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ABSTRACT. A Laguerre polynomial sequence of parameter ε/2 was previously characterised in a recent

work [27] as an orthogonal Fε -Appell sequence, where Fε represents a lowering operator depending on the

complex parameter ε 6=−2n for any integer n > 0. Here, we proceed to the quadratic decomposition of an

Fε -Appell sequence, and we conclude that the four sequences obtained by this approach are also of Appell

but with respect to another lowering operator consisting of a fourth order linear differential operator G
ε,µ ,

where µ is either 1 or −1. Therefore, we introduce and develop the concept of the G
ε,µ -Appell sequences

and we realize they cannot be orthogonal. At last, we completely describe how to quadratically decompose

a Laguerre sequence of parameter ε/2.
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1. INTRODUCTION AND PRELIMINARY RESULTS

We denote by P the vector space of the polynomials with coefficients in C (the field of complex num-

bers) and by P ′ its dual space, whose elements are forms. The action of u ∈P ′ on f ∈P is denoted as

〈u, f 〉. In particular, we denote by (u)n := 〈u,xn〉, n> 0 the moments of u. A linear operator T : P→P

has a transpose tT : P ′→P ′ defined by

(1.1) 〈tT (u), f 〉= 〈u,T ( f )〉 , u ∈P ′, f ∈P.

For example, for any form u, any polynomial g, let Du = u′ and gu be the forms defined as usually

〈u′, f 〉 :=−〈u, f ′〉 , 〈gu, f 〉 := 〈u,g f 〉,

where D is the differential operator. Thus, the differentiation operator D on forms is minus the transpose

of the differentiation operator D on polynomials.

Whenever a sequence of polynomials {Bn}n>0 is such that degBn = n, for n> 0, we will systematically

call it as PS and, in the case where its elements are monic (that is, Bn(x) = xn +bn(x), with degbn 6 n−1

for n> 1) we will refer to it as a monic polynomial sequence (MPS). The dual sequence {un}n>0 ⊂P ′

of a MPS {Bn}n>0 is defined by 〈un,Bk〉 = δn,k, n,k > 0, where δn,k denotes the Kronecker symbol
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[30, 31]. We will denote by {B[1]
n }n>0 the MPS obtained from a given MPS by a single differentiation

B[1]
n (x) := 1

n+1 B′n+1(x), n> 0.

The form u is called regular if we can associate with it a PS {Bn}n>0 such that 〈u,BnBm〉= knδn,m with

kn 6= 0, for all the integers n,m > 0, [13, 30, 31]. The PS {Bn}n>0 is then said to be orthogonal with

respect to u. If u is a regular form we can assume that the system (of orthogonal polynomials) is monic.

Then, there exists a dual sequence {un}n>0 and the original form u is proportional to u0. Furthermore,

we have

(1.2) un =
(
〈u0,B2

n〉
)−1 Bn u0, n> 0.

The sequence {Bn}n>0 is then called a monic orthogonal polynomial sequence (MOPS) and it fulfils the

second order recurrence relation given by

B0(x) = 1 B1(x) = x−β0(1.3)

Bn+2(x) = (x−βn+1)Bn+1(x)− γn+1Bn(x), n> 0.(1.4)

with βn =
〈u0,xB2

n 〉
〈u0,B2

n 〉
and γn+1 =

〈u0,B2
n+1〉

〈u0,B2
n 〉
6= 0 , n > 0. A regular form u exists if and only if the

Hankel determinant ∆n := det
[
(u)i+ j

]
06i, j6n is nonzero for any integer n> 0.

When u ∈P ′ is regular, let Φ be a polynomial such that Φu = 0, then Φ = 0, [31].

Entailed in the problem of the symmetrysation of sequences of polynomials, comes out the quadratic

decomposition (as well as the cubic decomposition) of a PS. Within this context, many authors have dealt

with symmetrization problems of orthogonal polynomial sequences either on the real line or in the unit

circle. Among them we quote [4, 12, 13, 14, 15, 18, 24, 29, 32]. More specifically, in [13, 15] a symmetric

orthogonal polynomial sequence is decomposed into two nonsymmetric sequences. A generalisation of

this idea was revealed in [29, 32]: to a given MPS {Bn}n>0, we associate two other MPS, {Pn}n>0 and

{Rn}n>0, and two sequences of polynomials, {an}n>0 and {bn}n>0, such that

B2n(x) = Pn(x2)+ x an−1(x2), n> 0,(1.5)

B2n+1(x) = bn(x2)+ x Rn(x2), n> 0.(1.6)

where 06 degan , degbn 6 n for any integer n> 0 and a−1(·) = 0, [13, 15, 29]. Under the assumption

that {Bn}n>0 is orthogonal, it is not possible to conclude that {Pn}n>0 and {Rn}n>0 are also orthogonal,

if some supplementary conditions are not considered. For instance, an = 0 = bn, n > 0, if and only if

the MPS {Bn}n>0 is symmetric (that is Bn(−x) = (−1)nBn(x),n > 0) and its orthogonality supplies the

orthogonality of both sequences {Pn}n>0 and {Rn}n>0 [29].

Recently, in [27], the two authors have proceeded to the quadratic decomposition (hereafter QD) of an

Appell polynomial sequence (that is, a MPS {Bn}n>0 such that B[1]
n (·) = Bn(·),n > 0) [3]. The four
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associated sequences obtained by this approach are also Appell sequences but with respect to another

differential operator

(1.7) Fε := 2D x D+ ε D

where ε is either 1 or −1, and D := d
dx . This operator Fε , as well as the differential operator D, de-

creases in one unit the degree of a polynomial. They are indeed simple examples of the so-called lo-

wering operators: a linear mapping O of P into itself is called lowering operator when O(1) = 0 and

deg
(
O(xn)

)
= n−1, n> 1. The Appell character of a PS may be generalised in a natural way to other

lowering operators O rather than D:

Definition 1.1. A MPS {Bn}n>0 is called an O-Appell sequence with respect to a lowering operator O if

Bn(·) = B[1]
n (·,O) for any integer n> 0, with

(1.8) B[1]
n (x;O) := ρn

(
O Bn+1

)
(x), n> 0,

where ρn ∈ C−{0}, n> 0, is chosen for making B[1]
n (x;O) monic [7, 8].

This concept is not new. As a matter of fact some authors have considered Appell sequences with respect

to other operators like the q-derivative [37], operators reducing or augmenting the degree of a polynomial

by k units, with k > 1. Among them we quote [10, 11, 16, 17, 25, 26]). However, such considerations

are not useful here.

The primary purpose of this work is to characterise the four sequences associated with the QD of an

Fε -Appell sequence, in which Fε is the operator given in (1.7) with ε 6=−2n, n> 1. Firstly, in section

2, we show that the four polynomial sequences obtained by this approach are also Appell sequences

with respect to a fourth order linear differential operator, denoted by Gε,µ , where µ is either 1 or −1.

Subsequently, regarding a more accurate information about the arisen Gε,µ -Appell sequences, in section

3 we study these MPS through a functional point of view, where the range for the parameter µ was

broadened to a dense subset of C (the set of complex numbers). While ferreting out all the D-Appell and

Fε -Appell orthogonal sequences, we find the Hermite (a result given by Angelescu [2] and later by other

authors [13, 35] but further references may be found in [1]) and the Laguerre polynomial sequences of

parameter ε/2, up to a linear change of variable, (achieved in [27]) respectively. However, in section 4

we conclude that a Gε,µ -Appell sequence cannot be orthogonal. In spite of this negative result, in the

last section we successfully reach the complete description of the QD of the nonsymmetric sequence of

Laguerre polynomials, by means of the Genocchi numbers.

2. THE QUADRATIC DECOMPOSITION OF Fε -APPELL SEQUENCES

Pursuing the idea of the quadratic decomposition of an Appell sequence, we explore the Fε -Appell

sequences. To accomplish so, it is useful to enlighten some properties of the operator Fε ; namely for
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any f ,g ∈P , we have:

Fε

(
f (x) g(x)

)
= f (x) Fε

(
g(x)

)
+g(x) Fε

(
f (x)

)
+4 x f ′(x) g′(x),

Fε

(
f (t2)

)
(x) = x

{
8 x2 f ′′(x2)+2(4+ ε) f ′(x2)

}
,(2.1)

Fε

(
t f (t2)

)
(x) = x2

{
8x2 f ′′(x2)+2(8+ ε) f ′(x2)

}
+(2+ ε) f (x2) .(2.2)

Theorem 2.1. Consider the QD of a monic sequence {Bn}n>0 as in (1.5)-(1.6). If {Bn}n>0 is an Fε -

Appell sequence with ε 6= −2(n + 1), n > 0, then the four sequences {Pn}n>0, {Rn}n>0, {an}n>0 and

{bn}n>0 are given by

Pn(x) =
1

ηn+1(ε,−1)
(
G

ε,−1Pn+1
)
(x), n> 0,(2.3)

Rn(x) =
1

ηn+1(ε,1)
(
G

ε,1Rn+1
)
(x), n> 0,(2.4)

an(x) =
1

ηn+2(ε,−1)
(
G

ε,1an+1
)
(x), n> 0,(2.5)

bn(x) =
1

ηn+1(ε,1)
(
G

ε,−1bn+1
)
(x), n> 0,(2.6)

where the operators Gε,1 and Gε,−1 and the nonzero sequences {ηn+1(ε,1)}n>0 and {ηn+1(ε,−1)}n>0

are respectively given by

Gε,1 =
(
4DxD+ εD

) (
2xD+ I

) (
4xD+(2+ ε)D

)
(2.7)

Gε,−1 =
(
4DxD+ εD

) (
2xD− I

) (
4xD− (2− ε)D

)
(2.8)

and

ηn+1(ε,1) = (n+1)
(
4(n+1)+ ε

) (
2n+3

) [
2
(
2 n+3

)
+ ε

]
, n> 0,(2.9)

ηn+1(ε,−1) = (n+1)
(
4(n+1)+ ε

) (
2n+1

) [
2
(
2 n+1

)
+ ε

]
, n> 0,(2.10)

where D := d
dx and I represents the identity on P .

Proof. Consider ρn+1 = (n + 1)
(
2(n + 1)+ ε

)
. Operating with Fε on both members of (1.5) and (1.6)

with n replaced by n+1, then, under the assumption and by virtue of (2.1)-(2.2), we obtain:

ρ2n+2{bn(x2)+ x Rn(x2)} = x
{

2(4+ ε)P′n+1(x
2)+8x2 P′′n+1(x

2)
}

+(2+ ε)an(x2)+2(8+ ε) x2 a′n(x
2)

+8 x4 a′′n(x
2) , n> 0,

ρ2n+1{Pn(x2)+ x an−1(x2)} = x
{

2(4+ ε)b′n(x
2)+8x2 b′′n(x

2)
}

+(2+ ε)Rn(x2)+2(8+ ε) x2 R′n(x
2)

+8 x4 R′′n(x
2) , n> 0,
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which consists of polynomials with only even or odd powers. As a result, we necessarily get:

ρ2n+2 Rn(x) =
{

2(4+ ε) D+8x D2
} (

Pn+1(x)
)
, n> 0,(2.11)

ρ2n+1 Pn(x) =
{

(2+ ε) I+2(8+ ε) x D+8 x2 D2
}(

Rn(x)
)
, n> 0,(2.12)

ρ2n+2 bn(x) =
{
(2+ ε) I+2(8+ ε) x D+8 x2 D2

} (
an(x)

)
, n> 0,(2.13)

ρ2n+1 an−1(x) =
{

2(4+ ε) D+8x D2
} (

bn(x)
)
, n> 0.(2.14)

Operating with the equalities (2.11) and (2.12), we deduce

ρ2n+2ρ2n+3 Rn(x) =
{

2 ε D+8 D x D
}
·
{

(2+ ε) I+2(4+ ε) x D+8 x D x D
} (

Rn+1(x)
)
, n> 0.

and also

ρ2n+1ρ2n+2 Pn(x) =
{
(2+ ε) I+2(8+ ε) x D+8 x2 D2

}
·
{

2(4+ ε) D+8 x D2
} (

Pn+1(x)
)
, n> 0.

Using the identities

(2.15)

{
x D2 = D x D−D

x2 D2 = x D x D− x D
and

{
D x = x D− I
x2 D2 = D x D x−3 D x+2I

in the right-hand side of the first and second previous relations respectively, we deduce

ρ2n+2ρ2n+3 Rn(x)

=
{

2 ε D+8 D x D
}
·
{

(2+ ε) I+2(4+ ε) x D+8 x D x D
} (

Rn+1(x)
)
, n> 0,

yielding (2.4) under the definitions (2.7) and (2.9). We also derive

ρ2n+1ρ2n+2 Pn(x)

=
{

(2− ε) I−2(4− ε) D x+8 D x D x
}
·
{

2 ε D+8 D x D
} (

Pn+1(x)
)
, n> 0,

which corresponds to (2.3) under the definitions (2.8) and (2.10).

Likewise, by means of simple manipulations, the system of equalities (2.13) and (2.14) gives rise to

another system of two equalities: one involving exclusively elements of the set of polynomials {bn}n>0

and the other having only elements of the set of polynomials {an}n>0, which, on account of the identities

(2.15), may be transformed into the following equalities

(2.16)

ρ2n+2ρ2n+3 bn(x) =
{
(2− ε) I−2(4− ε) D x+8 D x D x

}
·
{

2 ε D+8 D x D
} (

bn+1(x)
)
, n> 0.

and

(2.17)

ρ2n+1ρ2n+2 an−1(x) =
{

2 ε D+8 D x D
}
·
{

(2+ ε) I+2(4+ ε) x D+8 x D x D
} (

an(x)
)
, n> 0.

where a−1(·) = 0. The relation (2.16) provides (2.6), whereas the relation (2.17) with n replaced by n+1

leads to (2.5), under the definitions (2.7)-(2.10). �
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More information about the polynomial sequences is provided in the next result.

Proposition 2.1. Let {Bn}n>0 be a FεAppell sequence and consider its QD according to (1.5)-(1.6).

Then either {Bn}n>0 is symmetric or there exists an integer p > 0 such that ap(·) 6= 0 (respectively,

bp(·) 6= 0). In this case, we have

an(x) = 0, bn(x) = 0, 06 n6 p−1, when p> 1,(2.18)

ap+n(x) =
(

n+ p+1
n

) (
p+ 3

2

)
n

(
p+ 3

2 + ε

4

)
n

(
p+2+ ε

4

)
n(3

2

)
n

(3
2 + ε

4

)
n

(
1+ ε

4

)
n

ap ân(x),(2.19)

bp+n(x) =
(

n+ p
n

) (
p+ 3

2

)
n

(
p+ 3

2 + ε

4

)
n

(
p+1+ ε

4

)
n(1

2

)
n

(1
2 + ε

4

)
n

(
1+ ε

4

)
n

bp b̂n(x) , n> 0(2.20)

where ân and b̂n are two monic polynomials fulfilling deg ân(x) = n , deg b̂n(x) = n, for n > 0, and

(y)n = y(y+1) . . .(y+n−1) represents the Pochhammer symbol.

Proof. If {Bn}n>0 is a symmetric sequence then an(·) = 0, n> 0, and also bn(·) = 0, n> 0. Reciprocally,

if an(·) = 0, n> 0 (respectively, bn(·) = 0, n> 0), then from (2.13) bn(·) = 0, n> 0 (respectively an(·) =

0, n> 0, from (2.14) ).

When {Bn}n>0 is not a symmetric sequence, let p > 0 be the smallest integer such that ap(·) 6= 0 and

an(·) = 0, 0 6 n 6 p− 1 when p > 1 . From (2.14), we have bn(·) = constant = bn, 0 6 n 6 p and by

virtue of (2.13), bn(·) = 0 for 06 n6 p−1, ρ2p+2 bp(x) = (2+ ε)ap(x)+2(8+ ε)xa′p(x)+8x2 a′′p(x),

which implies ap(·) = constant = ap 6= 0. Thus, (2+ ε)ap = ρ2p+2 bp.

Proceeding by finite induction, then, based on (2.13)-(2.14), we achieve the conclusion deg(an+p) = n

and deg(bn+p) = n, n > 0. Therefore, we may consider two nonzero sequences {λn}n>0 and {µn}n>0

such that

(2.21) an+p(x) = λn ân(x) and bn+p(x) = µn b̂n(x) , n> 0,

where ân(·) and b̂n(·) represent two monic polynomials of degree n> 0, µ0 = bp and λ0 = ap . Replacing

in (2.13) and (2.14) n by n+ p and taking into account (2.21), we obtain

ρ2n+2p+2 µn b̂n(x) = (2+ ε)λn ân(x)+2(8+ ε)xλn ân
′(x)+8x2

λn ân
′′(x) , n> 0,

ρ2n+2p+1 λn−1 ân−1(x) = 2(4+ ε) µn b̂n
′(x)+8x µn b̂n

′′(x), n> 0.

Therefore, the nonzero sequences {λn}n>0 and {µn}n>0 satisfy the system

ρ2n+2p+2 µn = 8
(

n+
1
2

) (
n+

1
2

+
ε

4

)
λn , n> 0,

ρ2n+2p+1 λn−1 = 8 n
(

n+
ε

4

)
µn, n> 0.
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which implies

ρ2n+2p+2 µn = 8
(

n+
1
2

) (
n+

1
2

+
ε

4

)
λn , n> 0,

ρ2n+2p+3 ρ2n+2p+4 λn = 64 (n+1)
(

n+1+
ε

4

) (
n+

3
2

) (
n+

3
2

+
ε

4

)
λn+1, n> 0,

and, because ρn+1 = (n+1)
(
2(n+1)+ ε

)
, n> 0, it yields

µn =

(
n+ 1

2

) (
n+ 1

2 + ε

4

)
(n+ p+1)

(
n+ p+1+ ε

4

) λn , n> 0,

λn+1 =
(

n+ p+2
n+1

)(p+ 3
2)n+1

(
p+ 3

2 + ε

4

)
n+1

(
p+2+ ε

4

)
n+1(3

2

)
n+1

(
1+ ε

4

)
n+1

(3
2 + ε

4

)
n+1

λ0, n> 0,

where (y)k represents the Pochhammer symbol. Finally we achieve,

λn =
(

n+ p+1
n

) (
p+ 3

2

)
n

(
p+ 3

2 + ε

4

)
n

(
p+2+ ε

4

)
n(3

2

)
n

(3
2 + ε

4

)
n

(
1+ ε

4

)
n

λ0,

µn =

(
n+ 1

2

) (
n+ 1

2 + ε

4

)
(n+ p+1)

(
n+ p+1+ ε

4

) λn , n> 0,

whence the result. �

The two MPS emerged with the QD of an Fε -Appell sequence, are also Appell sequences with respect

to the lowering operators G
ε,1 and G

ε,−1 , in the light of definition 1.1. Analogously, on account of the

relations (2.5)-(2.6) and (2.19)-(2.20) given in Proposition 2.1, we may say that the sequences {ân}n>0

and {b̂n}n>0 are, respectively, G
ε,1 and G

ε,−1-Appell. The study of these arisen Appell sequences will now

proceed henceforth as a whole rather than individually, so, under the particular choices of µ = −1 or

µ = 1, they may be viewed as Appell sequences with respect to the lowering operator

G
ε,µ :=

(
4DxD+ εD

)(
8(xD)2 +2εxD+2I+ µ

(
8xD+ εI

))
with the convention: (xD)k+1 = xD (xD)k for any integer k > 0. Naturally, it is possible to express:

(2.22)

G
ε,µ := 32 D(xD)3 +16ε D(xD)2 +2(4+ ε2) DxD+2ε D+ µ

{
32 D(xD)2 +12ε DxD+ ε2 D

}
,

The forthcoming developments will be made from a functional point of view, requiring the characterisa-

tion of the associated dual sequence, which will be carried out in the next section.

3. THE G
ε,µ -APPELL SEQUENCES

Let {Bn}n>0 be a MPS with dual sequence {un}n>0. Consider the sequence {B[1]
n (·;G

ε,µ )}n>0 given by

(3.1) B[1]
n (x ; G

ε,µ ) =
1

ρ̂n+1

(
G

ε,µ Bn+1

)
(x) , n> 0
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where G
ε,µ is given by (2.22) and

(3.2) ρ̂n+1 := ρ̂n+1(ε,µ) = (n+1)
(
4(n+1)+ ε

) (
2+2(n+1)

(
4(n+1)+ ε

)
+(8+8n+ ε)µ

)
for n> 0. Necessarily the parameters ε and µ must be chosen so that ρ̂n+1 6= 0, for all the integers n> 0,

therefore ε and µ are two complex parameters such that

ε 6=−4(n+1) and µ 6=−2+2(n+1)(4n+4+ x)
8(n+1)+ ε

, n> 0.

Whenever µ ∈ {−1,1}, then ρ̂n+1(ε,µ) equals ηn+1(ε,µ), given by (2.9)-(2.10), for any integer n> 0.

Before characterising G
ε,µ -Appell sequences, we must determine the dual sequence of {B[1]

n (·;G
ε,µ )}n>0,

denoted as {u[1]
n (G

ε,µ )}n>0. For this purpose we need to know the transpose tG
ε,µ defined according to

(1.1):

〈tG
ε,µ u , f 〉 = 〈u , G

ε,µ f 〉

=
〈

u ,
{

32 D(xD)3 +16(ε +2µ) D(xD)2 +2(4+ ε2 +6ε µ) DxD+ ε(2+ ε µ) D
}

f
〉

therefore

tG
ε,µ = 32 D(xD)3−16(ε +2µ) D(xD)2 +2(4+ ε2 +6ε µ) DxD− ε (2+ ε µ) D .

However, the convention on D ( tD =−D) permits to write tαν := (−1)ν+1D(xD)ν , with αν := D(xD)ν ,

leaving out a slight abuse of notation without consequence. Thus tG
ε,µ := G−ε,−µ

and G
ε,µ is defined on P

and P ′.

For the sequel, it is worth to express G
ε,µ in terms of xk Dk+1 instead of D(xD)k (with k = 0,1,2,3).

Based on the identities
DxD = x D2 +D

D(xD)2 = x2 D3 +3 x D2 +D

D(xD)3 = x3 D4 +6 x2 D3 +7 x D2 +D .

the operator G
ε,µ given by (2.22) may be expressed as follows:

(3.3)
G

ε,µ = 32x3 D4 +16(12+ ε)x2 D3 +2
(
116+ ε(24+ ε)

)
xD2 +2(4+ ε)(5+ ε)D

+µ

{
32x2 D3 +12(8+ ε)xD2 +(4+ ε)(8+ ε)D

}
.

and, by means of simple computations, we are able to deduce the G
ε,µ -derivative of the product of two

polynomials:

(3.4)
G

ε,µ

(
f p
)
(x) = f (x)

(
G

ε,µ p
)
+
(
G

ε,µ f
)

p(x)+128x3 f ′(x) p(3)(x)

+48
{
(ε +12+2µ) f ′(x)+4x f ′′(x)

}
x2 p′′(x)+

{(
116+ ε2 +48µ +6ε(4+ µ)

)
f ′(x)

+12(ε +2(6+ µ))x f ′′(x)+32x2 f (3)(x)
}

4x p′(x)
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for any p, f ∈P . By transposition, we may also compute the G
ε,µ -derivative of the product of a poly-

nomial by a form:

(3.5)

(
G−ε,−µ

f u
)

= f
(
G−ε,−µ

u
)
−
(
G

ε,µ f
)

u+ f ′(x) L3(u)+ f ′′(x) L2(u)

+ f (3)(x) L1(u)+26 x3 f (4)(x)u , f ∈P , u ∈P ′ ,

where

(3.6)
L3(u) = τ3,0 u+ τ3,1 x u′+ τ3,2 x2 u′′+27 · x3 (u)(3)

L2(u) = τ2,0 x u+ τ2,1 x2 u′+3 ·26 x3 u′′

L1(u) = τ1,0 x2 u+27 x3 u′

with

τ3,0 = 4(20+ ε2 +6εµ); τ3,1 = 22
(
116+ ε2 +6ε(µ−4)−48µ

)
; τ3,2 =−24 ·3

(
ε−12+2µ

)
;

τ2,0 = 22
(
116+ ε2 +6εµ

)
; τ2,1 = 24 ·3

(
12− ε−2µ

)
; τ1,0 = 27 ·3 .

Lemma 3.1. The dual sequence of {B[1]
n (·;G

ε,µ )}n>0 denoted as {u[1]
n (G

ε,µ )}n>0 fulfils

(3.7) G−ε,−µ

(
u[1]

n (G
ε,µ )
)

= ρ̂n+1 un+1, n> 0,

where ρ̂n+1, n> 0, is given by (3.2).

Proof. Following the definition of a dual sequence, 〈 u[1]
n (G

ε,µ ) , B[1]
m (x;G

ε,µ ) 〉 = δn,m for any integers

n,m> 0, which corresponds to (ρ̂n+1)−1 〈 u[1]
n (G

ε,µ ) , G
ε,µ (Bm+1) 〉= δn,m for n,m> 0, that is

〈G−ε,−µ

(
u[1]

n (G
ε,µ )
)
,Bm+1〉= ρ̂n+1 δn,m , n,m> 0.(3.8)

In particular, from the latter we have

〈G−ε,−µ

(
u[1]

n (G
ε,µ )
)
,Bm+1〉= 0, m> n+1, n> 0 ,

which implies [33, 34]

G−ε,−µ

(
u[1]

n (G
ε,µ )
)

=
n+1

∑
ν=0

λn,ν uν , n> 0,

with λn,ν = 〈G−ε,−µ

(
u[1]

n (G
ε,µ )
)
,Bν〉, 06 ν 6 n+1. Consequently, due to (3.8), we obtain (3.7). �

This last result enables us to express all the elements of the dual sequence in terms of the first one:

Proposition 3.1. The MPS {Bn}n>0 is a G
ε,µ -Appell sequence if and only if its dual sequence {un}n>0

fulfils

(3.9) un =
1

αn
G n
−ε,−µ

(u0), n> 0,

where

αn = 32n n!
(

1+
ε

4

)
n

(
8+ ε +4µ−∆ε,µ

8

)
n

(
8+ ε +4µ +∆ε,µ

8

)
n
, n> 0,
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with ∆ε,µ =
√

ε2 +16(µ2−1) , and G n
−ε,−µ

represents the nth-power of the operator G−ε,−µ
.

Proof. The condition is necessary. From (3.7), the sequence {un}n>0 satisfies

(3.10) G−ε,−µ
(un) = ρ̂n+1(ε,µ) un+1, n> 0,

with ρ̂n+1(ε,µ) as given in (3.2). In particular, for n = 0,

u1 =
1

(4+ ε)(10+8µ + ε (2+ µ))
G−ε,−µ

u0 .

Proceeding by finite induction, we easily get (3.9).

The condition is sufficient. From (3.9), it is easy to see that (3.10) is fulfilled. Therefore by comparing it

with (3.7), we obtain

G−ε,−µ

(
u[1]

n (G
ε,µ )
)

= G−ε,−µ
un, n> 0 .

The lowering operator G−ε,−µ
satisfies G−ε,−µ

(P) = P , and therefore G−ε,−µ
is one-to-one on P ′. We then

get u[1]
n (G

ε,µ ) = un , n> 0, whence the expected result. �

4. ABOUT THE ORTHOGONALITY OF A G
ε,µ -APPELL SEQUENCE

In this section we seek to find all orthogonal polynomial sequences possessing the G
ε,µ -Appell character.

A somehow unexpected result occurs:

Theorem 4.1. There is no regularly orthogonal polynomial sequence being G
ε,µ -Appell.

Proof. Suppose there is a MOPS {Bn}n>0 which is also a G
ε,µ -Appell sequence and let {βn , γn+1}n>0 be

its recurrence coefficients in accordance with (1.4). From (1.2) and (3.10), we get

(4.1) G−ε,−µ
(Bnu0) = λn Bn+1u0, n> 0,

with

(4.2) λn := λn(ε) =
ρ̂n+1(ε,µ)

γn+1
, n> 0,

where ρ̂n+1, n> 0, is defined in (3.2). We recall that, within the range of ε and µ , ρ̂n+1 is always different

from zero for any integer n> 0. The particular choice of n = 0 in (4.1), provides

(4.3) G−ε,−µ
u0 = λ0 B1 u0 .

Consider n + 1 instead of n in (4.1). Following (3.5)-(3.6), because of the G
ε,µ -Appell character and on

account of (4.3), we derive

(4.4)

B′n+1 L3(u0)+B′′n+1 L2(u0)+B(3)
n+1 L1(u0)=

{
λn+1 Bn+2−λ0 B1 Bn+1 +λn γn+1 Bn−26 x3 B(4)

n+1

}
u0 , n> 0,
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In particular, considering n = 0 in this last relation, u0 fulfils the equality:

(4.5) L3(u0) = U2(x) u0

where L3(u0) is given in (3.6) and

U2(x) = λ1B2(x)−λ0B 2
1 (x)+λ0 γ1 .

On account of (4.5), the relation (4.4) becomes like

(4.6)

B′′n+1 L2(u0)+B(3)
n+1 L1(u0) =

{
λn+1 Bn+2−λ0 B1 Bn+1 +λn γn+1 Bn−U2 B′n+1−26 x3 B(4)

n+1

}
u0, n> 0,

and when n = 1, this relation becomes like

(4.7) L2(u0) = U3(x) u0

where L2(u0) is given by (3.6) and

U3(x) =
1
2
{

λ2B3(x)−λ0B1(x) B2(x)+λ1 γ2 B1(x)−B′2(x) U2(x)
}

.

Therefore, due to (4.7), the relation (4.6) may be transformed into

(4.8)
B(3)

n+1 L1(u0) =
{

λn+1 Bn+2−λ0 B1 Bn+1 +λn γn+1 Bn

−B′n+1 U2−B′′n+1 U3−26 x3 B(4)
n+1

}
u0 , n> 0,

and taking n = 2 we obtain:

(4.9) L1(u0) = U4(x) u0

where L1(u0) is given in (3.6) and

U4(x) =
1
6
{

λ3B4(x)−λ0B1(x) B3(x)+λ2 γ3 B2(x)−B′3(x) U2(x)−B′′3(x) U3(x)
}

.

Naturally, degUk 6 k for k = 2,3 or 4, so there are coefficients θk, j with 06 j 6 k such that

(4.10) Uk(x) =
k

∑
j=0

θk, j x j, k = 2,3,4.

A single differentiation on both sides of (4.9) leads to

(4.11) 27 x3 u′′0 +
{
(3 ·27 + τ1,0) x2−U4(x)

}
u′0 =

{
U ′4(x)−2 τ1,0 x

}
u0 .

Between (4.11) and (4.7) it is possible to eliminate the term in u′′0 , and consequently we have

(4.12)
{
(32 ·28 +3 τ1,0−2 τ2,1) x2−3 U4(x)

}
u′0 =

{
3 U ′4(x)−2 U3(x)−2 (3 τ1,0− τ2,0) x

}
u0
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The elimination of the term u′0 between the equalities (4.12) and (4.9) and the regularity of u0 leads to

C3 ≡ 0 where

C3(x) =−27 x3 {3 U ′4(x)−2 U3(x)−2 (3 τ1,0− τ2,0) x
}

+
(
(32 ·27 +3 τ1,0−2 τ2,1) x2−3 U4(x)

) (
U4(x)− τ1,0 x2

)

Since u0 is a regular form, necessarily C3 is identically null, that is, C3 has all its coefficients in x

identically zero. Taking into account the definition of the polynomials Uk with k = 3,4 presented in

(4.10), we realise that degC3 6 8 and we also achieve:

(4.13) θ4,4 = θ4,0 = θ4,1 = 0

As a consequence, C3(x) =
6

∑
j=3

c3, j x j and the conditions c3, j = 0 for j = 3,4,5,6 provide

(4.14)
θ3,0 = 0 , θ3,3 =

3
28 (θ4,3)

2 , θ3,2 =
1
27 θ4,3 (3 θ4,2−3 τ1,0 + τ2,1)

θ3,1 =
1
28

{
3 (θ4,2)

2 +28 τ2,0−θ4,2
(
27 ·3+6 τ1,0−2 τ2,1

)
− τ1,0(−27 ·3−3 τ1,0 +2 τ2,1)

}
,

whence, U4(x) =
(
θ4,3 x+θ4,2

)
x2 and U3(x) = θ3,3 x3 +θ3,2 x2 +θ3,1 x .

Differentiating both sides of (4.7) and then eliminating the term in u(3)
0 between the resulting equation

and (4.5), we deduce

(4.15)

{
27 ·32 +2 τ2,1−3 τ3,2

}
x2 u′′0 +

{
(2 τ2,0 +4 τ2,1−3 τ3,1) x−2 U3(x)

}
u′0

=
{
−2 τ2,0 +3 τ3,0 +2U ′3(x)−3U2(x)

}
u0

We proceed to the elimination of the term in u′′0 between (4.15) and (4.7), and we get:

(4.16)

{[
27 ·3 τ2,0−26 ·32 τ3,1 + τ2,1(−27 ·3−2 τ2,1 +3 τ3,2 )

]
x−27 ·3U3(x)

}
x u′0

=
{

τ2,0
(

2 (27 ·3+ τ2,1)−3 τ3,2
)

x−
(
27 ·32 +2 τ2,1−3 τ3,2

)
U3(x)

+3 ·26
(

3 τ3,0−3U2(x)+2U ′3(x)
)

x
}

u0

By eliminating the term in u′0 between (4.16) and (4.9), and by taking into consideration the regularity of

u0, we get the condition: C2 ≡ 0 where

(4.17)

C2(x) = −(27 x3)
{

τ2,0
(

2 (27 ·3+ τ2,1)−3 τ3,2
)

x−
(
27 ·32 +2 τ2,1−3 τ3,2

)
U3(x)

+3 ·26
(

3 τ3,0−3U2(x)+2U ′3(x)
)

x
}

+
{[

27 ·3 τ2,0−26 ·32 τ3,1

+τ2,1(−27 ·3−2 τ2,1 +3 τ3,2 )
]
x2−27 ·3U3(x) x

}(
U4(x)− τ1,0 x2

)
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After (4.13), we easily realise that the polynomial C2 may be expressed as C2(x) = ∑
7
j=4 c2, j x j . Due to

(4.13)-(4.14), the condition c2,7 = 0 implies θ4,3 = 0, which, in accordance with (4.14), yields

θ3,0 = 0 = θ3,3 = θ3,2

θ3,1 =
1
28

{
3 θ

2
4,2 +28

τ2,0−θ4,2
(
27 ·3+6 τ1,0−2 τ2,1

)
− τ1,0(−27 ·3−3 τ1,0 +2 τ2,1)

}
.(4.18)

Consequently, we get U3(x) = θ3,1 x and U4(x) = θ4,2 x2. Since c2,6 = 0 = c2,5 , we deduce θ2,2 = θ2,1 = 0.

As a result, U2(x) = θ2,0 , U3(x) = θ3,1 x and U4(x) = θ4,2 x2 , and, according to (4.9) u0 fulfils

(τ1,0−θ4,2) x2 u0 +27 x3 u′0 = 0,

contradicting the regularity of u0. �

In spite of this negative result, the existence of the Gε,µ -Appell being d-orthogonal (for some integer

d > 2) ought to be explored in an analogous manner as the one expounded in [20, 9].

5. APPLICATIONS. THE QUADRATIC DECOMPOSITION OF A LAGUERRE SEQUENCE

The quadratic decomposition of a non-symmetric sequence is far from being obvious. Nonetheless, the

obtained and some already known results permit to describe the associated polynomial sequences to the

QD of a Laguerre sequence with complex parameter.

Proposition 5.1. A Laguerre sequence {Bn}n>0 of parameter ε

2 (with ε 6= −2(n + 1),n > 0) fulfils

(1.5)-(1.6) where {Rn}n>0 and {Pn}n>0 are respectivelly Gε,1 and Gε,−1-Appell sequences and {an}n>0,

{bn}n>0 are two PS given by

an(x) =
n

∑
ν=0

λn,νRν(x), n> 0(5.1)

bn(x) =
n

∑
ν=0

θn,νPν(x), n> 0 ,(5.2)

with

λn,ν =
(

2n+2
2ν

)
(−1)n−ν 22n−2ν+1

2ν +1

(
2+ ε

2

)
2n+1(

2+ ε

2

)
2ν

G2n−2ν+2 , 06 ν 6 n, n> 0,(5.3)

θn,ν =
(

2n+2
2ν

)
(−1)n−ν 22n−2ν

n+1

(
1+ ε

2

)
2n+1(

1+ ε

2

)
2ν

G2n−2ν+2 , 06 ν 6 n, n> 0,(5.4)

where the symbol (a)k = a(a+1) . . .(a+ k−1), k > 0, denotes the Pochhammer symbol and Gn repre-

sent the unsigned Genocchi numbers.

ANA F. LOUREIRO AND P. MARONI



QUADRATIC DECOMPOSITION OF LAGUERRE POLYNOMIALS VIA LOWERING OPERATORS 14

The Genocchi numbers were presumably introduced by Edouard Lucas in [28], but they owe the name to

the italian mathematician Angelo Genocchi (1817-1889) [23]. E.T. Bell developed intensive studies on

these numbers in the 1920s in [5] and [6]. Such numbers are intimately related to the much more famous

Bernoulli numbers as it will be presented just after the proof of the precedent result. There are many

possibilities for computing the values of the Genocchi numbers (see for example [19], [22] and [38], and

also the entry in [36] for further references).

The proof of the latter proposition requires the following known result:

Lemma 5.1. [29] Given a MPS {Bn}n>0, it is possible to associate two MPS {Rn}n>0 and {Pn}n>0 and

two sequences {an}n>0 and {bn}n>0 according to (1.5)-(1.6) and (5.1)-(5.2). If, in addition, {Bn}n>0 is

a MOPS fulfilling the second order recurrence relation (1.3)-(1.4), necessarily the coefficients λn,ν ,θn,ν ,

06 ν 6 n,n> 0, satisfy the following system:

λn,n =−
n

∑
ν=1

{
β2ν +β2ν+1

}
, n> 0,(5.5)

θn,n =−β0−
n

∑
ν=1

{
β2ν−1 +β2ν

}
, n> 0,(5.6)

θn+1,ν + γ2n+2θn,ν = λn,ν−1 + γ2ν+1λn,ν +
n

∑
µ=ν

λn,µθµ,ν β2µ+1(5.7)

λn+1,ν + γ2n+3λn,ν = θn+1,ν + γ2ν+2θn+1,ν+1 +
n

∑
µ=ν

θn+1,µ+1 λµ,ν β2µ+2(5.8)

for 06 ν 6 n, n> 0, with λn,−1 = 0,n> 0.

Proof. (of Proposition 5.1) Let {Bn}n>0 be a Laguerre sequence of parameter ε

2 with ε 6= −2n, n> 1.

The two authors have shown in [27, theorem 6] such sequence to be the unique MOPS being Fε -Appell.

So, necessarily the second order recurrence relation (1.4) holds and we recall the well known expression

for its recurrence coefficients:

(5.9) βn = 2n+1+
ε

2
; γn+1 = (n+1)

(
n+1+

ε

2

)
, n> 0.

Reconsidering the quadratic decomposition of {Bn}n>0 given in (1.5)-(1.6), but this time describing the

sequences {an}n>0 and {bn}n>0 by means of the associated MPS {Pn}n>0 and {Rn}n>0, there exist two

sets of numbers {λn,ν}06ν6n and {θn,ν}06ν6n such that (5.1)-(5.2) hold.

By virtue of Theorem 2.1, the MPS {Rn}n>0 and {Pn}n>0 are respectivelly Gε,1 and Gε,−1-Appell se-

quences. Just as it was observed in the proof of Theorem 2.1, the conditions (2.11)-(2.14) hold. In

particular from (2.13) and on account of (5.1)-(5.2), we derive

2γ2n+2

n

∑
ν=0

θn,νPν(x) =
n

∑
ν=0

λn,ν

{
(2+ ε)I+2(8+ ε)xD+8x2D2}Rν(x), n> 0.
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Due to (2.12), we have

γ2n+2

n

∑
ν=0

θn,νPν(x) =
n

∑
ν=0

λn,νγ2ν+1Pν(x), n> 0,

which, because {Pn}n>0 is an independent sequence, provides

(5.10) θn,ν =
γ2ν+1

γ2n+2
λn,ν , n> 0, 06 ν 6 n.

On the other hand, (5.1)-(5.2) permits to write the relation (2.13) as follows:

2γ2n+1

n

∑
ν=0

λn−1,ν Rν(x) =
n−1

∑
ν=0

θn,ν+1
{

2(4+ ε)D+8xD2}Pν+1(x), n> 1.

The relation (2.11) allows us to transform the previous into

γ2n+1

n

∑
ν=0

λn−1,ν Rν(x) =
n−1

∑
ν=0

θn,ν+1 γ2ν+2 Rν(x), n> 1,

yielding

(5.11) γ2n+1 λn−1,ν = γ2ν+2 θn,ν+1, n> 1 , 06 ν 6 n,

since {Rn}n>0 forms an independent sequence. Combining the relations (5.10) with ν replaced by ν +1

and (5.11) with n+1 instead of n, we get

(5.12) λn+1,ν+1 =
γ2n+4 γ2n+3

γ2ν+3 γ2ν+2
λn,ν , 06 ν 6 n.

Proceeding by finite induction, it is easy to deduce

(5.13) λn+1,ν+1 =

{
2ν+1

∏
τ=0

γ2n−2ν+τ+3

γτ+2

}
λn−ν ,0, 06 ν 6 n,

On account of (5.9), we are able to write

λn,ν =
1

2ν +1

(
2n+2

2ν

) (
2+ ε

2

)
2n+1(

2+ ε

2

)
2ν

(
2+ ε

2

)
2(n−ν)+1

λn−ν ,0 , 16 ν 6 n.

This last equality is identically verified when we consider the pair (n,ν) to take values on the set

{(0,0),(1,0)}, so it is admissible to write:

(5.14) λn,ν =
1

2ν +1

(
2n+2

2ν

) (
2+ ε

2

)
2n+1(

2+ ε

2

)
2ν

(
2+ ε

2

)
2(n−ν)+1

λn−ν ,0 , 06 ν 6 n.

Based on Lemma 5.1, we will carry out the determination of the coefficients λn−ν ,0. The particular choice

n = 0 in (5.5)-(5.6) and on account of (5.9), respectively, provides

(5.15) λ0,0 =−2
(
2+

ε

2
)

, θ0,0 =−
(
1+

ε

2
)

.
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From (5.10)-(5.11), the two following identities γ2n+2θn,0 = γ1λn,0 and γ2n+3λn,0 = γ2θn+1,1 hold. Thus,

when ν = 0, the relations (5.7)-(5.8) given in Lemma 5.1 become

(5.16)


θn+1,0 =

n

∑
µ=0

λn,µθµ,0 β2µ+1,

λn+1,0 = θn+1,0 +
n

∑
µ=0

θn+1,µ+1 λµ,0 β2µ+2, n> 0.

On account of (5.10) and (5.11), we may transform (5.16) into

(5.17)


1

γ2n+4
λn+1,0 =

n

∑
µ=0

λn,µ λµ,0

γ2µ+2
β2µ+1

λn+1,0 =
γ1

γ2n+4
λn+1,0 + γ2n+3

n

∑
µ=0

λn,µ λµ,0

γ2µ+2
β2µ+2, n> 0.

Since, β2µ+2 = β2µ+1 +2, for µ > 0, it follows
n

∑
µ=0

λn,µ λµ,0

γ2µ+2
β2µ+2 = 2

n

∑
µ=0

(
λn,µ λµ,0

γ2µ+2

)
+

n

∑
µ=0

(
λn,µ λµ,0

γ2µ+2
β2µ+1

)
, n> 0.

Therefore, from (5.17) we derive

(5.18) λn+1,0 =
γ1

γ2n+4
λn+1,0 +

γ2n+3

γ2n+4
λn+1,0 +2γ2n+3

n

∑
µ=0

λn,µ λµ,0

γ2µ+2
, n> 0,

which, on account of (5.9), may be expressed like

(5.19) λn+1,0 = (n+2)
(
2n+3+ ε

2

) (
2n+4+ ε

2

) n

∑
µ=0

λn,µ λµ,0

(µ +1)
(
2µ +2+ ε

2

) , n> 0.

Now, considering (5.14), the relation (5.19) becomes like

(5.20)

λn+1,0 = (n+2)
(
2+ ε

2

)
2n+3

n

∑
µ=0

{(
2n+2

2µ

)
λn−µ,0 λµ,0

(2µ +1)(µ +1)
(
2+ ε

2

)
2µ+1

(
2+ ε

2

)
2(n−µ)+1

}
, n> 0.

Proceeding by finite induction, we infer there is a set of positive integers {χn}n>0, not depending on the

parameter ε , fulfilling the equality

(5.21) λn,0 = (−1)n+1 22n+1
χn
(
2+ ε

2

)
2n+1 , n> 0.

Indeed, on account of (5.15), χ0 = 1, and, under the assumption, from the relation (5.20) we get

λn+1,0 = (n+2) (−1)n 22n+2 (2+ ε

2

)
2n+3

n

∑
µ=0

{(
2n+2

2µ

)
χn−µ χµ

(2µ +1)(µ +1)

}
, n> 0.

Since the integers χn, n> 0, do not depend on ε , they are necessarily related by the equality

(5.22) χn+1 =
n+2

2

n

∑
µ=0

(
2n+2

2µ

)
χn−µ χµ

(2µ +1)(µ +1)
, n> 0 ,
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or, equivalently,

(5.23)
χn+1

(2n+4)!
=

1
2n+3

n

∑
µ=0

χn−µ

(2n−2µ +2)!
χµ

(2µ +2)!
, n> 0.

Suppose there is an analytic function L defined on an open set of C such that L(z) = ∑
n>0

χn

(2n+2)!
zn.

Based upon the relation (5.23), L(z) is a solution of the differential equation(
z L(z2)

)′
= Λ0 +

1
2

(
z L(z2)

)2
.

Therefore, because χ0 = 1, we trivially conclude that z L
(
z2
)
= tan

( z
2

)
. Following, per example, [21, 39]

and denoting by G2n the unsigned Genocchi numbers, it is possible to write

tan
( z

2

)
= ∑

n>0
G2n+2

z2n+1

(2n+2)!

whence we have χn = G2n+2 and (5.21) becomes like

λn,0 = (−1)n+1 22n+1 G2n+2
(
2+ ε

2

)
2n+1 , n> 0.

Inserting in (5.14), this last equality with n− µ instead of n, we obtain (5.3) and, on account of (5.10),

we get (5.4). �

The unsigned Genocchi numbers are directly related to the Bernoulli numbers Bn via G2n = 2(1−
22n)B2n , where Bn are defined by [21, 39]

(5.24)
z

ez−1
= 1− 1

2
z+ ∑

n>1
(−1)n+1 B2n

z2n

(2n)!
.
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