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Abstract. It is well known that clopen subgroups of finitely generated
free profinite groups are again finitely generated free profinite groups.
Clopen submonoids of free profinite monoids need not be finitely gen-
erated nor free. Margolis, Sapir and Weil proved that the closed sub-
monoid generated by a finite code (which is in fact clopen) is a free
profinite monoid generated by that code. In this note we show that a
clopen submonoid is free profinite if and only if it is the closure of a
rational free submonoid. In this case its unique closed basis is clopen,
and is in fact the closure of the corresponding rational code. More gen-
erally, our results apply to free pro-H monoids for H an extension-closed
pseudovariety of groups.

1. Introduction

Reiterman [15] showed that pseudovarieties of finite algebras can be de-
fined by pseudoidentities, which are formal equalities between elements of
free profinite algebras. In order to fruitfully use the language of pseudoiden-
tities, it becomes important to understand free profinite algebras. Intensive
research on profinite monoids began in the late 1980s and has not let up
since, see for instance [1–6,10,16,17,20,22].

It is well known that clopen subgroups of finitely generated free profinite
groups are again finitely generated free profinite groups [19,23]. In general,
the closed subgroups of such groups are precisely the projective profinite
groups [19, 23]. It is then natural to ask about the situation for finitely
generated free profinite monoids. Since not all submonoids of free monoids
are free, one cannot expect all clopen submonoids of free profinite monoids
to be free.

The first author asked in his book [1] whether a free profinite monoid on
two generators contains a copy of a free profinite monoid on an arbitrary
finite number of generators. This was answered positively by Koryakov [11],
who showed that the prefix code Cn = {y, xy, . . . , xn−1y} freely generates
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a free (clopen) profinite submonoid of {̂x, y}∗. Margolis, Sapir and Weil
showed more generally [13] that if A is a finite set, then any finite code
in A∗ freely generates a free profinite (clopen) submonoid of Â∗. Here we
recall that a subset of a free monoid is called a code if it is a basis for a free
submonoid.

On the other hand, it is easy to see that {x2, x3} generates a clopen
submonoid of {̂x}∗ that is not free (or even projective) since it is commu-
tative and not one-generated. Our results will imply that the infinite prefix
code x∗y generates a free profinite submonoid of {̂x, y}∗ that is not finitely
generated, nor is it freely generated by the discrete set x∗y.

Our main result is a complete characterization of free clopen submonoids
of finitely generated free profinite monoids. They are shown to be precisely
the closures of free rational submonoids and their unique closed free gener-
ating sets are the closures of the associated rational codes. More generally,
our results hold for free pro-H monoids where H is an extension-closed pseu-
dovariety of groups. Our original motivation for this work was to try and
establish that every closed subgroup of a free profinite monoid is a projective
profinite group. This has recently been proved by Rhodes and the second
author [17].

Our techniques generalize those of the case of free groups [19, 23], prop-
erly reinterpreted, and the case of finite codes [13]. The key new ingredients
are due to topological considerations. The paper is organized as follows.
First we review some background material on codes, automata and mon-
oids. We also establish a new result about rational codes and unambiguous
automata, generalizing a result of Le Rest and Le Rest [12], which may be
of independent interest. Next we recall the pro-V uniformity on a monoid
for a pseudovariety V. We then show how wreath products can be used to
give a simple conceptual proof of the result about clopen subgroups of free
profinite groups. In the final section we prove our main theorem.

2. Codes, automata and monoids

We briefly recall some basic facts about free monoids. Proofs and details
can be found in Berstel-Perrin [7]. If A is a set, A∗ denotes the free monoid
generated by A; we shall use ε to denote the empty string. If X ⊆ A∗, then
— abusively — X∗ denotes the submonoid of A∗ generated by X. When
possible confusion could arise we shall write X∗ ≤ A∗ to emphasize that X∗

is taken within A∗. The operation X 7→ X∗ is called the Kleene star.
A subset R of A∗ is called rational if it can be built up from the finite sub-

sets of A∗ by finitely many applications of the operations of union, (set-wise)
product and Kleene star. Equivalently, these are the subsets recognized by
finite automata [7, 9]. A finite automaton A = (Q,A, δ, ι, F ) over the al-
phabet A consists of a finite set Q of states, an initial state ι ∈ Q, a subset
δ ⊆ Q × A × Q and a set of final states F ⊆ Q. One views an automaton
as a labelled directed graph with vertex set Q. There is an edge q a−→ q′
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from q to q′ labelled by a if (q, a, q′) ∈ δ. The subset of A∗ recognized (or
accepted) by A is the set of all words labelling a path from ι to an element
of F . Sometimes we write (q, a, q′) ∈ A to mean that (q, a, q′) ∈ δ.

An automaton is termed deterministic1 if each vertex has exactly one
edge labelled by each letter of A emanating from it. In this case, given any
state q ∈ Q and word w ∈ A∗, there is a unique state, denoted qw, that
can be reached from q by a path labelled by w. An automaton is called
unambiguous if each pair of states p, q and each word w ∈ A∗, there is at
most one path labelled by w from p to q. Clearly deterministic automata are
unambiguous, but not conversely. Every rational subset of A∗ is recognized
by a unique minimal deterministic finite automaton [7,9]. An automaton is
called trim if every state is accessible from the initial state and every state
can reach a final state. The trim part of an automaton is the automaton
obtained by first removing all inaccessible states and then removing all states
that cannot reach a final state.

Let Q be a finite indexing set and let MQ(Q) denote the monoid of Q×Q-
matrices over the rational numbers. A submonoid M of MQ(Q) is called an
unambiguous matrix monoid if it consists of 0, 1-matrices such that addi-
tions are never performed when multiplying two elements of M . For in-
stance the group of permutation matrices is unambiguous, as is the monoid
of row monomial matrices. A matrix representation of a monoid is called
unambiguous if its image is an unambiguous matrix monoid. Of course any
unambiguous matrix monoid is finite. The notion of an unambiguous ma-
trix monoid and its relationship with free monoids is due to Schützenberger;
see [7].

If A = (Q,A, δ, ι, F ) is an automaton, then the associated matrix rep-
resentation of A∗ is the homomorphism ρ : A∗ → MQ(Q) given on a ∈ A
by

(ρ(a))p,q =

{
1 ∃p a−→ q ∈ A

0 else.

It is well known [7] that A is unambiguous if and only if the associated
matrix representation is unambiguous. In this case, for a general word,
w ∈ A∗, (ρ(w))p,q = 1 if w labels a path from p to q and is 0 otherwise. The
image of ρ is a finite unambiguous submonoid of MQ(Q), denoted M(A ),
and called the transition monoid of A .

If L ⊆ A∗ is a rational language, then there is a finite monoid M(L) and
a surjective homomorphism ηL : A∗ →M(L) such that:

• η−1
L (ηL(L)) = L;

• if ψ : A∗ → M is any surjective homomorphism to a monoid M
such that ψ−1(ψ(L)) = L, then ηL = αψ for a unique (necessarily
surjective) homomorphism α : M →M(L).

1Some authors use the word deterministic to mean that at most one edge labelled by
each letter of A emanates from each vertex.
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One calls M(L) the syntactic monoid of L and it is the quotient of A∗ by
the congruence identifying x and y if, for all u, v ∈ A∗,

uxv ∈ L ⇐⇒ uyv ∈ L (2.1)

see [7, 9] for details. In particular, if L is accepted by an unambiguous
automaton A with associated matrix representation ρ, then ηL = αρ for a
unique surjective homomorphism α : M(A )→M(L).

A monoid M is said to divide a monoid N , written M ≺ N , if M is a
quotient of a submonoid of N . By a subgroup of a monoid M , we mean
a subsemigroup which is algebraically a group (we allow the subgroup to
have a different identity than M). It is well known that any group divisor
of a monoid M divides a subgroup of M [9, 18]. A pseudovariety V of
monoids is a class of finite monoids closed under direct product such that
N ∈ V and M ≺ N implies M ∈ V. If e ∈ M is an idempotent (meaning
e2 = e), then the group of units Ge of the monoid eMe is called the maximal
subgroup of M at e; it is the largest subgroup of M with identity e. If H
is a pseudovariety of groups (that is a pseudovariety of monoids consisting
entirely of groups), then the class H of all monoids whose subgroups belong
to H is a pseudovariety. For instance, when H is the trivial pseudovariety,
then H is the pseudovariety of aperiodic monoids; if G is the pseudovariety
of all group, then G is the pseudovariety M of all finite monoids. A group
G is said to be an extension of a group K by a group H if K is a normal
subgroup of G and G/K ∼= H. A pseudovariety of groups H is said to be
extension-closed if whenever G is an extension of K by H with K,H ∈ H,
then G ∈ K.

If V is a pseudovariety of monoids, then a rational subset L ⊆ A∗ is
said to be V-recognizable if M(L) ∈ V. The collection of V-recognizable
subsets of A∗ is a Boolean algebra [9]. A subset is rational if and only if it
is M-recognizable.

If M ⊆ MQ(Q) is an unambiguous matrix monoid and S is a monoid,
then the unambiguous wreath product S oM is the monoid of all Q × Q-
matrices over S obtained from matrices in M by replacing non-zero entries
by elements of S. Because M is unambiguous, no additions are required
when multiplying these matrices and so S oM is well defined. See [14, 21]
for details on this construction.

It is known that a pseudovariety of groups H is extension-closed if and
only if it is closed under wreath products [9, 18]. More generally, if H is
extension-closed and S,M ∈ H, then S oM ∈ H; see [21].

A subset C ⊆ A∗ is called a code if C∗ ≤ A∗ is a free submonoid of
A∗ with basis C. In general, a submonoid M ≤ A∗ has unique minimal
generating set, denoted min(M), namely (M \ ε) \ (M \ ε)2. One has that
M is free if and only if min(M) is a code [7]. Notice that a submonoid M of
A∗ is rational if and only if min(M) is rational; in particular, free rational
submonoids are precisely the submonoids generated by rational codes. This
last remark relies on the fact that rational subsets are closed under taking
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complements [7, 9]. If V is a pseudovariety of monoids, then we shall call a
code C a V-code if C∗ is V-recognizable. Notice that if C is a H-code for an
extension-closed pseudovariety of groups H, then C is also H-recognizable.
Indeed, it is well known that the collection of H-recognizable sets is closed
under concatenation [9,18]. Since any finite set is H-recognizable, it follows
that if M ⊆ A∗ is any H-recognizable submonoid, then min(M) is also
H-recognizable.

The simplest example of a code is a prefix code. A subset P ⊆ A∗ is
a prefix code if no two elements of P are comparable in the prefix order.
It is immediate to verify that prefix codes are indeed codes. The codes
Cn considered in the introduction are finite prefix codes, while x∗y is an
infinite rational prefix code. One can show that a submonoid M of A∗ is
freely generated by a rational prefix code if and only if A∗ acts on the right
of a finite set X with M the stabilizer of a point [7]. More generally, a
submonoid M of A∗ is freely generated by a rational code if and only if
there is an unambiguous representation ϕ : A∗ →MQ(Q) such that there is
an element q ∈ Q with the property that M = {w ∈ A∗ | (ρ(w))q,q = 1} [7].

We shall make use of a well-known construction [7, Chapter IV] for rec-
ognizing submonoids generated by codes. Let A = (Q,A, δ, ι, F ) be an
unambiguous automaton recognizing a code C. Now define

B = (Q ∪ {Φ}, A,∆,Φ, {Φ})
where Φ /∈ Q. The set ∆ of edges of B are those from A together with:

• I = {Φ a−→ q | ι a−→ q ∈ A , a ∈ A};
• T = {q a−→Φ | q a−→ t ∈ A , a ∈ A, t ∈ F};
• O = {Φ a−→Φ | a ∈ A ∩ C}.

We set A ∗ equal to the trim part of B. One obtains from [7, Chapter IV,
Propositions 1.4 and 1.5] that A ∗ is an unambiguous automaton recognizing
C∗ provided that, for each c ∈ C, there is a unique state t ∈ F such that
c labels a path from ι to t. This is the case, for instance, when A is
deterministic.

The following technical theorem generalizes a result of Le Rest and Le
Rest on finite codes [12]. It seems likely to be of interest in its own right.

Theorem 2.1. Let A = (Q,A, δ, ι, F ) be a finite unambiguous automaton
recognizing a rational code C such that, for each c ∈ C, there is a unique
state t ∈ F so that c labels a path from ι to t. Then each subgroup of M(A ∗)
is an extension of a divisor of a direct power of M(A ) by a subgroup of
M(C∗).

Proof. Let α : M(A ∗) → M(C∗) be the canonical projection. Let e be an
idempotent of M(A ∗) and put K = kerα|Ge . We show that K divides a
power of M(A ). Recall that M(A ∗) ⊆ MX(Q) is an unambiguous matrix
monoid where X is the set of states of A ∗. Set

S = Fix(e) = {q ∈ X | eq,q = 1}.



6 JORGE ALMEIDA AND BENJAMIN STEINBERG

By [7, Proposition 3.4] Ge acts faithfully by permutations of S by setting
sg = t if gs,t = 1 for s, t ∈ S and g ∈ Ge. We denote by ρ the projection
A∗ →M(A ∗); notice that ηC∗ = αρ.

Claim 1. The set S \ {Φ} is invariant under the action of K.

Proof. If Φ /∈ S, then there is nothing to prove. So assume Φ ∈ S. Let us
suppose s ∈ S\{Φ} and sg = Φ some g ∈ K. Choose v, w ∈ A∗ with ρ(v) = e
and ρ(w) = g. Then sρ(v) = se = s, Φρ(v) = Φe = Φ and sρ(w) = sg = Φ.
(The reader should draw a picture.) Choose u ∈ A∗ with ρ(u) = g−1. Then
Φρ(u) = Φg−1 = sgg−1 = s and so Φρ(uw) = Φ, from which we conclude
uw ∈ C∗. But α(e) = α(g) implies ηC∗(v) = ηC∗(w) and so uw ∈ C∗ implies
uv ∈ C∗ by the definition of the syntactic congruence, see (2.1). It follows
that ρ(uv)Φ,Φ = 1 since A ∗ accepts C∗. But ρ(uv) = g−1e = g−1 and
hence, since Φ, s ∈ S, we have s = Φg−1 = Φρ(uv) = Φ. This contradiction
establishes the claim. �

Let O1, . . . ,Os be the orbits of K on S and let Ki be the quotient of K by
the kernel of its action on Oi. Since K acts faithfully on S, it is immediate
that K is a subdirect product of the Ki. Therefore, to prove the theorem it
suffices to show that each Ki divides M(A ). Since the orbit of Φ is trivial
if Φ ∈ S (by Claim 1), it suffices to consider the other orbits. For the
remainder of this proof we write q u−→ q′ to indicate ρ(u)q,q′ = 1.

Claim 2. Suppose Oi 6= {Φ} is an orbit of K such that some element g ∈ Ki

is of the form ρ(u) with u ∈ A∗ such that there are s, s′ ∈ Oi with sg = s′

and a factorization u = u′u′′ with s
u′−→Φ u′′−→ s′. Then Ki is trivial.

Proof. First we establish that there is a word w ∈ A∗ with ρ(w) = e such

that for all q ∈ Oi we can factor w = w′qw
′′
q where q

w′q−→Φ
w′′q−→ q. Indeed,

fixing q choose h ∈ Ki such that qh = s and let vq ∈ A∗ with ρ(vq) = h.
Then we have

q
vq−→ s

u′−→Φ u′′−→ s′ (2.2)

with ρ(vqu′u′′) = ρ(vqu) = hg ∈ Ki. Choose x ∈ A∗ so that ρ(x) = (hg)−1.
Then from s′(hg)−1 = q(hg)(hg)−1 = qe = q, we obtain s′

x−→ q. Let wq =
vqux. Then ρ(wq) = e and the circuit at q labelled by wq in A ∗ goes through
Φ by (2.2). Since q′e = q′ for all q′ ∈ S, it follows from the unambiguity of
A ∗ that the word w = wq1 · · ·wqm , where Oi = {q1, . . . , qm}, has the desired
property.

We now use w to show that, in fact, Ki is trivial. Let g ∈ Ki and suppose
ρ(v) = g. Then ηL(v) = α(g) = α(e) = ηL(w). Suppose now that p ∈ Oi

and put q = pg. We must show that p = q. Since ρ(wvw) = ege = g,
it follows that wvw labels a path from p to q in A ∗. Since pe = p and
qe = q, there are paths p w−→ p and q

w−→ q. Also we have p v−→ q. So by
unambiguity of A ∗, the path from p to q labelled by wvw is the composition
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p
w−→ p

v−→ q
w−→ q. By choice of w, we can factor w = w1w2 and w = w3w4

so that
p
w1−→Φ w2−→ p and q

w3−→Φ w4−→ q.

(Again the reader should draw a picture.) Then Φ w2−→ p
v−→ q

w3−→Φ and so
w2vw3 ∈ C∗. But we have ηL(v) = ηL(w) and so w2ww3 ∈ C∗ by (2.1).
Therefore, there is a loop in A ∗ at Φ labelled w2ww3, i.e. Φ w2ww3−−−−→ Φ.
There results a path p

w1−→Φ w2ww3−−−−→ Φ w4−→ q. Since w1w2ww3w4 = w3 and
ρ(w3) = ρ(w)3 = e3 = e, it follows that pe = q and hence p = q. As p ∈ Oi

was arbitrary, this shows that g is trivial. Thus Ki is trivial, completing the
proof of the claim. �

Claim 3. Let Oi be an orbit of K such that, for all g ∈ Ki, there does not
exist u ∈ A∗ such that ρ(u) = g with u = u′u′′ and s

u′−→Φ u′′−→ s′ where
s, s′ ∈ Oi (and so in particular Φ /∈ Oi. Then Ki ≺M(A ).

Proof. Let γ : A∗ → M(A ) be the canonical projection. Our hypotheses
says that if ρ(u) ∈ Ki and s, s′ ∈ Oi, then ρ(u)s,s′ = γ(u)s,s′ . Indeed,
any path labelled by u between vertices of Oi cannot visit Φ. Hence we
have ρ(u)s,s′ ≤ γ(u)s,s′ for s, s ∈ Oi. On the other hand, if u reads a path
from s to s′ in A , then since s, s′ are not trimmed when forming A ∗, it
follows that any vertex visited by u on this path is also not trimmed when
forming A ∗ and so γ(u)s,s′ ≤ ρ(u)s,s′ . It follows that there is a well-defined
surjective homomorphism ρ̃ : γ(ρ−1(Ki))→ Ki given by ρ̃(γ(u)) = ρ(u). As
γ(ρ−1(Ki)) is a submonoid of M(A ), we conclude Ki ≺M(A ). �

Putting together Claims 2 and 3 establishes the theorem. �

Corollary 2.2. If H is an extension-closed pseudovariety of groups and A
is a deterministic automaton recognizing a code C such that M(A ),M(C∗)
belong to H, then M(A ∗) ∈ H.

3. Profinite metrics and uniformities

Let us begin by recalling the definition of a uniformity on a set X since
this formalism will be convenient for our proofs.

Definition 3.1 (Uniformity). A uniformity on X is a set U of reflexive
relations on X such that:

(1) If R2 ⊇ R1 and R1 ∈ U , then R2 ∈ U ;
(2) If R1, R2 ∈ U , then R1 ∩R2 ∈ U ;
(3) If R ∈ U , then R−1 ∈ U ;
(4) If R ∈ U , then there exists R′ ∈ U such that R′ ◦R′ ⊆ R.

The first two conditions say that U is a filter. The elements of U are
called entourages. A collection B of reflexive relations on X is called a
fundamental system of entourages for U if U consists of those relations on
X containing an element of B. It is easy to see that if X is a set and B is



8 JORGE ALMEIDA AND BENJAMIN STEINBERG

a collection of equivalence relations closed under pairwise intersection, then
B is a fundamental system of entourages for a unique uniformity on X.

If R is an entourage and x, y ∈ X, then we use the notation d(x, y) < R
to mean that (x, y) ∈ R. The intuition is that x, y are at least as close as R.
The most natural example of a uniformity is the uniformity associated to a
metric on a metric space (X, d). A fundamental system of entourages is given
by the collection {Rε | ε > 0} where Rε = {(x, y) ∈ X ×X | d(x, y) < ε}.
Notice that d(x, y) < Rε if and only if d(x, y) < ε, whence the notation.
Notice that, for condition (4), if R = Rε, then we can take R′ = Rε/2.

A set X equipped with a uniformity U is called a uniform space. A
topology can be placed on X by taking as a neighbourhood basis of a point
x ∈ X the sets of the form B(x,R) = {y ∈ X | d(x, y) < R} where R ∈ U .
The topology is Hausdorff if and only if

⋂
U = ∆X , the diagonal.

A Cauchy net in a uniform space X is a net (xα) such that for all R ∈ U ,
there exists γ such that, for all α, β ≥ γ, d(xα, xβ) < R. A uniform space is
complete if each Cauchy net converges. Every uniform space has a Hausdorff
completion X̂ and every uniformly continuous function from X to a complete
Hausdorff uniform space extends uniquely to X̂ [8]. Here a function f : X →
Y between uniform spaces is uniformly continuous if, for each entourage
R on Y , there is an entourage R′ on X so that, for all x, y ∈ X with
d(x, y) < R′, one has d(f(x), f(y)) < R.

Let V be a pseudovariety of monoids. A monoid M is said to be residually
V if it has enough homomorphisms to elements of V to separate points. For
example a monoid is residually M if and only if it is residually finite. Let M
be a residually V monoid. Then the set BV of congruences R on M such
that M/R ∈ V forms the fundamental system of entourages for a uniformity
known as the pro-V uniformity on M [1]. The associated uniform space is
Hausdorff precisely because M is residually V. The multiplication on M is
uniformly continuous [1] and the completion M̂V is a profinite monoid, called
the pro-V completion of M ; in fact, it is just lim←−R∈BV

M/R and hence is a
pro-V monoid (that is a projective limit of (finite) monoids from V [1,18]).
The monoid M̂V is compact Hausdorff and totally disconnected [1]. More
generally if M is a monoid with a uniform structure with a fundamental
system B of entourages consisting of finite index congruences, then the
completion M̂ can be identified with lim←−R∈B

M/R and hence M̂ is profinite.
In what follows, instead of writing pro-M we shall just use the term profinite
and also we will omit M as a subscript. So we say profinite uniformity,
profinite completion and write M̂ for the completion.

Suppose that M is a residually V monoid. The pro-V metric on M is
defined in the following way. Fix a sequence {λk} of strictly decreasing
positive real numbers converging to zero. Set λ∞ = 0. For m,n ∈ M ,
let σ(m,n) be the least cardinality of a homomorphic image of M in V
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separating m from n (if m = n, take σ(m,n) =∞). Define

dV(m,n) = λσ(m,n).

One easily verifies that dV is an ultrametric. In the case that M is finitely
generated, it is straightforward to see that the uniformity corresponding to
dV is the pro-V uniformity [1]. The associated topology is termed the pro-V
topology.

For example, let A be a finite set. The profinite topology on A∗ is discrete.
This is because if u ∈ A∗ is of length n and I is the ideal of words of length
greater than n, then A∗/I is a finite monoid and the congruence class of
u is the singleton {u}. Notice that the same argument applies to the pro-
H topology for any pseudovariety of groups H. On the other hand, the
profinite topology on the free group on A, denoted FG(A), is not discrete.
In fact A∗ is dense in the profinite topology on FG(A). Hence there is an
onto homomorphism ϕ : Â∗ → F̂G(A). Since any infinite profinite group is
uncountable, this shows that Â∗ is uncountable (if A 6= ∅) and so the metric
d has uncountably many Cauchy sequences. In particular, the profinite
uniformity is quite far from being discrete (a uniformity is said to be discrete
if ∆X is an entourage, or equivalently it consists of all reflexive relations).
One easily verifies Â∗ is a free profinite monoid on A and F̂G(A) is a free
profinite group on A [1, 18]. More generally, if V is a pseudovariety of
monoids, respectively groups, then Â∗V is a free pro-V monoid, respectively
F̂G(A)V is a free pro-V group [1, 18].

A key fact about Â∗V, due to the first author, is that there is an iso-
morphism between the Boolean algebra of clopen subsets of Â∗V and the
Boolean algebra of V-recognizable subsets of A∗ [1, Theorem 3.6.1]. More
precisely, if K ⊆ Â∗V is clopen, then K ∩ A∗ is V-recognizable; conversely,
if R ⊆ A∗ is V-recognizable, then R ⊆ Â∗V is clopen. That is to say, Â∗V
is the Stone dual of the Boolean algebra of V-recognizable subsets of A∗. In
particular, the clopen submonoids of Â∗V are precisely the submonoids of
the form M where M is a V-recognizable submonoid of A∗.

A more general situation is when X is a topological space such that each
point has a basis of clopen neighbourhoods. Then one can define a unifor-
mity on X∗ whose fundamental system of entourages consists of all finite
index congruences R on X∗ such that X∗/R ∈ V and if X∗/R is endowed
with the discrete topology, then the natural map X → X∗/R is continu-
ous. Our assumption on X implies that the associated topology on X∗ is
Hausdorff (assuming V is non-trivial) and the induced topology on X is its
original topology. The completion X̂∗V of X∗ with respect to this unifor-
mity gives the free pro-V monoid on X. It has the universal property that
any continuous map from X into a pro-V monoid extends uniquely to a
continuous morphism from X̂∗V.

Let’s consider an example. Let X be an infinite discrete space and βX
be its Stone-Czech compactification [8]. Then βX is a compact Hausdorff
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totally disconnected space and it has the universal property that any con-
tinuous map from X to a compact Hausdorff space extends uniquely to βX.
It follows immediately that X̂∗V = (̂βX)∗V. Now it is well known that βX
is not metrizable; in fact, X is a dense subset of βX, but any convergent
sequence of elements from X must be eventually constant. Indeed, let (xn)
be a sequence of elements of X that is not eventually constant. Then we can
choose a function χ : X → {0, 1} that takes on both values 0, 1 infinitely
often on (xn). Since χ extends continuously to βX, it follows that (xn)
cannot converge.

As a consequence we conclude that if X is an infinite discrete set, then
X̂∗V is not metrizable and in particular cannot embed in Â∗V for any finite
set A, as this latter monoid is metrizable.

4. The case of free profinite groups

Let H be an extension-closed pseudovariety of groups. In this section
we give a variation on the usual proof that clopen subgroups of finitely
generated free pro-H groups are finitely generated free pro-H groups [19,23].
The reason for doing this is to highlight the similarities between the group
case and the monoid case, as well as to contrast the differences.

So let F be a finitely generated free group of rank n. Then it is well
known [19], and not too difficult to show, that the clopen (equals open)
subgroups of F̂H are precisely the subgroups of the form U where U is an
open subgroup of F in the pro-H topology. Moreover, this latter condition
is equivalent to saying that U is a finite index subgroup of F such that
F/UF ∈ H where UF =

⋂
g∈F gUg

−1 is the intersection of all the conjugates
of U . Equivalently, UF is the kernel of the natural map F → SF/U associated
to the action of F on F/U [19]. By the Nielsen-Schreier theorem, U is a free
group of rank 1 + [F : U ](n− 1).

So to prove that U is a free pro-H group of rank 1 + [F : U ](n − 1) it
suffices to show that U is the completion of U with respect to its own pro-H
metric. That is it suffices to show that the uniformity induced on U by
the pro-H uniformity on F coincides with the pro-H uniformity on U . Our
proof uses the wreath product. To compare with the monoidal context, we
use the following construction of the permutational wreath product. Let
H ≤ Mn(Q) be a group of n × n permutation matrices and let G be any
group. Then the (permutational) wreath product G o H is the group of all
n × n monomial matrices over G ∪ 0 that can be obtained by replacing
non-zero elements of matrices in H by elements of G.

Theorem 4.1. Let FG(A) be a free group on a set A and let U be an open
subgroup of FG(A) in the pro-H topology. Then the pro-H uniformity on U
is induced by the pro-H uniformity on FG(A). In particular, the closure of
U in F̂G(A)H is a free pro-H group on a basis of U .



RATIONAL CODES AND FREE PROFINITE MONOIDS 11

Proof. A fundamental system of entourages B for the pro-H uniformity on
FG(A) consists of all finite index congruences R such that FG(A)/R ∈ H.
To prove the theorem it suffices to show that the restrictions of elements of
B to U form a fundamental system of entourages for the pro-H uniformity
on U . Clearly if R is a congruence on FG(A) with quotient group in H, then
its restriction to U is a congruence on U with quotient in H and hence an
entourage. So what we need to show is that if ϕ : U → G is a homomorphism
with G ∈ H, then there is a homomorphism ψ from FG(A) to a member of
H such that ϕ factors through ψ|U . It will then follow that the entourage
of U corresponding to ϕ contains the restriction to U of the entourage of
FG(A) corresponding to ψ.

Let m = [FG(A) : U ] and choose coset representatives {1 = w1, . . . , wm}
for the right cosets of U in FG(A). Let ρ : FG(A) → Mm(Q) be the
permutation representation associated to FG(A) acting on the right cosets
of FG(A)/U . Let H = ρ(FG(A)); by assumption H ∈ H. There is a well-
known embedding, due to Kaloujnine-Krasner although in essence it goes
back to Frobenius, of FG(A) into U oH defined as follows. For a ∈ A, set

(τ(a))i,j =

{
wiaw

−1
j if Uwia = Uwj

0 else.

Then τ induces an embedding τ : FG(A) → U oH. Moreover, it is easy to
check that if u ∈ U , then (τ(u))1,1 = u. One can define α : U oH → G oH
by applying ϕ entry-wise to elements of U o H. Then the composition
ψ = ατ : FG(A)→ G oH has the property that (ψ(u))1,1 = ϕ(u) for u ∈ U .
Since H is closed under extension, ψ is our desired homomorphism from
FG(A) to a group in H with the property that ϕ factors through ψ|U . This
completes the proof. �

Our goal for monoids is to generalize the above proof scheme. The key
obstacles are the following: no Nielsen-Schreier theorem and no permuta-
tion representation on cosets with which to take the wreath product. We
shall end up replacing the permutation representation with an unambiguous
representation. The fact that there is no Nielsen-Schreier theorem means
that we must do something to show that if K is a free clopen submonoid of
Â∗V, then K ∩A∗ is a free abstract monoid. Margolis, Sapir and Weil were
able to get around the lack of cosets for the case of a finitely generated free
submonoid by using what they call the sagittal automaton [13] (called the
literal automaton in [7]). This is a canonical construction for which there is
a known Kaloujnine-Krasner type embedding [14]. For the case of infinitely
generated free rational submonoids, there is no canonical choice of finite
unambiguous automata, and topological considerations come into play.

5. Characterization of free clopen submonoids

Fix for this section an extension-closed pseudovariety H of groups. Let
A be a non-empty finite alphabet and C ⊆ A∗ an H-code. We remind the
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reader, as we pointed out earlier, that in this context both C and C∗ are
H-recognizable. Our first goal is to show that the clopen submonoid C∗ of
Â∗H is free pro-H on the profinite space C. In particular when C is finite,
and so C = C, we obtain the result from [13].

We define a uniformity on C∗, which we call the C-uniformity, by taking
as a fundamental system of entourages B the set of all finite index congru-
ences R on C∗ such that C∗/R ∈ H and the induced map C → C/R extends
continuously to the closure C of C in Â∗H. Since the set of such congruences
is closed under intersection (as this operation corresponds to the product of
maps), this uniformity is well defined.

Lemma 5.1. Let A be a finite alphabet and let C ⊆ A∗ be a code. Then the
completion of C∗ with respect to the C-uniformity is the free pro-H monoid
on C.

Proof. Let M be the completion of C∗ with respect to the C-uniformity.
Since M = lim←−R∈U

C∗/R, we see that M is pro-H. Let ψ : C → N be a
continuous map to a monoid N ∈ H. Then ψ|C : C → N extends contin-
uously to C and so the induced homomorphism ψ∗ : C∗ → N is uniformly
continuous for the C-uniformity on C∗. Thus it extends uniquely to a contin-
uous map from M → N , which must be a homomorphism as its restriction
to the dense submonoid C∗ is a homomorphism. This shows that M is a
free pro-H monoid on C. �

Remark 5.2. One can replace H by an arbitrary pseudovariety V in the
definition of the C-uniformity and the analogue of Lemma 5.1 will remain
valid.

In light of Lemma 5.1 to achieve our first goal it suffices to prove the
following theorem.

Theorem 5.3. Let H be an extension-closed pseudovariety of groups, A a
finite set and C ⊆ A∗ an H-code. Then the uniformity on C∗ induced by
the pro-H uniformity on A∗ is the C-uniformity.

Proof. We follow the same proof scheme as Theorem 4.1. First observe that
if ϕ : A∗ → M is a homomorphism with M ∈ H, then ϕ extends to Â∗H
and hence ϕ|C extends continuously to C. Thus kerϕ|C∗ is an entourage
of the C-uniformity on C∗. So we are left with showing if ϕ : C∗ → M
is a homomorphism to a monoid in H such that ϕ|C extends continuously
to C, then there is a homomorphism ψ : A∗ → N with N ∈ H such that
kerψ ∩ (C∗ × C∗) refines kerϕ. This will show that each entourage of the
C-uniformity contains an entourage of the induced uniformity on C∗ from
the pro-H uniformity on A∗.

So let ϕ : C∗ → M be a homomorphism to a monoid M ∈ H such
that ϕ|C extends continuously to C. This happens if and only if there is
an entourage of the pro-H uniformity on A∗ whose restriction to C refines
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ϕ|C , that is, if and only if there is a homomorphism γ : A∗ → N with
N ∈ H such that ker γ ∩ (C ×C) is contained in kerϕ ∩ (C × C). Indeed, if
ϕ extends continuously (and hence uniformly continuously by compactness)
to ϕ : C → M , then there is an entourage from the uniformity on Â∗V
whose intersection with C × C is contained in kerϕ. Intersecting back to
A∗, we see that there is an entourage V of the pro-H uniformity on A∗

whose restriction to C×C is contained in kerϕ ∩ (C × C); this entourage V
necessarily contains the kernel of a homomorphism γ : A∗ → N with N ∈ H.
Conversely, if there is an entourage V of the pro-H uniformity on A∗ with
V ∩ (C ×C) ⊆ kerϕ ∩ (C ×C), then there is a homomorphism γ : A∗ → N
with N ∈ H and ker γ ⊆ V . So ker γ ∩ (C × C) ⊆ kerϕ ∩ (C × C). Now
γ extends uniquely to a uniformly continuous homomorphism γ : Â∗ → N .
Let N ′ = γ(C) = γ(C). Then define a map ψ : N ′ → M by setting
ψ(n) = ϕ(γ|−1

C (n)); this is well defined since ker γ∩(C×C) ⊆ kerϕ∩(C×C).
Then, since the topologies on N ′ and M are discrete, we must have that
ψγ|C : C → M is continuous. By construction ψγ|C = ϕ and so ϕ does
extend to C.

Let A0 = (Q,A, δ, ι, F ) be the minimal deterministic automaton for C.
Since C is an H-code, M(A0) = M(C) ∈ H. Define

A = (Q×N,A, δ′, (ι, 1), F ×N)

to be the product automaton with edges of the form (q, n) a−→(q′, n′) such
that q a−→ q′ is an edge of A0 and nγ(a) = n′. Clearly A is deterministic
and also accepts C. Moreover, M(A ) ≺M(C)×N and hence M(A ) ∈ H.
Since C is a code and A is deterministic, it follows from [7, Chapter IV,
Propositions 1.4 and 1.5] that A ∗ is an unambiguous automaton recognizing
C∗. Moreover, M(A ∗) ∈ H by Theorem 2.1 and since C is an H-code.

We shall need the following observation.

Lemma 5.4. Suppose that u, v ∈ A∗ label paths from (ι, 1) to (q, n) in A

and (q, n) a−→Φ is an edge in A ∗. Then ua, va ∈ C and ϕ(ua) = ϕ(va).

Proof. By definition of A ∗, we have qa ∈ F and so ua, va ∈ C. Since γ(u) =
n = γ(v), we must have γ(ua) = γ(va). But ker γ∩(C×C) ⊆ kerϕ∩(C×C),
so ϕ(ua) = ϕ(va). �

Denote by P the set of states of A ∗. Let ρ : A∗ → M(A ∗) ⊆ MP (Q)
be the associated unambiguous representation. It is a consequence of [21,
Proposition 3.4] that the monoid M oM(A ∗) ∈ H. We shall define a ho-
momorphism ψ : A∗ → M oM(A ∗) by modifying ρ as follows. For a ∈ A,
define:

• ψ(a)Φ,Φ = ϕ(a) if a ∈ C;
• ψ(a)(q,n),Φ = ϕ(c) where c = ua with u labelling a path from (ι, 1)

to (q, n) in A if (q, n) a−→Φ. (This is independent of the choice of
u by Lemma 5.4.);
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• For all other entries, ψ(a) agrees with ρ(a).

Lemma 5.5. Let u ∈ C∗. Then ψ(u)Φ,Φ = ϕ(u).

Proof. Let u ∈ C∗. We proceed by induction on the length of u as an
element of C∗. If u is the empty word, then ψ(u) is the identity matrix and
so ψ(u)Φ,Φ = 1 = ϕ(u).

Suppose that the lemma is true for all words of length n − 1 in C∗ and
suppose u = c1c2 · · · cn with each ci ∈ C. Since C is a code and A ∗ rec-
ognizes C∗, the path from Φ to Φ labelled by cn visits the state Φ only at
the beginning and end. Let cn = ua with a ∈ A. Then u labels a path in
A ∗ from Φ to some (q, n) ∈ Q × N that does not revisit Φ and such that
(q, n) a−→Φ is an edge in A ∗. By definition of A ∗, there is then a path in
A from (ι, 1) to (q, n) labelled by u. Thus ψ(a)(q,n),Φ = ϕ(ua) = ϕ(cn). So,
using the unambiguity of M(A ∗),

ψ(u)Φ,Φ = ψ(c1 · · · cn−1)Φ,Φψ(u)Φ,(q,n)ψ(a)(q,n),Φ

= ϕ(c1 · · · cn−1) · 1 · ϕ(cn) = ϕ(u)

The computation ψ(u)Φ,(q,n) = 1 uses that the path labelled by u from Φ to
(q, n) in A ∗ does not revisit Φ. �

From Lemma 5.5, we immediately have that if u, v ∈ C∗ and ψ(u) = ψ(v),
then ϕ(u) = ϕ(v). Thus kerψ∩(C∗×C∗) refines kerϕ, completing the proof
of Theorem 5.3. �

The case where C is finite gives us the following strengthening of the
statement of [13, Corollary 2.2]:

Corollary 5.6. Let H be an extension-closed pseudovariety of groups, A a
finite alphabet and C ⊆ A∗ a finite H-code. Then the pro-H metric on C∗

is equivalent to the induced metric on C∗ from the pro-H metric on A∗.

The following corollary, generalizing [13, Corollary 2.2] from the finite
case, is immediate from Lemma 5.1 and Theorem 5.3.

Corollary 5.7. Let H be an extension-closed pseudovariety of groups, A a
finite alphabet and C ⊆ A∗ an H-code. Then C∗ ⊆ Â∗H is a free pro-H
clopen submonoid of Â∗H with clopen basis C.

The final result of this section establishes the converse of Corollary 5.7.
We remark that if M is a free pro-H monoid on a topological space X, then
it is also free pro-H on the closure of X in M ; thus every free pro-H monoid
has a closed (profinite) basis.

Theorem 5.8. Let H be an extension-closed pseudovariety of groups and
A a finite set. Then the clopen free pro-H submonoids of Â∗H are precisely
the closures of H-recognizable free submonoids of A∗. More specifically,
if M is an H-recognizable submonoid of A∗ with minimal generating set
C = min(M), then M is free pro-H if and only if C is a code (necessarily
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an H-code). Moreover, C is the unique closed basis for M (and is in fact
clopen).

Proof. Suppose that P is a free pro-H clopen submonoid of Â∗H. Then M =
P ∩A∗ is an H-recognizable submonoid by [1, Theorem 3.6.1] and P = M .
From now on we drop the notation P and stick to M . Set C = min(M);
then C is also H-recognizable. Since each element of A∗ is an isolated point
of Â∗H, it follows that C is contained in the closed submonoid generated by
a subset X ⊆ M if and only if it is contained in the submonoid generated
by X. Since Â∗H \ A

∗ is an ideal [1], it follows that C is in the closed
submonoid generated by X if and only if it is in the submonoid generated
by X ∩A∗ ⊆M . Since C = min(M), this means that C ⊆ X. In particular,
taking X to be a closed basis for M , we have C ⊆ X.

Suppose that C 6= X. Since C is clopen in Â∗H, and hence in X,
there exists a continuous map ϕ : X → {0, 1} such that ϕ(C) = {1} and
ϕ(X \ C) = {0}. As M is freely generated by X, this map extends to a con-
tinuous homomorphism ϕ : M → ({0, 1}, ·). But C topologically generates
the pro-H monoid M = C∗, so ϕ(M) ⊆ {1}, a contradiction. Thus C = X.

It remains to show that C is a code (we already know that it is H-
recognizable). Clearly C is a code if and only if every finite subset of C is
a code, since a relation satisfied by the elements of C involves only finitely
many elements. So let D ⊆ C be finite. Since free monoids are residually H,
to show that D∗ ≤ A∗ is free, it suffices to show that any map ϕ : D → N
with N ∈ H extends to a homomorphism ϕ∗ : D∗ → N .

Now D is clopen in Â∗H and hence in C. Thus ψ : C → N given by
ψ|D = ϕ and ψ(C \D) = 1 is continuous. Thus ψ extends to a continuous
homomorphism ψ : M → N since M is free pro-H on C. The map ψ|D∗
is then our desired extension of ϕ. Thus D is a code, and as D was an
arbitrary finite subset of C, we conclude that C is a code.

Conversely, if C ⊆ A∗ is a H-code, then C∗ is a free pro-H clopen sub-
monoid with profinite basis C by Corollary 5.7. �
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19. L. Ribes and P. A. Zalesskĭı, “Profinite Groups”, Springer, Berlin, 2000.
20. B. Steinberg, On free profinite subgroups of free profinite monoids, Preprint 2007,

arXiv:0712.2254.
21. P. Weil, Groups in the syntactic monoid of a composed code, J. Pure Appl. Algebra

42 (1986), 297–319.
22. P. Weil, Profinite methods in semigroup theory, Internat. J. Algebra Comput. 12

(2002), 137–178.
23. J. S. Wilson, “Profinite groups”, The Clarendon Press, Oxford Univ. Press, New York,

1998.

J. Almeida: Departamento de Matemática Pura, Faculdade de Ciências,
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