implies that∣∣∣〈(QCk,ε1− TCk,ε1− −QCk,ε2− TCk,ε2−

)
f, ϕ

〉∣∣∣ ≤ ∣∣∣〈(QCk,ε1−

(
TCk,ε1− − TCk,ε2−

))
f, ϕ

〉∣∣∣
+
∣∣∣〈((QCk,ε1− −QCk,ε2−

)
TCk,ε2−

)
f, ϕ

〉∣∣∣ .
By Theorem 6.4 and Theorem 6.5 we conclude that the right hand side of the

previous expression converges weakly to zero when |ε1− ε2| → 0, in W
−n2−1
p (Ω),

for all 1 ≤ p < +∞.

This result can be refined. By u′2 ∈W
−n2−1
p (V ′) we denote the function limit

of the Cauchy family that we studied. Again Theorem 6.5 implies the existence
of functions f ∈ Lp(V ′) that satisfy

(−∆− i∂t)′u′2 = f and (−∆− i∂t)′u′
ε
2 = f,

with u′2|Γ = 0 = u′
ε
2|Γ.

Since the inverse operator (−∆ − i∂t)−1 exists and since the latter one is

unique, cf. [17], we have that (−∆− i∂t)′−1
also exists and it is unique, too.

Hence, we can establish the following equality

u′2 − u′
ε
2 = (−∆− i∂t)′

−1
((−∆− k∂t)

′ − (−∆− i∂t)′)u′
ε
2,

which implies that

||u′2 − u′
ε
2||Lp(V ′) = ||(−∆− i∂t)′

−1||Lp(V ′) ||(−∆− k∂t)
′ − (−∆− i∂t)′||Lp(V ′) ||u′

ε
2||Lp(V ′).

Since ||(−∆− k∂t)
′ − (−∆− i∂t)′||L1(V ′) converges to zero when ε→ 0, we

may conclude that the right hand side of the last expression also converges to
zero. This fact implies that u′2 ∈ Lp(V ′).

Moreover, we can guarantee

(i) For any two elements u′
ε1
2 and u′

ε2
2 of the fundamental family studied in

Theorem 6.4 and Theorem 6.5 we can find functions g′
ε1
2 , g

′ε2
2 ∈

◦
W 1
p (V ′)

that satisfy

u′
ε1
2 = D′

ε1
− g
′ε1
2 and u′

ε2
2 = D′

ε2
− g
′ε2
2

and

||D′ε2− (g′
ε1
2 − g

ε2
2 )||Lp(V ′) = ||D′ε2− g′

ε1
2 −D′

ε1
− g
′ε1
2 +D′

ε1
− g
′ε2
2 −D′

ε2
− g
′ε2
2 ||Lp(V ′)

≤ ||
(
D′

ε2
− −D′

ε1
−
)
g′
ε1
2 ||Lp(V ′)

+ ||u′ε12 − u′
ε2
2 ||Lp(V ′).
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As a consequence of Theorem 2.2, Theorem 6.5 and the above mentioned
considerations, we may readily infer that the right hand side of the previ-
ous expression converges to zero, when |ε1 − ε2| → 0, i.e.

||D′ε2− (g′
ε1
2 − g

ε2
2 )||Lp(V ′) → 0, when |ε1 − ε2| → 0.

Since ||D′ε−|| → ||D′−|| <∞, when ε→ 0, we conclude that g′ → g′
ε2
2 +C,

when |ε1 − ε2| → 0 and ε1, ε2 → 0, where C ∈ ker(D′−).

Under these conditions we showed that for each u′ ∈ Lp(V ′) there exists

a function v′ ∈
◦
W 1
p (V ′) such that u′ = D′−v

′.

(ii) Suppose that there exist two functions g′1, g
′
2 ∈

◦
W 1
p (V ′), such that

u′ = D′−g
′
1 and u′ = D′−g

′
2,

is satisfied for the same function u′ ∈ Lp(V ′). Then we have

(−∆− i∂t)′g′1 = (−∆− i∂t)′g′2 ⇔ g′1 = (−∆− i∂t)′
−1

(−∆− i∂t)′g′2
⇔ g′1 = g′2.

The assertion is hereby proven.

Theorem 6.6. For each u′ ∈ Lp(V ′), the family of P ′
Ck,ε
− u converges to û′ in

ker(D′
ε
−) ∩ Lp(V ′), for all ε > 0 and 1 ≤ p < +∞.

Proof. The proof is made in three steps: First let us consider a function ϕ ∈
W

n
2 +1
p (V ′), a function u ∈ Lp(V ′), and a family of functions (u′

ε
1), where u′

ε
1 ∈

ker(D′
ε
−) ∩ Lp(V ′) with ε > 0, with 1 ≤ p < +∞.

Let ε1, ε2 > 0. In view of the decomposition (10) we have for u′
ε1
1 , u

′ε2
1 ∈

ker(D′
ε1
− ), ker(D′

ε2
− )∣∣〈u′ε11 − u′ε21 , ϕ〉∣∣ =

∣∣〈(u− uε12 )− (u− u′ε22 ), ϕ〉
∣∣

≤
∣∣〈u′ε22 − u′ε12 , ϕ〉∣∣ ,

where u′
ε1
2 and u′

ε1
2 are elements of the fundamental family (u′

ε
2), where u′

ε
2 ∈

D′
ε
−(

◦
W 1
p (V ′)) for ε > 0. By Theorem 6.5 we conclude that the right hand side of

the last expression converges weakly to zero, in W
−n2−1
p (V ′), when |ε1−ε2| → 0.

This proves that (P ε−) is a fundamental family in W
−n2−1
p (V ′).

Moreover, using the techniques and arguments presented for the family
D′

ε
−u
′ε, with ε > 0, after Theorem 6.5, we can refine our conclusion. Con-

sequently we can prove that the function limit is in Lp(V
′).

Finally, let us denote by u′1 the function limit of this fundamental family.

For a given ϕ ∈W
n
2 +1
p (V ′), with 1 ≤ p < +∞, we have

|〈D′−u′1, ϕ〉| =
∣∣〈D′−u′1 −D′ε−u′ε1, ϕ〉∣∣

≤
∣∣〈D′−(u′1 − u′

ε
1), ϕ〉

∣∣+
∣∣〈(D′− −D′ε−)u′

ε
1(x, t), ϕ〉

∣∣ .
Theorem 2.2 and Theorem 6.6 guarantee that the first and second term of

the right hand side of the last expression converges to 0 when ε→ 0.
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Summarizing, for each u′ ∈ Lp(V ′), we have u′ = PCk,ε− u′ + QCk,ε− u′. Also,
we proved that

QCk,ε− u′ → QCk− u′

(QCk− )2u′ = QCk− u′,

which implies that QCk− is a projector and that we can define a projector PCk−
by

PCk− u′ = u′ −QCk− u′,

with PCk− u′ ∈ ker(D′−) ∩ Lp(V ′).
As a consequence, we have the following Hodge-type decomposition

Theorem 6.7. For 1 ≤ p < +∞, the following decomposition

Lp(V
′) = (Lp(V

′) ∩ ker(D′−))⊕D′−(
◦

W 1
p (V ′)).

holds.
Moreover, we can define the following projectors

PCk− : Lp(V
′) → Lp(V

′) ∩ ker (D′−)

QCk− : Lp(V
′) → D′−

( ◦
W 1
p (V ′)

)
,

where PCk− and QCk− are called cylindrical (resp. toroidal) Schrödinger-Bergman
projectors.

From the previous result we have this two immediate applications

Theorem 6.8. Let V ′ be a domain on the manifold Ck (k = 1, . . . , n) and
f ∈W 2

p (V ′), with 1 ≤ p < +∞. The the system

(−∆x′ − i∂t)′u′ = f ′ in V ′

u′ = 0 at ∂V ′

has a unique solution u ∈W 2
p+2,loc(V

′) of the form

u′ = TCk− QCk− TCk− f ′.

Theorem 6.9. Let V ′ be a domain on the manifold Ck (k = 1, . . . , n), f ′ ∈
W 2
p (V ′) and g′ ∈W 2

p+3/2(∂V ′), with 1 ≤ p < +∞. Then the system

(−∆x′ − i∂t)′u′ = f ′ in V ′

u′ = g′ at ∂V ′

has a solution u ∈W 2
p+2,loc(V

′) of the form

u′ = FCk− g′ + TCk− PCk− D′
ε
−h
′ + TCk− QCk− TCk− f ′.

where h′ is the unique W 2
p+2(V ′) extension of g′.
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Remark: All the results presented in this section can be deduced for Hk.
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[6] Delanghe, R., Sommen, F. and Souček, V., Clifford algebras and spinor-valued
functions, Kluwer Academic Publishers, 1992.

[7] Dix, D., Application of Clifford analysis to inverse scattering for the linear hier-
archy in several space dimensions, in: Ryan, J. (ed.), CRC Press, Boca Raton,
FL, 1995, 260–282.
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