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ABSTRACT

We present a personal perspective, inspired by our own research experience, of the
interaction between group theory and automata theory: from Benois’ Theorem to
Stallings’ automata, from hyperbolic to automatic groups, not forgetting the exotic
automaton groups.

1 Introduction

Among abstract structures, it is groups which model the idea of symmetry in Mathemat-
ics. Moreover, the existence of inverses makes them a natural model for reversibility in
theoretical computer science (see [39] for a model for partial reversibility). At the present
time, when quantum computation gives its first steps (note than in quantum mechanics
transformations are always assumed reversible), it is appropriate to make the history of
the interaction between group theory and automata theory, undoubtedly the branch of
theoretical computer science which has been playing the major role in the development of
combinatorial and geometric group theory.

We intend this text to be a brief and light account of these interactions, under a personal
perspective which emerged from our own work on the subject, and relating to our talk at
DCFS 2012. We therefore chose to leave out finite groups (and the connections with group
languages), being out of our own experience. Anyway, such connections are well known in
theoretical computer science and can be easily found in the literature on finite automata
[8, 33].

A deeper and more extended survey on the interactions groups/automata can be found
out in two Handbook chapters written by Bartholdi and the author [4, 5].

We shall pay special attention to free groups: we introduce them in Section 2, discuss
language-theoretic concepts in Section 3 and the representation of finitely generated sub-
groups by automata in Section 4. We shall also explain the role played by automata in
the study of three important classes of groups: hyperbolic groups in Section 5, automatic
groups in Section 6 and automaton groups (also known as self-similar groups) in Section 7.
In Section 8, we present an example of our recent research combining automata-theoretic
and group-theoretic results.
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We assume the reader to be familiar with the basic concepts of language theory and
automata theory, and to know the most basic definitions of group theory. Throughout the
whole paper, we assume alphabets to be finite.

2 Free groups

We start by introducing free groups. Informally, the free group on A is supposed to be the
most general group FA we can generate from a given set A, in the sense that every other
group generated by A turns out to be a quotient of FA. Hence free groups play pretty much
in the context of groups the same role that free monoids play in the context of monoids.

We present now the formal definition. Given an alphabet A, we denote by A−1 a set
of formal inverses of A. We write Ã = A ∪ A−1 and (a−1)−1 = a for every a ∈ A. The
free group on A, denoted by FA, is the quotient of Ã∗ by the congruence generated by the
relation

RA = {(aa−1, 1) | a ∈ Ã}.

Thus two words u, v ∈ Ã∗ are equivalent in FA if and only if one can be transformed into
the other by successively inserting/deleting factors of the form aa−1 (a ∈ Ã). We denote
by θ : Ã∗ → FA the canonical morphism.

We recall that a (finite) rewriting system on A is a (finite) subset R of A∗ ×A∗. Given
u, v ∈ A∗, we write u−→Rv if there exist (r, s) ∈ R and x, y ∈ A∗ such that u = xry and
v = xsy. The reflexive and transitive closure of −→R is denoted by −→∗R.

We say that R is:

• length-reducing if |r| > |s| for every (r, s) ∈ R;

• confluent if, whenever u−→∗Rv and u−→∗Rw, there exists some z ∈ A∗ such that
v−→∗Rz and w−→∗Rz.

A word u ∈ A∗ is an irreducible if no v ∈ A∗ satisfies u−→Rv. We denote by IrrR the set
of all irreducible words in A∗ with respect to R.

If R is symmetric, then τ = −→∗R is a congruence on A∗ and we can say that the pair
〈A | R〉 constitutes a (monoid) presentation, defining the monoid A∗/τ .

If we view RA as a rewriting system on Ã, then it turns out to be both length-reducing
and confluent, and so, for every g ∈ FA, gθ−1 contains a unique irreducible word, denoted
by g (see [9]). We write also u = uθ for every u ∈ Ã∗. Note that the equivalence uθ =
vθ ⇔ u = v holds for all u, v ∈ Ã∗, providing the usual solution for the word problem
of a free group (deciding whether two words on the generators represent the same element
of the group). Thus the elements of a free group can be efficiently described as irreducible
words.

We denote by
RA = Ã∗ \ (∪

a∈ eA Ã∗aa−1Ã∗)

the set of all irreducible words in Ã∗ for the rewriting system RA. Clearly, RA is a rational
language.
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3 Language theory for groups

If we follow Berstel’s general approach to language theory [8], rational and recognizable
emerge as two of the most important basic concepts. In this context, recognizable refers to
finite syntactic monoids or recognizability by finite monoids. Of course, both concepts co-
incide for free monoids (Kleene’s Thorem [8, Theorem I.4.1]) but nor for arbitrary monoids.
Given a monoid M , we denote by RatM (respectively RecM) the set of all rational (re-
spectively recognizable) subsets of M .

To understand the situation in the context of groups, we need the following classical
result of Anisimov and Seifert:
Proposition 3.1 [8, Theorem III.2.7] Let H be a subgroup of a group G. Then H ∈ RatG
if and only if H is finitely generated.

The analogous result for recognizable is part of the folklore of the theory. We recall that
a subgroup H of G has finite index if G is a finite union of cosets Hg (g ∈ G).
Proposition 3.2 Let H be a subgroup of a group G. Then H ∈ RecG if and only if H
has finite index in G.

Since the trivial subgroup has finite index in G if and only if G is finite, it follows that
RatG = RecG if and only if G is finite. In general, these two classes fail most nontrivial
closure properties. However, free groups present a much better case, due to the seminal
Benois’ Theorem:
Theorem 3.3 [7]

(i) If L ∈ Rat Ã∗, then L ∈ Rat Ã∗ and can be effectively constructed from L.

(ii) If X ⊆ FA, then X ∈ RatG if and only if X ∈ Rat Ã∗.

The proof consists essentially on successively adding edges labelled by the empty word to
an automaton recognizing L (whenever a path is labelled by aa−1 (a ∈ Ã)) and intersecting
in the end the corresponding language with the rational language RA.

◦
b "" a //

1
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oo // •
a
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b−1
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a
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//

L L

The following result summarizes some of the most direct consequences of Benois’ The-
orem:
Corollary 3.4 (i) Every X ∈ RatFA is recursive.

(ii) RatFA is closed under the boolean operations.
We remark that Theorem 3.3 has been successively adapted to groups/monoids de-

fined by more general classes of rewriting systems, the most general versions being due to
Sénizergues [35, 36].
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Since FA is a finitely generated monoid, it follows that every recognizable subset of FA
is rational [8, Proposition III.2.4]. The problem of deciding which rational subsets of FA are
recognizable was first solved by Sénizergues [36]. A shorter alternative proof was presented
by the author in [38], where a third alternative proof, of a more combinatorial nature, was
also given.

These results are also related to the Sakarovitch conjecture [33], solved in [36] (see also
[38]), which states that every rational subset of FA must be either recognizable or disjunctive
(it has trivial syntactic congruence).

The quest for groups G such that RatG enjoys good properties has spread over the
years to wider classes of groups. An important case is given by virtually free groups, i.e.
groups having a free subgroup of finite index, as remarked by Grunschlag [21]. In fact, in
view of Nielsen’s Theorem, this free subgroup can be assumed to be normal [27]. Virtually
free groups will keep making unexpected appearances throughout this paper.

Another important case is given by free partially abelian groups (the group-theoretic
version of trace monoids). Lohrey and Steinberg proved in [26] that the recursiveness of the
rational subsets depends on the independence graph being a transitive forest.

A different idea of relating groups and language theory involves the classification of the
set 1π−1 ⊆ Ã∗ which collects all the words representing the identity for a given matched
surjective homomorphism π : Ã∗ → G (matched in the sense that a−1π = (aπ)−1 for every
a ∈ A). Clearly, 1π−1 determines the structure of G, and it is a simple exercise to show
that 1π−1 is rational if and only if G is finite. What about higher classes in the Chomsky’s
hierarchy? The celebrated theorem proved by Muller and Schupp (with a contribution from
Dunwoody) states the following:
Theorem 3.5 [30, 10] Let π : Ã∗ → G be a matched homomorphism onto a group G. Then
1π−1 is a context-free language if and only if G is virtually free.

4 Stallings automata

Finite automata became over the years the standard representation of finitely generated
subgroups H of a free group FA. The Stallings construction constitutes a simple and efficient
algorithm for building an automaton S(H) which can be used for solving the membership
problem for H in FA and many other applications. Many features of S(H), which has a
geometric interpretation (the core of the Schreier graph of H) were (re)discovered over the
years and were known to Reidemeister, Schreier, and particularly Serre [37]. One of the
greatest contributions of Stallings [43] is certainly the algorithm to construct S(H): taking
a finite set of generators h1, . . . , hm of H in reduced form, we start with the so-called flower
automaton F(H), where petals labelled by the words hi (and their inverse edges) are glued
to a basepoint q0 (both initial and terminal vertex):

•
h1

00

h2

��

hm

PP
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Then we proceed by successively folding pairs of edges of the form q
a←−p a−→r until reaching

a deterministic automaton. And we will have just built S(H). For details and applications
of the Stallings construction, see [4, 24, 29].

The geometric interpretation of S(H) shows that its construction is independent of the
finite set of generators of H chosen at the beginning, and of the particular sequence of
foldings followed. And the membership problem is a consequence of the following result:
Theorem 4.1 [43] Let H be a finitely generated subgroup of FA and let u ∈ RA. Then u
represents an element of H if and only if u ∈ L(S(H)).

The main reason for this is that any irreducible word representing an element of H
can be obtained by successively cancelling factors aa−1 in a word accepted by the flower
automaton of H, and folding edges is a geometric realization of such cancellations.

For instance, taking H = 〈aba−1, aba2〉, we get

◦ a // • oo //

a
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@@

@@
@@
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��
◦

a

;;wwwwwwwww ◦
b
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b

oo ◦
a

ccGGGGGGGGG b
pp

F(H) S(H)

We can then deduce that a3 represents an element of H but a4 does not.
The applications of Stallings automata to the algorithmics of finitely generated sub-

groups of a free group are immense. One of the most important is the construction of a
basis for H (a free group itself by Nielsen’s Theorem) using a spanning tree of S(H).

The following result illustrates how automata-theoretic properties of S(H) can deter-
mine group-theoretic properties of H:
Proposition 4.2 [43] Let H be a finitely generated subgroup of FA. Then H is a finite
index subgroup of FA if and only if S(H) is a complete automaton.

Note that Stallings automata constitute examples of inverse automata: they are deter-
ministic, trim and (p, a, q) is an edge if and only if (q, a−1, p) is an edge. Inverse automata
play a major role in the geometric theories of groups and, more generally, inverse monoids
[44].

The Stallings construction invites naturally generalizations for further classes of groups.
For instance, an elegant geometric construction of Stallings type automata was achieved for
amalgams of finite groups by Markus-Epstein [28]. On the other hand, the most general
results were obtained by Kapovich, Weidmann and Miasnikov [25], but the complex algo-
rithms were designed essentially to solve the generalized word problem, and it seems very
hard to extend other features of the free group case, either geometric or algorithmic. In joint
work with Soler-Escrivà and Ventura [41], the author developed a new idea: restricting the
type of irreducible words used to represent elements (leading to the concept of Stallings sec-
tion), find out which groups admit a representation of finitely generated subgroups by finite
automata obtained through edge folding from some sort of flower automaton. It turned
out that the groups admitting a Stallings section are precisely the virtually free groups!
And many of the geometric/algorithmic features of the classical free group case can then
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be generalized to the virtually free case.

5 Hyperbolic groups

Automata also play an important role in the beautiful geometric theory of hyperbolic groups,
introduced by Gromov in the eighties [20]. For details on this class of groups, the reader is
referred to [12].

Let π : Ã∗ → G be a matched epimorphism onto a group G. The Cayley graph ΓA(G)
of G with respect to π has vertex set G and edges g a−→g(aπ) for all g ∈ G and a ∈ Ã. If we
fix the identity as basepoint, we get an inverse automaton (which is precisely the minimal
automaton of the language 1π−1).

If G = FA and π is canonical, then ΓA(FA) is an infinite tree. In particular, the local
structure of ΓA(FA) determines the global structure... and if we understand the global
structure of the Cayley graph, then we understand the group.

So the aim is to consider geometric conditions on the structure of ΓA(G) that can lead
to a global understanding of the Cayley graph through the local structure (taking finitely
many finite subgraphs of ΓA(G) as local charts, actually). But which conditions? The
answer came in the form of hyperbolic geometry. What does this mean and how does it
relate to automata or theoretical computer science in general?

We say that a path p u−→q in ΓA(G) is a geodesic if it has shortest length among all the
paths connecting p to q in ΓA(G). We denote by GeoA(G) the set of labels of all geodesics
in ΓA(G). Note that, since ΓA(G) is vertex-transitive (the left action of G on itself produces
enough automorphisms of ΓA(G) to make it completely symmetric), it is irrelevant whether
or not we fix a basepoint for this purpose.

The geodesic distance d on G is defined by taking d(g, h) to be the length of a geodesic
from g to h. Given X ⊆ G nonempty and g ∈ G, we define

d(g,X) = min{d(g, x) | x ∈ X}.

A geodesic triangle in ΓA(G) is a collection of three geodesics

P1 : g1−→g2, P2 : g2−→g3, P3 : g3−→g1

connecting three vertices g1, g2, g3 ∈ G. Let V (Pi) denote the set of vertices occurring in
the path Pi. We say that ΓA(G) is δ-hyperbolic for some δ ≥ 0 if

∀g ∈ V (P1) d(g, V (P2) ∪ V (P3)) < δ

holds for every geodesic triangle {P1, P2, P3} in ΓA(G). If this happens for some δ, we say
that G is hyperbolic. It is well known that the concept is independent from both alphabet
and matched epimorphism, but the hyperbolicity constant δ may change. Virtually free
groups are among the most important examples of hyperbolic groups (in fact, they can be
characterized by strengthening the geometric condition in the definition of hyperbolicity,
replacing geodesic triangles by geodesic polygons). However, the free Abelian group Z×Z,
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whose Cayley graph (for the canonical generators) is the infinite grid

...
...

. . . a // • a //

b

OO

• a //

b

OO

. . .

. . . a // • a //

b

OO

• a //

b

OO

. . .

...

b

OO

...

b

OO

is not hyperbolic. However, there exist plenty of hyperbolic groups: Gromov remarked
that, under some reasonable assumptions, the probability of a finitely presented group
being hyperbolic is 1.

One of the extraordinary geometric properties of hyperbolic groups is closure under
quasi-isometry, being thus one of the few examples where algebra deals well with the concept
of deformation.

From an algorithmic viewpoint, hyperbolic groups enjoy excellent properties: they have
solvable word problem, solvable conjugacy problem and many other positive features. We
shall enhance three, which relate to theoretic computer science.

The first result states that geodesics constitute a rational language.
Theorem 5.1 [11, Theorem 3.4.5] Let π : Ã∗ → G be a matched homomorphism onto a
hyperbolic group G. Then the set of geodesics GeoA(G) is a rational language.

The second one shows how 1π−1 can be described by means of a suitable rewriting
system:
Theorem 5.2 [2] Let π : Ã∗ → G be a matched homomorphism onto a group G. Then the
following conditions are equivalent:

(i) G is hyperbolic;

(ii) there exists a finite length-reducing rewriting system R such that

∀u ∈ Ã∗ u ∈ 1π−1 ⇔ u−→∗R1.

It follows easily that 1π−1 is a context-sensitive language if G is hyperbolic. However,
the converse fails, Z× Z being a counter-example.

In connection with the preceding theorem, it is interesting to recall a result by Gilman,
Hermiller, Holt and Rees [14, Theorem 1], which states that a group G is virtually free if
and only if there exists a matched homomorphism π : Ã∗ → G and a finite length-reducing
rewriting system R ⊆ Kerπ such that IrrR = GeoA(G).

The third property is possibly the most intriguing. To present it, we need to introduce
the concept of isoperimetric function.

Suppose that G is a group defined by a finite presentation P = 〈Ã | R〉, and let
π : Ã∗ → G be the respective matched homomorphism. We say that δ : N → N is an
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isoperimetric function for P if, whenever u ∈ 1π−1, we need at most δ(|u|) transitions −→R
to transform u into the empty word 1. In other words, an isoperimetric function bounds
the number of elementary transitions we need to transform a word of a certain length into
the empty word.

It is easy to see that the existence of an isoperimetric function belonging to a certain
complexity class depends only on the group and not on the finite presentation considered.
We note also that every hyperbolic group is finitely presented.
Theorem 5.3 [20] Let G be a finitely presented group. Then the following conditions are
equivalent:

(i) G is hyperbolic;

(ii) G admits a linear isoperimetric function;

(iii) G admits a subquadratic isoperimetric function.

In this extraordinary result, geometry unexpectedly meets complexity theory.

6 Automatic groups

Also in the eighties, another very interesting idea germinated in geometric group theory,
and automata were to play the leading role. The new concept was due to Cannon, Epstein,
Holt, Levy, Paterson and Thurston [11] (see also [6]).

In view of Theorem 5.1, it is easy to see that every hyperbolic group admits a rational
set of normal forms. But this is by no means an exclusive of hyperbolic groups, and rational
normal forms are not enough to understand the structure of a group. We need to understand
the product, or at least the action of generators on the set of normal forms. Can automata
help?

There are different ways of encoding mappings as languages, synchronously or asyn-
chronously. We shall mention only the most popular way of doing it, through convolution.

Given an alphabet A, we assume that $ is a new symbol (called the padding symbol)
and define a new alphabet

A$ = (A×A) ∪ (A× {$}) ∪ ({$} ×A).

For all u, v ∈ A∗, u � v is the unique word in A∗$ whose projection to the first (respectively sec-
ond) components yields a word in u$∗ (respectively v$∗). For instance, a � ba = (a, b)($, a).

Let π : A∗ → G be a homomorphism onto a group G. We say that L ∈ RatA∗ is a
section for π if Lπ = G. For every u ∈ A∗, write

Lu = {v � w | v, w ∈ L, (vu)π = wπ}.

We say that L ∈ RatA∗ is an automatic structure for π if:

• L is a section for π;

• La ∈ RatA∗$ for every a ∈ A ∪ {1}.
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It can be shown that the existence of an automatic structure is independent from the
alphabet A or the homomorphism π, and implies the existence of an automatic structure
with uniqueness (where π|L is injective). A group is said to be automatic if it admits an
automatic structure.

The class of automatic groups contains all hyperbolic groups (in fact, GeoA(G) is then an
automatic structure!) and is closed under such operators as free products, finite extensions
or direct products. As a consequence, it contains all free abelian groups of finite rank and
so automatic groups need not be hyperbolic. By the following result of Gilman, hyperbolic
groups can be characterized within automatic groups by a language-theoretic criterion:
Theorem 6.1 [13] Let G be a group. Then the following conditions are equivalent:

(i) G is hyperbolic;

(ii) G admits an automatic structure with uniqueness L such that the language {u$v$w |
u, v, w ∈ L, uvw =G 1} is context-free.

Among many other good algorithmic properties, automatic groups are finitely presented,
have decidable word problem (in quadratic time) and admit a quadratic isoperimetric func-
tion (but the converse is false, unlike Theorem 5.3). The reader is referred to [6, 11] for
details.

Geometry also plays an important part in the theory of automatic groups, through the
fellow traveller property. Given a word u ∈ A∗, let u[n] denote the prefix of u of length n (or
u itself if n > |u|). Let π : Ã∗ → G be a matched homomorphism and recall the geodesic
distance d on G introduced in Section 5 in connection with the Cayley graph ΓA(G). We
say that a section L for π satisfies the fellow traveller property if there exists some constant
K > 0 such that

∀u, v ∈ L (d(uπ, vπ) ≤ 1⇒ ∀n ∈ N d(u[n]π, v[n]π) ≤ K).

Intuitively, this expresses the fact that two paths in ΓA(G) labelled by words u, v ∈ L which
start at the same vertex and end up in neighbouring (or equal) vertices stay close all the
way through.

This geometric property provides an alternative characterization of automatic groups
which avoids convolution:
Theorem 6.2 [11, Theorem 2.3.5] Let π : Ã∗ → G be a matched homomorphism onto a
group G and let L be a rational section for π. Then the following conditions are equivalent:

(i) L is an automatic structure for π;

(ii) L satisfies the fellow traveller property.

The combination of automata-theoretic and geometric techniques is typical of the theory
of automatic groups.

7 Automaton groups

Automaton groups, also known as self-similar groups, were introduced in the sixties by
Glushkov [15] (see also [1]) but it was through the leading work of Grigorchuk in the eighties
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[17] that they became a main research subject in geometric group theory. Here automata
play a very different role compared with previous sections.

We can view a free monoid A∗ as a rooted tree T with edges u −− ua for all u ∈ A∗,
a ∈ A and root 1. The automorphism group of T , which is uncountable if |A| > 1, is
self-similar in the following sense: if we restrict an automorphism ϕ of T to a cone uA∗, we
get a mapping of the form uA∗ → (uϕ)A∗ : uv 7→ (uϕ)(vψ) for some automorphism ψ of T .
This leads to wreath product decompositions (see [31]) and the possibility of recursion.

But AutT is huge and non finitely generated except in trivial cases, hence it is a natural
idea to study subgroups G of T generated by a finite set of self-similar generators (in the
above sense) to keep all the chances of effective recursion methods within a finitely generated
context. It turns out that this is equivalent to define G through a finite invertible Mealy
automaton.

A Mealy automaton on the alphabet A is a finite complete deterministic transducer
where edges are labelled by pairs of letters of A. No initial/terminal vertices are assigned.
It is said to be invertible if the local transformations of A (induced by the labels of the
edges leaving a given vertex) are permutations. Here is a famous example of an invertible
Mealy automaton:

a0|0
%%

1|1
((
b 1|0dd

0|1
hh

The transformations of A = {0, 1} induced by the vertices a and b are the identity mapping
and the transposition (01), respectively.

Each vertex q of a Mealy automaton A defines an endomorphism ϕq of the tree T
through the paths q

u|uϕq−−−−→ . . . (u ∈ A∗). If the automaton is invertible, each ϕq is indeed
an automorphism and the set of all ϕq, for all vertices q of A, satisfies the desired self-
similarity condition. The (finitely generated) subgroup of AutT generated by the ϕq is the
automaton group G(A) generated by A.

For instance, the automaton group generated by the Mealy automaton in the above
example is the famous lamplighter group [19].

Automaton groups have decidable word problem. Moreover, the recursion potential
offered by their wreath product decompositions allowed successful computations which were
hard to foresee with more traditional techniques and turned automaton groups into the most
rich source of counterexamples in infinite group theory ever. The Grigorchuk group [17]
is the most famous of the lot, but their exist many others exhibiting fascinating exotic
properties [22, 18].

An interesting infinite family of Mealy automata was studied by the author in collabora-
tion with Steinberg [42] and Kambites and Steinberg [23]: Cayley machines of finite groups
G (the Cayley graph is adapted by taking edges g

a|g(aπ)−−−−→g(aπ), and all the elements of the
group as generators). If G is abelian, these Cayley machines generate the wreath product
Gwr Z, and the lamplighter group corresponds to the case G = Z2.

Surprising connections with fractals were established in recent years. We shall briefly
describe one instance. Given a matched homomorphism π : Ã∗ → G and a subgroup P of
G, the Schreier graph ΓA(G,P ) has the cosets Pg as vertices and edges Pg a−→Pg(aπ) for
all g ∈ G and a ∈ Ã. Note that P = {1} yields the familiar Cayley graph ΓA(G). It turns
out that classical fractals can be obtained as limits of the sequence of graphs (ΓA(G,Pn))n
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for some adequate automaton group G, where Pn denotes the stabilizer of the nth level of
the three T [3, 31]. Note that Pn has finite index and so the Schreier graphs ΓA(G,Pn) are
finite.

8 Automata and dynamics

Automata appear also as a major tool in the study of the dynamics of many families of
group endomorphisms. We shall present an example taken from our own recent research
work [40].

We shall call T = (Q, q0, δ, λ) an A-transducer if:

• Q is a (finite) set;

• q0 ∈ Q;

• δ : Q×A→ Q and λ : Q×A→ A∗ are mappings.

We can view T as a directed graph with edges labelled by elements of A×A∗ (represented
in the form a|w) by identifying (p, a)δ = q, (p, a)λ = w with the edge p

a|w−→q.
We may extend δ and λ to Q×A∗ by considering the paths q

u|(q,u)λ−−−−→(q, u)δ for all u ∈ A∗.
When the transducer is clear from the context, we write qa = (q, a)δ. The transformation
T̂ : A∗ → A∗ is defined by uT̂ = (q0, u)λ.

If T = (Q, q0, T, δ, λ) is an Ã-transducer such that

p
a|u−→q is an edge of T if and only if q

a−1|u−1

−−−−→p is an edge of T ,

then T is said to be inverse.
As an easy consequence of this definition, we get:

Proposition 8.1 [40, Proposition 3.1] Let T = (Q, q0, δ, λ) be an inverse Ã-transducer.
Then:

(i) δ : Q× Ã∗ → Q induces a mapping δ̃ : Q× FA → Q by (q, uθ)δ̃ = (q, u)δ;

(ii) T̂ : Ã∗ → Ã∗ induces a partial mapping T̃ : FA → FA by uθT̃ = uT̂ θ.

We can prove the following result:
Theorem 8.2 [40, Theorem 3.2] Let T be a finite inverse Ã-transducer and let z ∈ FA.
Then

L = {g ∈ FA | gT̃ = gz}

is rational.
The proof is inspired in Goldstein and Turner’s proof [16] for endomorphisms of the free

group. We give a brief sketch.
Write T = (Q, q0, δ, λ). For every g ∈ FA, let P1(g) = g−1(gT̃ ) ∈ FA and write

q0g = (q0, g)δ̃, P (g) = (P1(g), q0g). Note that g ∈ L if and only if P1(g) = z. We define a
deterministic Ã-automaton Aϕ = (P, (1, q0), S, E) by

P = {P (g) | g ∈ FA};
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S = P ∩ ({z} ×Q);

E = {(P (g), a, P (ga)) | g ∈ FA, a ∈ Ã}.

Clearly, Aϕ is a possibly infinite automaton. Note that, since T is inverse, we have qaa−1 = q

for all q ∈ Q and a ∈ Ã. It follows that, whenever (p, a, p′) ∈ E, then also (p′, a−1, p) ∈ E.
We say that such edges are the inverse of each other.

Since every w ∈ Ã∗ labels a unique path P (1) w−→P (wθ), it follows that

L(Aϕ) = Lθ−1.

To prove that L is rational, we show that only finitely many edges can occur in the successful
paths of Aϕ labelled by reduced words.

This is achieved by defining an appropriate subset E′ ⊆ E satisfying E = E′ ∪ (E′)−1

and showing that there are only finitely many vertices in Aϕ which are starting points for
more than one edge in E′.

Theorem 8.2 can be used to produce an alternative proof [40, Theorem 4.1] of the
following Sykiotis’ theorem:
Theorem 8.3 [45, Proposition 3.4] Let ϕ be an endomorphism of a finitely generated vir-
tually free group. Then Fixϕ is finitely generated.

Automata are also at the heart of other results in [40], concerning the infinite fixed
points of endomorphism extensions to the boundary of virtually free groups. The boundary
is a very important topological concept defined for hyperbolic groups [12], but out of the
scope of this paper.
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