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Abstract

We study here the behaviour of the first three eigenvalues (λ1, λ2,
λ3) and their ratio [(λ1/λ2), (λ1/λ3), (λ2/λ3)] of the covariance ma-
trices of the original return series and of those rebuilt from wavelet
components for emerging and mature markets. It has been known for
some time that the largest eigenvalue (λ1) contains information on the
risk associated with the particular assets of which the covariance ma-
trix is comprised. Here, we wish to ascertain whether the subdominant
eigenvalues (λ2, λ3) hold information on the risk of the stock market
and also to measure the recovery time for emerging and mature mar-
kets. To do this, we use the discrete wavelet transform which gives a
clear picture of the movements in the return series by reconstructing
them using each wavelet component. Our results appear to indicate
that mature markets respond to crashes differently to emerging ones,
in that emerging markets may take up to two months to recover while
major markets take less than a month to do so. In addition, the re-
sults appears to show that the subdominant eigenvalues (λ2, λ3) give
additional information on market movement, especially for emerging
markets and that a study of the behaviour of the other eigenvalues
may provide insight on crash dynamics.
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1 Introduction

Covariance (Correlation) matrix forecasts of financial asset returns are an
important component of current practice in financial risk management with
a large bibliography on the subject. Meric and Meric (1997), for example, ap-
plied the Box M method and Principal Component Analysis (PCA) to test
whether or not the correlation matrices before and after the international
crash in 1987 were significantly different. This was done in order to investi-
gate the changes in the long-term co-movements of twelve European and US
equity markets. Their results showed that there are significant alterations
in the co-movements of these markets and that the benefits of international
diversification for the European markets decreased markedly after this crash.

Further, Kwapien et al. (2002) investigated the distribution of eigenvalues
of correlation matrices for equally-separated time windows in order to study,
quantitatively, the relation between stock price movements and properties of
the distribution of the corresponding index motion (w.r.t. German DAX).
They reported that the importance of an eigenvalue is related to the correla-
tion strength of different stocks, which means that the more aggregated the
market behaviour, the larger λ1 (Maximum Eigenvalue).

Recently, in Keogh et al.(2003), we showed that periods in market sector
data from the Dow Jones EURO-STOXX index, exist linearly with time.
These results supported an implied relationship between volatility and the
change in magnitude of the dominant eigenvalue and also showed that epochs
seem to exist in all market sectors although in different degrees. More re-
cently, Kwapien et al. (2004) analysed tick-by-tick returns data ranging
from seconds up to 48 hours from the NYSE and the German markets. The
authors compared the magnitude of the dominant eigenvalue of the correla-
tion matrices for the same group of securities on various time scales. Their
results indicated that collective market behaviour appears at significantly
shorter time scales in recent times.

Pofka and Kondor (2002) examined the effect of noisy covariance matrices
on the portfolio optimisation problem and found that the risk of the portfolio
in the presence of noise in these matrices is 5-15% higher than in the absence
of noise, indicating that the decrease in efficiency of the optimal portfolio is
actually much less dramatic.

According to the findings of (Galluccio et al (1998), Laloux et al (1999),
Plerou et al (1999), Laloux (2000), Plerou et al (2001), Wilcox and Geb-
bie (2004) and Sharifi et al (2004)), the correlation (or covariance) matrices
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of financial time series, apart from a few large eigenvalues and their corre-
sponding eigenvectors, appear to contain such a large amount of noise that
their structure can essentially be regarded as random. This means that a
few of the larger eigenvalues might carry collective information. However,
most previous studies (Gopikrishnan et al (2001))have focused on the largest
eigenvalue with no attention paid to the others. If we are to presume that, as
with any PCA analysis of data, there are several principal components that
are significant, then it should be worth examining lesser order components to
see if they can provide additional data for investment strategies. References
in the literature to the role of higher order eigenmodes in investment strat-
egy are scarce, but, recently Wilcox and Gebbie (2004) have examined the
composition of all the eigenmodes of ten years of Johannesburg Stock Ex-
change using Random Matrix Theory (RMT). The authors concluded that
“the leading [i.e. first three] eigenmodes may be interpreted in terms of in-
dependent trading strategies with long range correlations” indicating a role
not just for λ1 but also for a small number of the dominant eigenvalues. In
the current work we aim, firstly, to highlight the apparent information ob-
tained from the first two subdominant eigenvalues as well as the dominant
eigenvalue and study its behaviour. Secondly, to compare the behaviour of
the second and third eigenvalues for stock market indices for two different
classes, namely emerging and mature markets.

Several studies have made comparisons between Emerging and Mature
markets1, according to different characteristics, and these generally have re-
ported that Emerging markets consistently behave differently to Mature ones.
Patel and Sarkar (1998) studied eight mature and ten developing markets
from 1970 to 1997. The authors found important differences in the charac-
teristics of stock market crises between major and emerging markets. They
also found that, for emerging markets, the decline in prices following crises
is larger than that for mature markets, and the recovery time is longer. Fur-
ther, Fuss (2002) used discriminant analysis to investigate if emerging and
mature markets behave differently according to different financial aspects
(such as market pricing, market size and market activity) and stated that
the difference between these two market types has increased since the end
of the 1990s. A reason for this could be found in financial crashes of 1994
in Mexico, 1997/1998 in Asia, 1998 in Russia and 1999 in Brazil, indicating
that emerging and mature markets deal differently with crashes and crises.

1The International Finance Corporation (IFC) uses income per capita and market
capitalization relative to GNP for classifying equity markets. If either (1) a market resides
in a low- or middle-income economy, or (2) the ratio of investable market capitalization
to GNP is low, then the IFC classifies the market as emerging otherwise IFC classifies it
as mature.
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Recently, Salomons and Grootveld (2002) studied the equity risk premium
in thirty-one global stock markets using standard statistical approaches and
found that emerging markets carry a higher equity risk premium than ma-
ture ones indicating that they are perceived to be riskier. More recently,
Wooldridge et al. (2003) considered the changes in the links between emerg-
ing and mature markets according to capital flows, the investor base and the
changing character of global banks. Results showed that emerging and ma-
ture markets are more integrated nowadays than before. This contravenes
with the findings of [Patel and Sarkar (1998), Fuss (2002), Salomons and
Grootveld (2002) and Wooldridge et al. (2003)], so it is very important to
carry out further investigations in order to clarify the issue.

In Sharkasi et al. (2004), we studied the behaviour of eigenvalues of the
Covariance matrices around crashes and also studied the ratio of the domi-
nant (λ1) to the subdominant (λ2) for emerging and mature markets. Our
results showed that mature markets react to crashes in a different way than
emerging ones which take longer to recover than mature markets. The second
largest eigenvalue (λ2) may thus be expected to provide additional informa-
tion on market movements.

Our objectives in this article are, therefore as follows:

1. To study the variation of the ratio series of the largest (λ1) to the sec-
ond and third largest (λ2, λ3) eigenvalues of the Variance-Covariance
matrices for sliding windows of equal sizes for original return series of
stock market indices. This, in order to compare the behaviour of this
ratio across windows with different degrees of risk (or different crashes
and events).

2. To study the previous point for return series which have been recon-
structed using each wavelet component separately in order to measure
how long the markets take to recover and how long these markets retain
information about previous crises and events.

3. To study the variation of the largest and the second largest eigen-
values of these Covariance matrices for the original return series, and
for those rebuilt from wavelet components, in order to see the direction
of the movements in these markets and also to investigate whether λ2

contains useful information about these movements, in addition to that
described by λ1 alone.

The remainder of this paper is organized as follows: The methodology
used here is described briefly below (Section 2), with data and results pre-
sented in Section 3. The final section provides discussion and conclusion.
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2 Methodology

2.1 How to Estimate Covariance Matrices

There are several methods to compute the Variance-Covariance matrix but
there is no agreement among authors on an optimal one. We have chosen
the following formula because it uses weighted historical data to account
for the empirical regularities of financial time series (such as the fact that
volatility and correlation vary over time and these series have a “Fat Tail”
distribution).

σT
ij(M) = (

T∑
s=0

ωT−sri,T−srj,T−s)/(
T∑

s=0

ωT−s) (1)

where ri,T is the return on the ith market at date T and ωT , which is the
weight applied at date T over horizon M , has been chosen to be a declining
function of time. The more recent observations are given more weight than
observations that occurred in more distant past, where 100% weight is given
to the most recent week and each week in history receives 90% of the weight
of the following week, then ωT = 1.0, ωT−1 = 0.90, ωT−2 = 0.81, etc. (For
more details see Litterman and Winkelmann (1998)).

In our study, we use weekly returns of a set of thirteen (i = 13) emerging
indices and a set of fourteen (i = 14) mature indices and the Variance-
Covariance matrices for overlapping windows of size 20 (T = 20) weeks for
our data have been calculated using Equation(??) in order to study the
structure change of stock market for different windows with different risk
degree (i.e. after include the week of crash).

2.2 Definition of Wavelet Transform

The wavelet transform (WT) is a mathematical tool that can be applied
to many applications such as image analysis, and signal processing. It was
introduced to solve problems associated with the Fourier transform, as occur
when dealing with non-stationary signals, or when dealing with signals which
are localized in time or space as well as frequency. The wavelet transform
has been explained in more detail, particularly in [Hijmans (1993), Bruce
and Gao (1996) and Gonghui et al (1999) ].

In particular, the discrete wavelet transform (DWT) is useful in dividing
the data series into components of different frequency, so that each compo-
nent can be studied separately to investigate the data series in depth. The
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wavelets have two types, father wavelets φ and mother wavelets ψ where

∫
φ(t)dt = 1 and

∫
ψ(t)dt = 0

The smooth and low-frequency parts of a signal are described by using the fa-
ther wavelets, while the detail and high-frequency components are described
by the mother wavelets. The orthogonal wavelet families have four differ-
ent types which are typically applied in practical analysis, namely, the haar,
daublets, symmlets and coiflets.
The following brief synopsis of their features is relevant to the analysis re-
ported:

• The haar has compact support and is symmetric but, unlike the others, is
not continuous.

• The daublets are continuous orthogonal wavelets with compact support.

• The symmlets have compact support and were built to be as nearly sym-
metric as possible.

• The coiflets were built to be nearly symmetric.

A two-scale dilation equation, used to calculate the wavelets, father φ(t)
and mother ψ(t), is defined respectively by

φ(t) =
√

2
∑
k

�kφ(2t− k) (2)

ψ(t) =
√

2
∑
k

h̄kφ(2t− k) (3)

where �k and h̄k are the low-pass and high-pass coefficients given by

�k =
1√
2

∫
φ(t)φ(2t− k)dt (4)

h̄k =
1√
2

∫
ψ(t)φ(2t− k)dt (5)

The orthogonal wavelet series approximation to a signal f(t) is defined
by

f(t) =
∑
k

sJ,kφJ,k(t) +
∑
k

dJ,kψJ,k(t) + . . .+
∑
k

d1,kψ1,k(t) (6)

where J is the number of multi-resolution levels (or scales) and k ranges from
1 to the number of coefficients in the specified components (or crystals). The
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coefficient sJ,k,dJ,k,. . .,d1,k are the wavelet transform coefficients given by

sJ,k =
∫
φJ,k(t)f(t)dt (7)

dj,k =
∫
ψj,k(t)f(t)dt (j = 1, 2, . . . , J) (8)

Their magnitudes give a measure of the contribution of the correspond-
ing wavelet function to the signal. The functions φJ,k(t) and ψj,k(t) [j =
1, 2, . . . , J ] are the approximating wavelet functions, generated from φ and ψ
through scaling and translation as follows

φJ,k(t) = 2
−J
2 φ(2−Jt− k) = 2

−J
2 φ[(t− 2Jk)/2J ] (9)

ψJ,k(t) = 2
−J
2 ψ(2−Jt− k) = 2

−J
2 ψ[(t− 2Jk)/2J ] j = 1, 2, . . . , J (10)

The discrete wavelet transform (DWT) is used to compute the coeffi-
cient of the wavelet series approximation in Equation(6) for a discrete signal
f1, . . . , fn of finite extent. The DWT maps the vector f = (f1, f2, . . . , fn)

′ to
a vector of n wavelet coefficients w = (w1, w2, . . . , wn)′ which contains both
the smoothing coefficient sJ,k and the detail coefficients dj,k [j = 1, 2, . . . , J ].
The sJ,k describe the underlying smooth behaviour of the signal at coarse
scale 2J while dJ,k describe the coarse scale deviations from the smooth be-
haviour and dJ−1,k, . . . , d1,k provide progressively finer scale deviations from
the smooth behaviour.

In the case when n is divisible by 2J ; there are n/2 observations in d1,k at
the finest scale 21 = 2 and n/4 observations in d2,k at the second finest scale
22 = 4. Likewise, there are n/2J observations in each of dJ,k and sJ,k where

n = n/2 + n/4 + . . .+ n/2J−1 + n/2J + n/2J .

We apply the discrete wavelet transform to split the weekly return series
for emerging and mature market indices into different frequency components
to get a clear picture of the movements in these markets. We also wish to
rebuild the return series using the first three wavelet components (d1, d2

and d3) which explain more than 80% of energy (or magnitude) of these
series2 (see Tables 1 and 2) in order to study the fortnightly , monthly and
bi-monthly data which are represented by d1, d2 and d3 respectively.

2This means that 80% of the time series can be reconstructed by using d1, d2 and d3
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3 Data and Results

3.1 Data Description

The data used in the following analysis consists of the weekly prices of a set
of thirteen emerging market indices and a set of fourteen mature market
indices during the period from the second week of January 1997 to the third
week of March 2004. These markets are listed in Tables 1 and 2. As each
market uses its local currency for presenting the index values, we use the
weekly returns instead of using the weekly prices, where the following formula
applies:

Weekly Return = Ln(Pt/Pt−1) (11)

and where

• Pt is the closing price of the index at week t.

• Pt−1 is the closing price at week t− 1.

3.2 Empirical Results

3.2.1 Eigenanalysis for Original Return Series.

The variation of the ratio of the Largest (λ1) to the Second Largest (λ2)
eigenvalues of the Covariance matrices for equal overlapping time windows
of the original returns series for emerging and mature markets, are shown in
Figures 1(a) and 2(a) respectively. These show a qualitative difference in the
way emerging and mature markets deal with crashes and events.

We also plot the ratio of λ1 to λ3 to see clearly the reactions of stock
markets to different crashes and events. The variation of these ratios is
plotted in Figures 3(a and b). It can be seen that the mature markets
have reacted to events more strongly than emerging markets, especially after
the 9/11 crash, in order to regain stability and reduce risk to the markets.
This means that mature markets effectively became anti-persistent, while
emerging markets are persistent in agreement with the findings of Di Matteo
et al (2003) and (2005) which indicate that emerging markets have H ≥ 0.5,
while mature markets have H ≤ 0.5 [H is the Hurst exponent].

The ratios of λ2 to λ3, Figures 4 (a and b), are plotted in order to see
if behavior for λ2 and λ3 differs for emerging and mature markets. In other
words, we want to investigate whether or not λ2 carries additional informa-
tion about these different market types. Figures 4(a and b) suggest that
ratios of λ2 to λ3 for emerging markets are more variable than those for
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mature markets, implying that subdominant (λ2), as well as dominant (λ1)
eigenvalues, do play a part in describing the behaviour of emerging markets
while the behaviour of mature markets is described by λ1 only.

In comparing the ratio (λ1/λ2), Figures 1(a) and 2(a), for emerging and
mature markets, it can be seen that for latter, there are three highly signifi-
cant points in the ratio variation which are for window numbers 120, 219
and 345 respectively. Window 120 starts from week 120 to week 139 which
is the third week of October, 1999 (the 12th anniversary of October 19, 1987
crash3). The last week in window 219 is week 238 which is the second week
of September, 2001 (9/11 crash) and window 345 starts from week 345 to
week 364 which is the third week of March, 2004 (Madrid Bomb). However,
for emerging markets, there is only one highly significant point which is for
window 212, where the last week in this window is the second week of
September, 2001 (9/11 crash). We suggest that the cause for these highly
significant ratio points is one or more of the following reasons:

1. Increasing the value of the largest eigenvalue (λ1) while the second
largest eigenvalue (λ2) remains stable.

2. Decreasing the value of λ2 while the value of λ1 does not change.

3. Increasing the value of λ1 while decreasing the value of λ2, (or in other
words, λ1 and λ2 moving in opposite directions).

The changes in λ1 and λ2 are plotted in Figure 5 (a and b) for emerging
and mature markets respectively. For mature markets, (in order to examine
likely causes), we compared the values of λ1 and λ2 of the covariance matrix
for windows 120, 219 and 345 with the values of the previous windows, while
for emerging markets, we compared the values of λ1 and λ2 for window 212
with the values of the previous windows. We found that the third reason
above causes peaks in emerging markets while it is the first driver for change
in the mature markets. This implies that both λ1 and λ2 are important in
describing the behaviour of emerging markets while λ1 is sufficient alone to
explain the behaviour of mature markets.

3This was the last October in 20th century and October is always hard month for stock
markets so, with the end of the century as well, a crash in October was anticipated but did
not happen. This, not least because, “The world markets were actually sent into turmoil
by a speech by Alan Greenspan, and the Dow Jones for the first time since April 8, 1999
dipped below 10.000 on October 15 and 18, 1999. However, the market did not crash
and instead quickly recovered and later started a renewed and strengthened bullish phase”,
Sornette (2002).
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3.2.2 Eigenanalysis associated with Wavelet Transform.

The discrete wavelet transform (DWT) with symmlet 8 wavelet (s8) for 6
levels (scales) is computed for weekly returns series of all indices for emerging
and mature markets. The DWT provides a more detailed breakdown of
the contribution to the series energy from the high and low frequencies in
the following manner. Tables 1 and 2 display the energy (or magnitude)
percentages explained by each wavelet component (crystal) of the original
returns for emerging and mature market indices respectively. From Tables 1
and 2, it can be seen that high-frequency crystals, especially the first three
(d1, d2 and d3) have much more energy than the lowest frequency one (s6)
implying that movements in these series are mainly caused by short-term
fluctuations.

In order to measure the recovery time of emerging and mature markets
from crashes and how long these markets retain information about crashes,
we employed the discrete wavelet transform (DWT) and eigenanalysis. The
steps of this process are: (i) Use the DWT to divide the return series of
emerging and mature markets into different frequency components. (ii) Re-
build the returns using each wavelet components (d1, d2, d3, etc) and (iii)
Study the distribution of the ratio (λ1/λ2) of variance-covariance matrices
for overlapping windows of size 20 for these series.

Figures 1 (b, c and d) and 2 (b, c and d) show the ratio(λ1/λ2) from
covariance matrices for each window for the return series, which are rebuilt
from d1, d2 and d3, (representing fortnightly, monthly and bi-monthly data
respectively), for emerging and mature markets respectively. Looking at the
ratio scales in these Figures, we can clearly seen two main features; firstly, for
emerging markets, even bi-monthly return series, which are rebuilt from d3,
seem to carry information on crashes and events and this seems to imply that
emerging markets take up to two months to recover from a crash. Secondly,
for mature markets, the ratio in Figures 2(c and d) are meaningless because
the ratio scales are very big and this indicates that neither monthly nor bi-
monthly data, (rebuilt from d2 and d3 respectively), seem to have information
on crises and events implying that mature markets take less than a month
to recover from crashes.

To sum up, we would say that the results appear to indicate that mature
markets take action more quickly than emerging markets to recover from
crashes and also that mature markets exhibit anti-persistent behaviour while
emerging markets show persistent behaviour . In other words, the recovery
time from crisis for developed markets appears to be shorter than that for
developing ones.
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4 Discussion/Conclusion

The aims of this work were to study the distribution of the Largest (λ1)
and the Second Largest (λ2) eigenvalues of covariance matrices for emerging
and mature markets and also to study the distribution of the ratio of λ1

to λ2 for the original return series and for those reconstructed from wavelet
components (d1, d2 and d3). The summary of our results is as follows:

1. From studying the original return series, we found that differences exist
between emerging and mature markets in dealing with crashes (espe-
cially unexpected ones). For major markets, the ratio is high at three
points representing the 12th anniversary of the October 19 stock mar-
ket crash, 1999, the 9/11 crash, 2001 and Madrid Bomb, March, 2004
respectively. However, for emerging markets, the ratio is only high at
one point, representing the 9/11 crash, 2001.

2. Using the discrete wavelet transform to study the behaviour of
stock markets provides a clearer view on the structure and dynamics
of the data sets and gives us a good measurement of the recovery time
and direction of movements in these markets. It also indicates that
emerging markets take up to two months to recover from crashes while
mature ones take less than a month to do so.

3. Both λ1 and λ2 are needed to describe the behaviour of emerging mar-
kets while λ1 is adequate alone to describe the behaviour of mature
markets.

4. Mature markets move together in the same direction to deal with crises
and show little internal variation which suggests that cooperative be-
haviour applies both within and between such markets. In other words,
shareholders in these markets appear to have similar patterns of sell-
ing and buying shares. However, emerging markets show more internal
variation and thus demonstrate differing views of shareholders in these
markets which take different directions in dealing with crashes and un-
expected events.
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W.Crystals→ d1 d2 d3 d4 d5 d6 s6

Market↓
Argentina (Americas) 0.415 0.203 0.192 0.124 0.034 0.011 0.021
Brazil (Americas) 0.521 0.185 0.124 0.095 0.055 0.002 0.019
Ireland (Europe) 0.440 0.250 0.115 0.104 0.062 0.004 0.025
Korea (Asia) 0.583 0.207 0.076 0.070 0.021 0.020 0.022
Malaysia (Asia) 0.498 0.211 0.107 0.101 0.032 0.016 0.035
Mexico (Americas) 0.455 0.246 0.144 0.074 0.057 0.012 0.013
New Zealand (Pacific) 0.546 0.197 0.126 0.070 0.037 0.019 0.006
Norway (Europe) 0.469 0.247 0.109 0.076 0.059 0.022 0.018
Portugal (Europe) 0.461 0.190 0.136 0.084 0.079 0.020 0.030
Russia (Europe) 0.434 0.239 0.126 0.082 0.063 0.019 0.037
Singapore (Asia) 0.496 0.213 0.106 0.124 0.016 0.020 0.025
Taiwan (Asia) 0.465 0.308 0.106 0.051 0.043 0.009 0.019
Turkey (Middle East) 0.477 0.213 0.141 0.058 0.075 0.014 0.023

Table 1: Emerging Markets: Percentages of energy explained by wavelet
components for the original returns series.

W.Crystals→ d1 d2 d3 d4 d5 d6 s6

Market↓
Australia (Pacific) 0.499 0.226 0.168 0.055 0.038 0.010 0.005
Canada (Americas) 0.552 0.202 0.104 0.050 0.054 0.028 0.011
Denmark (Europe) 0.505 0.151 0.221 0.044 0.026 0.033 0.020
France (Europe) 0.546 0.231 0.103 0.055 0.025 0.019 0.022
German (Europe) 0.594 0.214 0.128 0.031 0.023 0.007 0.004
Hong Kong (Asia) 0.487 0.221 0.138 0.100 0.026 0.007 0.021
Italy (Europe) 0.511 0.220 0.146 0.060 0.030 0.014 0.019
Japan (Asia) 0.557 0.213 0.123 0.059 0.020 0.010 0.019
Netherlands (Europe) 0.390 0.418 0.064 0.091 0.010 0.018 0.008
Sweden (Europe) 0.518 0.201 0.133 0.063 0.036 0.026 0.023
Switzerland (Europe) 0.458 0.277 0.133 0.070 0.028 0.015 0.018
UK (Europe) 0.532 0.244 0.113 0.054 0.032 0.011 0.013
US (NASDEQ) (Americas) 0.531 0.233 0.121 0.051 0.023 0.008 0.034
US (S&P500) (Americas) 0.550 0.224 0.125 0.051 0.025 0.009 0.017

Table 2: Mature Markets: Percentages of energy explained by wavelet com-
ponents for the original returns series.
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Mark Window No. Last week included Events
a1 5 first week of 7/1997 Asian Crash
a2 23 second week of 11/1997 Asian Crash
a3 62 fourth week of 8/1998 Global Crash
a4 130 second week of 1/2000
a5 176 second week of 12/2000 Effects of DotCom Crash
a6 186 second week of 3/2001
a7 212 second week of 9/2001 September the 11th Crash
a8 227 fourth week of 1/2002

a: Emerging Markets.

Mark Window No. Last week included Events
b1 65 first week of 9/1998 Global Crash
b2 84 fourth week of 12/1998 Global Crash
b3 121 third week of 10/1999 Last October in 20th Century
b4 153 second week of 6/2000 DotCom Crash
b5 220 second week of 9/2001 September the 11th Crash
b6 225 first week of 11/2001 Effects of 9/11 Crash
b7 231 second week of 12/2001 Effects of 9/11 Crash
b8 259 first week of 5/2002 The Stock Market Downturn
b9 322 first week of 10/2003
b10 331 first week of 12/2003 General Threat Level Raised
b11 345 third week of 3/2004 Madrid Bomb

b: Mature Markets.

Table 3: Description of the marks in the Figures 3 (a and b)
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(a) Original Return series.
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(b) Return series rebuilt from first
wavelet crystal (d1).
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(c) Return series rebuilt from sec-
ond wavelet crystal (d2).
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(d) Return series rebuilt from third
wavelet crystal (d3).

Figure 1: Emerging Markets: The changes in ratio of Dominant
(λ1) to Subdominant (λ2) eigenvalues.
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(a) Original Return series.
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(b) Return series rebuilt from first
wavelet crystal (d1).
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(c) Return series rebuilt from second
wavelet crystal (d2).
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(d) Return series rebuilt from third
wavelet crystal (d3).

Figure 2: Mature Markets: The changes in ratio of Dominant (λ1)
to Subdominant (λ2) eigenvalues.
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(a) Original Return series for emerging markets.
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(b) Original Return series for mature markets.

Figure 3: The changes in ratio of the First Largest (λ1) to the
Third Largest (λ3) eigenvalues.
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(a) Original Return series for emerging markets.
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(b) Original Return series for mature markets.

Figure 4: The changes in ratio of the Second Largest (λ2) to the
Third Largest (λ3) eigenvalues.
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(a) Original Return series for emerging markets.
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(b) Original Return series for mature markets.

Figure 5: The changes in the Dominant (λ1) (upper line) and the
Subdominant (λ2) (lower line)eigenvalues.
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