
Recursive Circle Packing Problems

João Pedro Pedroso1,2 Śılvia Cunha1,3 João Nuno Tavares1,3

jpp@fc.up.pt silvia.cunha@fc.up.pt jntavar@fc.up.pt

Universidade do Porto - Faculdade de Ciências1

Rua Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

INESC Porto2

Rua Dr. Roberto Frias, 378, 4200-465 Porto, Portugal

Centro de Matemática da Universidade do Porto3

Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

July 2013

Abstract

This paper presents a class of packing problems where circles may be
placed either inside or outside other circles, the whole set being packed in
a rectangle. This corresponds to a practical problem of packing tubes in a
container; before being inserted in the container, tubes may be put inside
other tubes in a recursive fashion. A variant of the greedy randomized
adaptive search procedure is proposed for tackling this problem, and its
performance assessed in a set of benchmark instances.

1 Introduction

Recursive circle packing problems (RCPP) has its origins in the tube industry,
where shipping costs represent an important fraction of the total cost of product
delivery. Tubes are produced in a continuous extraction machine and cut to the
length of the container inside which they will be shipped. Before being placed
in the container they may be inserted inside other, thicker tubes, so that usage
of container space is maximized — a process named telescoping. As all the
tubes occupy the full container length, maximizing container load is equivalent
to maximizing the area filled with circles (or, more precisely, rings/annuli) in a
section of the container.

This problem is more general than circle packing, which is known to be
NP-complete (see, e.g., [14]). In this paper we propose a heuristic method for
tackling it, which has proved to be able to produce very good solutions for
practical purposes.

The main contributions of this paper are the following:

• Presentation and formalization of new, recursive circle packing problems;

1



• Development of a variant of the greedy randomized adaptive search pro-
cedure (GRASP) for tackling it;

• Selection of a set of interesting and challenging benchmark instances;

• Experimental analysis of the solution method proposed.

This paper is organized as follows: in Section 2 we present a summary of
the literature relevant to RCPP. We then formalize a description of the problem
in mathematical terms in Section 3, and present a method for tackling it in
Section 4. An experimental analysis of its performance is provided in Section 5,
and conclusions and directions for future research are drawn in Section 6.

2 Background

No previous references to recursive circle packing problems as described in this
paper could be found. However, the literature presents several problems with
similarities.

A non-technical, general overview of circle packing is presented in [15], in an
easy to read and captivating way. For an interesting and useful bibliographic
review article see [8], which surveys the most relevant literature on efficient mod-
els and methods for packing circular objects/items into regions in the Euclidean
plane; objects/items and regions considered are either 2- or 3-dimensional. A
survey of industrial applications of circle packing and of methods for their so-
lution, both exact and heuristic, is presented in [5].

The so-called strip packing problem, as well as the knapsack problem, is
solved in [13]. The first problem asks for a placement of unequal circles within
a rectangular strip of fixed width so that its variable length is minimized, while
the knapsack problem requires a packing of the circles in a fixed size rectangle.
They solve both problems using a greedy algorithm that enhance those used
in [10], and is tested in instances from [16]. A different approach has been
proposed in [18], where unequal circles are packed into a rectangular strip by
assuming radii of circles to be variables; the solution process involves decreasing
the problem’s dimension by fixing radii of some circles and rearranging certain
pairs of circles.

The problem of finding the smallest object within which a set of items can
be packed has been dealt with in [4], where circular, triangular, squared, rectan-
gular, and strip objects are considered both in 2 and in 3 dimensions. This work
presents twice-differentiable models for these problems, allowing the solution of
instances with a large number of items.

A model for the problem of packing both circles and non-oriented non-convex
polygons with rotations into a multiply connected region is presented in [19],
where an approximation to a global minimum is obtained by means of a spe-
cialized, non-exhaustive search of local minima.

Cutting is a problem often associated to packing; nonlinear programming
models for cutting circles from rectangular plates, and techniques to solve them
are described in [12].

Nonlinear programming models for packing identical circular items in ellip-
tical objects are presented in [1], where multistart strategies are used in connec-
tion to nonlinear programming solvers for searching a global solution. Packing

2



of identical circles within triangles, rectangles and strips is dealt with in [2],
with the aim of minimizing the containers’ dimensions. Models and a solution
method for packing identical circles into a circle with circular prohibited areas
have been presented in [17].

In [10] the authors use a greedy algorithm to pack unequal circles into a
rectangle. To place the next circle, they use a performance measure called hole
degree, which indicates how close this circle is accommodated between the other
already placed circles and the rectangle’s sides. This algorithm is easily adapted
if, instead of in a rectangle, circles are packed inside a larger circle, as proposed
by the same authors in [11]. These papers also describe the basic placement
heuristics considered in the current work, except for telescoping.

In [7] the authors study the problem of fitting circles of different sizes into
a rectangle, which is formulated as a nonlinear mixed integer programming
problem; the authors also develop a number of heuristic procedures for solving
it. The best performing heuristic methods were a quasi-random technique and
a genetic algorithm using the concept of stable solution structure.

A simulated annealing method for solving unconstrained and constrained
circular cutting problems has been presented in [9]; the approach used is based
upon an energy function that, when its value is minimized, leads to solutions
composed by a set of pieces concentrated at the bottom-left corner of the initial
rectangle.

Typologies of circle and other packing problems can be found, e.g., in [9]
and [20]. Despite the similarities of some of the classes with the problem we are
dealing with, its recursive nature seems to be appearing here for the first time.

3 Problem statement

3.1 The base model

In the base model, A tubes are available for packing in a container of width W
and height H, in such a way that the value of the packing is maximum. Let
A = {1, . . . , A} be the index set of the tubes; each tube i ∈ A is characterized
by an external radius rexti and an internal radius rinti , and may be placed in the
container or not. For describing a solution we will use:

• binary variables wi for all i ∈ A, where wi = 1 if tube i is placed directly
inside the container, wi = 0 otherwise;

• binary variables uki for k, i ∈ A such that rintk ≥ rexti , where uki = 1 if
tube i is placed directly inside tube k, uki = 0 otherwise (only required if
rintk ≥ rexti ; other pairs (k, i) are not excluded for facilitating notation);

• position variables (xi, yi) of the center of each tube i, for all i ∈ A (only
relevant if i is placed).

The constraints are the following. Each loaded tube is placed within the
bounds of a container, which we assume to be a rectangle with vertices (0, 0),

3



(W, 0), (0, H) and (W,H):

xi − rexti ≥ 0, ∀i ∈ A, (1)

yi − rexti ≥ 0, ∀i ∈ A, (2)

xi + rexti ≤W, ∀i ∈ A, (3)

yi + rexti ≤ H, ∀i ∈ A. (4)

Loaded tubes may be placed either directly in the container or inside other
tubes:

wi +
∑
k

uki ≤ 1, ∀i ∈ A. (5)

For each pair of tubes (i, j) directly placed in the container, the distance between
them must be larger than the sum of their external radii:√

(xi − xj)2 + (yi − yj)2 ≥ (rexti + rextj )(wi + wj − 1), ∀i, j ∈ A. (6)

Notice that this constraint is nonredundant if and only if wi = wj = 1. The
same constraint must be observed for each pair of tubes (i, j) directly placed
inside the same tube k:√

(xi − xj)2 + (yi − yj)2 ≥ (rexti + rextj )(uki + ukj − 1), ∀i, j, k ∈ A. (7)

If tube i is placed directly in tube k, their centers must be close enough for i to
remain completely inside k:√

(xk − xi)2 + (yk − yi)2 ≤ rintk − rexti + M(1− uki), ∀i, k ∈ A. (8)

Recall that only pairs (k, i) such that rintk ≥ rexti (i.e., k is large enough to
contain i) are considered. The constant M is large enough to make each of this
constraint redundant if uki is zero, but for efficiency should be no larger. The
farthest positions for k and i are touching opposite corners in the rectangle;
hence we can set M =

√
(H − rexti − rextk )2 + (W − rexti − rextk )2.

Thus, constraints (6), (7), and (8) assure feasibility concerning the relative
position of the tubes. Notice that these constraints may be squared, in order
to preserve differentiability; this would be important for tackling the problem
with general purpose nonlinear solvers, in line with what has been done in [3].

The objective of this problem is to maximize the value of the packing, i.e.,
the sum of a user-defined value vi for loaded tubes:

maximize V =
∑
i∈A

vi

(
wi +

∑
k∈A

uki

)
. (9)

3.2 Model for minimization of the number of containers

The previous model considers that every tube may be packed or not; let us
now turn to the case where there are N tubes that must be packed, and let
N = {1, . . . , N} be their index set. It is assumed that C identical containers
with width W and height H is available, and their index set is denoted by
C = {1, . . . , C}.

We now need the following variables:

4



• instead of wi, binary variables w′ci for all c ∈ C, i ∈ N , where w′ci = 1 if
tube i is placed directly inside container c, w′ci = 0 otherwise;

• binary variables zc = 1 if container c is used, zc = 0 otherwise, for all
c ∈ C.

Constraints (1) to (4), (7), and (8) must be now verified for all i ∈ N . Con-
straints (5) are replaced by:∑

c∈C
w′ci +

∑
k∈N

uki = 1, ∀i ∈ N , (10)

imposing that every tube must be put either in a container or in another tube,
and replacing (6) by:√

(xi − xj)2 + (yi − yj)2 ≥ (rexti + rextj )(w′ci + w′cj − 1), ∀i, j ∈ N ,∀c ∈ C.
(11)

Additional constraints assert that all containers with tubes inside are counted:

zc ≥ w′ci ∀c ∈ C,∀i ∈ N , (12)

For reducing symmetry, one may additionally impose low indices for the open
containers:

zc ≤ zc−1 for c = 2, . . . , C. (13)

The objective is now to minimize the number of containers, i.e.:

minimize C =
∑
c∈C

zc. (14)

This model can be extended to the case of non-identical containers by con-
sidering modified versions of (3) and (4); e.g., (4) becomes yi+rexti ≤

∑
c Hcw

′
ci,

where Hc is the height of container c. In this case constraints (13) do not ap-
ply, and the objective is to minimize

∑
c fczc, where fc is the cost of using

container c.

3.3 Model for maximization of load value

A variant of the problem which is more relevant in many situations is that of
maximizing container load. It can be stated as follows: determine the minimum
number of containers for dispatching N required tubes; then, given A additional,
non-required tubes, insert a selection of them so that the value sent in the
required containers’ space is maximum.

The procedure can be summarized in two steps:

1. Determine the minimum number of containers C∗ necessary for delivering
required tubes, using the model of Section 3.2;

2. Maximize the value for non-required tubes that are loaded in these con-
tainers.

5



We will focus on the solution of the second step, which is carried out after having
solved the model of Section 3.2. The index sets are now C∗ = {1, . . . , C∗}
for required containers, N = {1, . . . , N} for required tubes, and A = {N +
1, . . . , N + A} for non-required tubes; variables w′ci and uki, for c ∈ C∗ and
k, i ∈ N ∪A, have the same meaning as before.

The objective for this model is:

maximize V =
∑
i∈A

va

(∑
c∈C∗

w′ci +
∑

k∈N∪A

uki

)
(15)

subject to constraints (1) to (4), (7), (8), (11) and (12), which must be verified
for all i, j ∈ N ∪A; constraint (10) is replaced by:∑

c∈C
w′ci +

∑
k∈N∪A

uki = 1, ∀i ∈ N , (16)∑
c∈C

w′ci +
∑

k∈N∪A

uki ≤ 1, ∀i ∈ A. (17)

Due to its practical significance, this is the model tackled in this paper.

3.4 Limitations and practical issues

The main limitation of the previous models concerns the quadratic number of
variables uki that model whether tube i is placed within tube k or not. This
is likely to interdict the use of general purpose nonlinear integer optimization
solvers for tackling the problem.

Several practical issues have been omitted in the problem description, for the
sake of clarity. Besides space occupation, containers also have a weight limit
which cannot be exceeded. Some tubes have limited robustness, and load placed
above them is limited. Good practical solutions have a low center of gravity,
i.e., heavier tubes are placed in the bottom of the container. In many situations
tubes have sockets, making them thicker in one of the extremities; in this case
a section of the container is no longer enough to represent a solution.

Optimal solutions are not necessarily practical. The position of certain tubes
may be awkward in what concerns container loading, for example if tubes in
lower layers are not in a stable, fixed position at the time of loading upper layers.
In practice, the decision maker wants to have a set of solutions and intuitively
choose one that is easy to implement and satisfactory in terms of space usage.

4 Solution method

4.1 Placement heuristics

As an approximative way of tackling this problem we propose that, when pack-
ing a tube (i.e., a ring) in the rectangular container, this tube is telescoped with
other thinner tubes. Telescoping is done in a recursive fashion, i.e., any tube
placed inside may itself be filled with available thinner tubes; this is recursively
attempted until having no candidates that can be inserted. After telescoping is
completed, the outer tube (hence, possibly with other tubes inside) is inserted

6



in the container; this corresponds to the more usual problem of packing un-
equal circles into a rectangular container. The telescoping phase is presented in
Algorithm 1, and packing in the rectangular container in Algorithm 2.

Algorithm 1: Recursive tube packing in a tube (telescoping).
Input: Outer tube t, set of available tubes L; each tube is characterized by its
inner and outer diameter.
Output: Set of tubes inserted in t; for each of them, the (recursive) set of tubes
placed inside, and the coordinates of theirs centers.
Telescope(t,L)
(1) let I := {t} ←set of telescoped tubes
(2) foreach s ∈ L ←tubes are assessed by decreasing outer diameter
(3) if s can be placed inside t:
(4) let L := L\{s}
(5) let I := I ∪ Telescope(s, L) ←recursive call
(6) return I

After the telescoping phase is completed on an outer tube, the output is
given as input to the packing procedure; this means that the circles that will
be packed in each rectangle may have other, smaller circles packed inside (see
Figure 4).

Algorithm 2: Packing circles in a rectangular container.
Input: Set of tubes to be packed L; dimensions of the rectangular container.
Output: Set of tubes packed; coordinates of their centers.
RectanglePacking(L)
(1) let C := {} ←start with empty container
(2) foreach t ∈ L ←tubes are assessed by decreasing outer diameter
(3) if t can be placed inside the container:
(4) let L := L\{t}
(5) let C := C ∪ Telescope(t, L)
(6) set t’s position to the lowest, leftmost position available
(7) return C

In the two previous algorithms the basic tool for choosing a place for a
circle is a point where it is tangent to two other objects (the exception is the
first circle being packed inside a circle; this is placed in the bottom, as shown
in Figure 1). Possible points for placing a circle tangent to two objects are
presented in figures 1 and 2.

Figure 1: Possibilities of circle packing inside another circle (telescoping): posi-
tioning possibilities given previously placed, fixed circles (in black).

A heuristics for positioning a circle consists of choosing the lowest ordinate
among the possible positions for each circle, and for tie-breaking selecting the

7



Figure 2: Circle packing inside a rectangle: positioning possibilities given pre-
viously placed, fixed circles (in black).

leftmost among positions with the same (lowest) ordinate. These tools specify a
greedy procedure for obtaining solutions for the container minimization version
of the RCPP: sequentially create new containers for packing tubes, inserting
in each of them telescoped tubes, until the list of tubes remaining unpacked is
empty.

As for the load maximization version, the procedure is adapted in the follow-
ing way: after packing a container with required tubes, the container and the
tubes within are filled up with non-required tubes, again in a greedy fashion.
This is done starting from the most valuable non-required tube, and attempted
until no additional tube can be inserted without overlap, or until the list of
non-required tubes is empty. New containers are opened only as long as there
are unpacked required tubes.

4.2 Local search

Local search in combinatorial optimization allows improving a solution by search-
ing among its neighbors until reaching a local optimum, i.e., a solution with no
neighbors better than itself. Neighbors are solutions which share most of the
structure with the incumbent solution.

If the neighborhood is not carefully designed, changes to the solution pro-
vided by the previous construction methods—as occasioned by a local search
procedure—may be rather difficult to compute, as they may induce a chain of
circle overlaps. In order to keep the algorithms simple and avoid dealing with
infeasible solutions, we have used the following local search procedure: for each
tube, attempt changing its placement into a lower position not originating over-
lap1. As local search may require a substantial amount of CPU time, it is only
done on solutions that improve the best found so far.

4.3 Semi-greedy construction and improvement

Greedy construction has the advantage of producing solutions very quickly, and
in a very orderly manner. These characteristics are very highly valued in prac-
tice, but the quality of greedy solutions may be rather limited. In order to
overcome this problem, one straightforward strategy consists of allowing more
than one place to be considered as candidate positions for each tube — bor-
rowing ideas from semi-greedy construction in GRASP metaheuristics (for an

1This is particularly important in practical situations, where load weight must be consid-
ered and solutions with a low center of gravity are preferred.

8



introduction to GRASP see, e.g., [6]). The steps for doing this, one container
at a time, are sketched in Algorithm 3.

Algorithm 3: Semi-greedy construction and improvement.
Input: Number of iterations T ; remaining tubes (R required, A non-required).
Output: Set of tubes used in this packing; coordinates of their centers.
(1) let c∗ := greedy solution from tubes in R
(2) while R not empty:
(3) complete c∗ greedily with items removed from R
(4) let L := list of tubes in c∗

(5) add next tube from R to L
(6) for 1 to T
(7) use Algorithm 2 for packing L, excepting:
(8) for each tube, determine a list C of candidate positions
(9) choose its position randomly from C
(10) construct solution c′ with these steps
(11) if all tubes in L were packed into c′:
(12) execute a local search descent on c′

(13) let c∗ := c′

(14) update R
(15) continue from step (2)
(16) break
(17) (repeat steps (2) to (16) with list A instead of R)
(18) return set of tubes inside c∗ and their positions

In step (8) of Algorithm 3 a so-called restricted candidate list C of the best
placement positions is prepared for each tube; the actual position in the current
construction is chosen randomly from this list. For the RCPP, the number of
potential positions for a tube is rather difficult to estimate; instead of limiting
the size of the restricted candidate list, it is preferable to keep all the feasi-
ble candidates, sort the list according to the placement heuristics, and then
randomly chose an item with decreasing probability with respect to its rank.

Using this randomized greedy procedure, steps (7) to (10) attempt to insert
the current set of tubes L in one container. If this is successful, a new item
is added to the list of tubes to be inserted, in step (5), and the process is
repeated. When in T iterations the list of tubes could not be put in a container,
the current found solution is accepted. Semi-greedy filling of the container with
an increasing number of non-required tubes is then attempted, using the same
steps. The current usage of Algorithm 2 in step (7) may make use of semi-
greedy placement of tubes inside tubes, as is being done for placing tubes in the
container. This has been attempted, but for the instances considered success
was limited; therefore, recursive packing in tubes is done in a purely greedy
fashion2.

As the number T of attempted solutions increases, the quality of the best
found solution tends to improve; T must be set according to the time available
and the speed of the computer being used.

Note that even though this algorithm was designed with the load maximiza-
tion version of the problem in view, it can be used for the container minimization
version in a straightforward way by setting A to an empty list.

2For instances allowing a large number of tubes inside other tubes, semi-greedy recursive
packing in tubes is likely to be worthy.

9



4.4 The complete solution method

The complete solution method can now be summarized in Algorithm 4. As men-
tioned, it can be classified as a variant of GRASP; the main idea is to construct
a complete solution sequentially, one container at a time. In each iteration of
the main cycle, items remaining in the lists of required and non-required tubes
are used for calling Algorithm 3 and filling an additional container. The lists
of remaining required and non-required tubes is then updated. This cycle is
repeated until there are no more required tubes. The solution returned consists
of the set or containers obtained, each of which characterized by the set of tubes
inside it and their positions.

Algorithm 4: GRASP for recursive circle packing.
Input: Number of iterations T ; lists of required (R) and non-required (A) tubes.
Output: Set of containers; set of tubes in each container and its coordinates.
(1) let C := set of containers (initially empty)
(2) while R not empty:
(3) let c := semi-greedy construction with R,A, T
(4) remove tubes inserted in c from R,A
(5) let C := C ∪ {c}
(6) return C

Practical instances of this problem have many identical items. When the
number of containers is large, some of them are typically an exact copy of their
predecessor. For speeding up the algorithm in this case, before attempting semi-
greedy construction of a container’s contents, it is checked if there are enough
remaining items to fill it exactly like its predecessor; if so, the predecessor’s
configuration is accepted for the current container.

4.5 Optimality

One question that may be asked about the proposed solution method concerns
its convergence to optimality in case the number of construction iterations is
unlimited. The answer is negative; indeed, in examples as the one shown in
Figure 3 the sequential placement of circles is not on positions where they touch
two other objects. Small and middle tubes in the central-top and bottom posi-
tions hinder the movement of large tubes. Such a solution cannot be found by
the methods proposed in this paper.

Figure 3: A solution that cannot be found by the proposed methods.

10



5 Computational results

In order to assess the quality of the methods proposed, we performed a computa-
tional experiment using instances similar to those found in an industrial setting.
The methods were extensively tested on a set of 9 challenging instances, divided
into three groups, each characterized by the number of different tubes. For each
group, the first (smallest) instance has been found in situations where a greedy
solution was not satisfactory: the set of required tubes can be loaded in one
container, but the greedy solution uses two. The remaining instances of each
group are obtained multiplying the number of required tubes by 10 and 100 —
hence leading to an expected approximate number of containers of 10 and 100,
respectively3.

The first group of instances, s03i1, s03i2, s03i3, corresponds to tubes of
three different sizes; group s05i1, s05i2, s05i3 has 5 different tube sizes, and
the third group, s16i1, s16i2, s16i3, consists of instances with 16 different
tube sizes.

Greedy GRASP
worst median best average

Instance C V CPU C V C V C V CPU

s03i1 2 407 0.45 1 20 1 23 1 29 14.
s03i2 11 570 1.5 10 204 10 252 10 300 215.
s03i3 103 3031 23. 98 1807 96 930 95 1034 323.
s05i1 2 532 0.40 1 38 1 41 1 43 11.
s05i2 11 838 1.7 10 435 10 440 10 445 338.
s05i3 101 4188 15. 99 3858 99 3955 98 3577 465.
s16i1 2 5069 1.3 1 922 1 942 1 966 25.
s16i2 10 9616 4.4 10 9450 10 9598 10 9664 1084.
s16i3 98 88062 78. 97 83525 96 79641 96 80613 2773.

Table 1: Number of containers required (C), value or non-required tubes in-
serted (V ), and CPU time (s) used for each of the test instances, as obtained
by greedy construction and by the GRASP metaheuristics (for the latter, min-
imum, median, and maximum values on 25 independent observations).

Results obtained in an ordinary, recent desktop computer are presented in
Table 1. The number of constructions attempted in GRASP was T = 10000.
Programs were developed in the Python programming language; though the
implementation was careful, there is still room for improvement. Nevertheless,
the CPU time required even for large instances is acceptable in practice. The
quality of the GRASP solution is in general much superior to that of a purely
greedy solution. For the small instances, a visualization of the solutions is
provided in Figure 4.

3Instance data and the programs implemented are available in http://www.dcc.fc.up.pt/

~jpp/code/occ.

11



greedy C=2 V=407.0 (c1, v1=23.0) greedy C=2 V=407.0 (c2, v2=384.0) grasp C=1 V=23.0 (c1, v1=23.0)

greedy C=2 V=532.0 (c1, v1=42.0) greedy C=2 V=532.0 (c2, v2=490.0) grasp C=1 V=41.0 (c1, v1=41.0)

greedy C=2 V=5069.0 (c1, v1=969.0) greedy C=2 V=5069.0 (c2, v2=4100.0) grasp C=1 V=942.0 (c1, v1=942.0)

Figure 4: Plots of solutions obtained with greedy construction (left and center)
and with GRASP (median of solutions obtained in 25 independent observations,
right) for the small instances: s03i1 (top), s05i1 (center) and s16i1 (bottom).
Required tubes are plotted in black, non-required ones in gray.

12



6 Conclusions

This paper presents recursive circle packing problems, which are hard combi-
natorial optimization problems with direct application in the tube industry.
Variants of the problem are formulated as mathematical optimization, disjunc-
tive programming model. A greedy method for obtaining heuristic solutions
is proposed for the most relevant variant, occurring in a particular industrial
setting. This method is extended for including a random component, allow-
ing repeated, semi-greedy solution construction, borrowing ideas from GRASP
metaheuristics.

Experimental results show that the methods have practical relevance. As
this problem is, to the best of our knowledge, presented here for the first time,
a set of benchmark instances is suggested for comparing the proposed approach
with other methods.

In terms of future research, there are two directions worthy further investi-
gation: one is tackling more realistic versions of the problem (e.g., considering
weights and tubes with sockets); another is theoretical work on the base model,
i.e., packing a subset of tubes with maximum value in a single container.

Acknowledgments

This work was partially supported by FEDER, QREN e Compete, within project
OCC: Optimizador de Carga em Contentores, QREN SII&DT Projeto em Co-
Promoção 13824, and includes contributions from its research team. We would
like to thank in particular Eng. Jorge Leite, from Fersil, Portugal, for his valu-
able insights. We would also like to thank two anonymous reviewers for their
constructive comments on a previous version of this paper.

Partial support from project “NORTE-07-0124-FEDER-000057”, under the
North Portugal Regional Operational Programme (ON.2 O Novo Norte) and
the National Strategic Reference Framework through the European Regional
Development Fund, and by national funds through Fundação para a Ciência e
a Tecnologia (FCT) is also acknowledged.

References

[1] E. G. Birgin, L. H. Bustamante, H. F. Callisaya, and J. M. Mart́ınez.
Packing circles within ellipses. International Transactions in Operational
Research, 20(3):365–389, 2013.

[2] E. G. Birgin and J. M. Gentil. New and improved results for packing identi-
cal unitary radius circles within triangles, rectangles and strips. Computers
& Operations Research, 37(7):1318–1327, July 2010.

[3] E. G. Birgin, J. Mart́ınez, and D. Ronconi. Optimizing the packing of
cylinders into a rectangular container: A nonlinear approach. European
Journal of Operational Research, 160(1):19–33, 2005.

[4] E. G. Birgin and F. N. C. Sobral. Minimizing the object dimensions in
circle and sphere packing problems. Computers and Operations Research,
35(7):2357–2375, July 2008.

13



[5] I. Castillo, F. J. Kampas, and J. D. Pintér. Solving circle packing prob-
lems by global optimization: Numerical results and industrial applications.
European Journal of Operational Research, 191(3):786–802, 2008.

[6] T. Feo and M. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109–133, 1995.

[7] J. A. George, J. M. George, and B. W. Lamar. Packing different-sized circles
into a rectangular container. European Journal of Operational Research,
84(3):693–712, 1995.

[8] M. Hifi and R. M’Hallah. A Literature Review on Circle and Sphere Packing
Problems: Models and Methodologies. Advances in Operations Research,
2009(4):1–22, 2009.

[9] M. Hifi, V. T. Paschos, and V. Zissimopoulos. A simulated annealing ap-
proach for the circular cutting problem. European Journal of Operational
Research, 159(2):430–448, Dec. 2004.

[10] W. Huang, Y. Li, H. Akeb, and C. Li. Greedy algorithms for packing
unequal circles into a rectangular container. Journal Of The Operational
Research Society, 56(5):539–548, 2004.

[11] W. Huang, Y. Li, C. M. Li, and R. C. Xu. New heuristics for packing un-
equal circles into a circular container. Computers and Operations Research,
33(8):2125–2142, Aug. 2006.

[12] J. Kallrath. Cutting circles and polygons from area-minimizing rectangles.
Journal of Global Optimization, 43(2-3):299–328, 2009.

[13] T. Kubach, A. Bortfeldt, and H. Gehring. Parallel greedy algorithms for
packing unequal circles into a strip or a rectangle. Central European Journal
of Operations Research, 17(4):461–477, July 2009.

[14] J. Lenstra and A. Rinnooy Kan. Complexity of packing, covering, and
partitioning problems. In A. Schrijver, editor, Packing and Covering in
Combinatorics, pages 275–291. Mathematisch Centrum, Amsterdam, 1979.

[15] K. Stephenson. Circle packing: a mathematical tale. Notices of the Amer-
ican Mathematical Society, 50(11):1376–1388, 2003.

[16] Y. G. Stoyan and G. Yaskov. A mathematical model and a solution method
for the problem of placing various-sized circles into a strip. European Jour-
nal of Operational Research, 156(3):590–600, Aug. 2004.

[17] Y. G. Stoyan and G. Yaskov. Packing equal circles into a circle with cir-
cular prohibited areas. International Journal of Computer Mathematics,
89(10):1355–1369, 2012.

[18] Y. G. Stoyan and G. Yaskov. Packing unequal circles into a strip of minimal
length with a jump algorithm. Optimization Letters, pages 1–22, 2013.

[19] Y. G. Stoyan, M. V. Zlotnik, and A. M. Chugay. Solving an optimization
packing problem of circles and non-convex polygons with rotations into a
multiply connected region. Journal Of The Operational Research Society,
63(3):379–391, 03 2012.

14



[20] G. Wäscher, H. Haußner, and H. Schumann. An improved typology of
cutting and packing problems. European Journal of Operational Research,
183(3):1109–1130, Dec. 2007.

15


