
HEXAGONAL PROJECTED SYMMETRIES

JULIANE F. OLIVEIRA, SOFIA S.B.S.D. CASTRO, ISABEL S. LABOURIAU

Abstract. In the study of pattern formation in symmetric physical systems a 3-dimensional structure

in thin domains is often modelled as 2-dimensional one. We are concerned with functions in R3 that
are invariant under the action of a crystallographic group and the symmetries of their projections into

a function defined on a plane. We obtain a list of the crystallographic groups for which the projected

functions have a hexagonal lattice of periods. The proof is constructive and the result may be used in
the study of observed patterns in thin domains, whose symmetries are not expected in 2-dimensional

models, like the black-eye pattern.

1. Introduction

Regular patterns are usually seen directly in nature and experiments. Convection, reaction-diffusion
systems and the Faraday waves experiment comprise three commonly studied pattern-forming systems,
see for instance [2], [11], [3].

The pattern itself and its observed state can occur in different dimensions. This happens for instance
when an experiment is done in a 3-dimensional medium but the patterns are only observed on a surface,
a 2-dimensional object. This is the case for reaction-diffusion systems in the Turing instability regime,
[11], which have often been described using a 2-dimensional representation [8]. The interpretation of this
2-dimensional outcome is subject to discussion: the black-eye pattern observed by [8] has been explained
both as a mode interaction, [5], and as a suitable projection of a 3-dimensional into a 2-dimensional
lattice [4]. In her article, Gomes shows how a 2-dimensional hexagonal pattern can be produced by a
specific projection of a Body Centre Cubic (bcc) lattice.

In the study of quasicrystals, projection is a mathematical tool for lowering dimension, [10], [6]. In
contrast the work of [9] applies it to fully symmetric patterns.

Pinho and Labouriau [9] study projections in order to understand how these affect symmetry. Their
necessary and sufficient conditions for identifying projected symmetries are used extensively in our results.
In particular, it follows from their results that the lattice of periods of the projected functions is not
obtained by deleting the last coordinate of the original.

Motivated by the explanation of [4] we look for all 3-dimensional lattices that exhibit a hexagonal
projected lattice. We illustrate our results using the simple cubic lattice.

2. Projected Symmetries

The study of projections is related to patterns. Patterns are level curves of functions f : Rn+1 → R.
In our work we suppose that these functions are invariant under the action of a particular subgroup of
the Euclidean group: a crystallographic group.

The Euclidean group, E(n+1), is the group of all isometries on Rn+1, also described by the semi-direct
sum E(n+ 1) ∼= Rn+1 uO(n+ 1), with elements given as an ordered pair (v, δ), in which v ∈ Rn+1 and
δ is an element of the orthogonal group O(n+ 1) of dimension n+ 1.

Let Γ be a subgroup of E(n+ 1). The homomorphism

φ : Γ → O(n+ 1)
(v, δ) 7→ δ

has as image a group J, called the point group of Γ, and its kernel forms the translation subgroup of Γ.
We say that the translation subgroup of Γ is a n+ 1-dimensional lattice,  L, if it is generated over the

integers by n+ 1 linearly independent elements l1, · · · , ln+1 ∈ Rn+1, which we write:

L = 〈l1, · · · , ln+1〉Z
1
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A crystallographic group is a subgroup of E(n + 1), such that its translation subgroup is a n + 1-
dimensional lattice.

This concept is a generalization, given by [9], of the 3-dimensional crystallographic group as defined
by [7], page 55.

To get symmetries of objects in Rn+1, consider the group action of E(n + 1) on Rn+1 given by the
function:

(1)
E(n+ 1)× Rn+1 → Rn+1

((v, δ), (x, y)) 7→ (v, δ) · (x, y) = v + δ(x, y)

In [1], the reader can see that the action (1) restricted to a point group of a crystallographic group
leaves its translation subgroup  L invariant. The largest subgroup of O(n+1) that leaves  L invariant forms
the holohedry of  L and its denoted by HL. The holohedry is always a finite group, see [10], subsection
2.4.2.

Crystallographic groups and symmetries of pattern formation are associated by the description of group
of symmetries on space of functions. To see this, observe that (1) induces an action of a crystallographic
group Γ on the space of functions f : Rn+1 → R by:

(γ · f)(x, y) = f(γ−1(x, y)) for γ ∈ Γ and (x, y) ∈ Rn+1

Thus, we can construct a space XΓ of Γ-invariant functions, that is

XΓ = {f : Rn+1 → R; γ · f = f, ∀γ ∈ Γ}
In particular a Γ-invariant function is  L-invariant.
A  L-symmetric pattern or  L pattern consists of the level curves of a function f : Rn+1 → R with

periods in the lattice  L.
In [4] the black-eye pattern is obtained as a projection of a function, whose level sets form a bcc pattern

in R3. In terms of symmetries, the black-eye is a hexagonal pattern, as we can see in [4], it is the level
sets of a bidimensional function with periods in a hexagonal plane lattice, that is, a lattice that admits
as its holohedry a group isomorphic to the dihedral group of symmetries of the regular hexagon, D6.

For y0 > 0, consider the restriction of f ∈ XΓ to the region between the hyperplanes y = 0 and y = y0.
The projection operator Πy0 integrates this restriction of f along the width y0, yielding a new function
with domain Rn.

Definition 1. For f ∈ XΓ and y0 > 0, the projection operator Πy0 is given by:

Πy0(f)(x) =

∫ y0

0

f(x, y)dy

The region between y = 0 and y = y0 is called the projection band and Πy0(f) : Rn → R is the
projected function.

The functions Πy0(f) may be invariant under the action of some elements of the group E(n) ∼=
Rn u O(n). The relation between the symmetries of f and those of Πy0(f) was provided by Pinho and
Labouriau [9].

To find the group of symmetries of the projected functions Πy0(XΓ), the authors consider the following
data:

• for α ∈ O(n), the elements of O(n+ 1):

σ :=

(
In 0
0 −1

)
, α+ :=

(
α 0
0 1

)
and α− := σα+;

• the subgroup Γ̂ of Γ, whose elements are of the form(
(v, y),

(
α 0
0 β

))
; α ∈ O(n), β = ±1, (v, y) ∈ Rn+1;

• and the projection h : Γ̂→ E(n) ∼= Rn uO(n) given by:

h

(
(v, y),

(
α 0
0 β

))
= (v, α)

The group of symmetries of Πy0(XΓ) is the image by the projection h of the group Γy0 defined as:
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• If (0, y0) ∈ L then Γy0 = Γ̂.

• If (0, y0) /∈ L then Γy0 contains those elements of Γ̂ that are either of the form ((v, 0), α+) or of
the form ((v, y0), α−)

The group Γy0 depends of how the elements of Γ are transformed by the projection Πy0 . The criterion
that clarifies the connection between the symmetries of XΓ and Πy0(XΓ) is provided by the following
result:

Theorem 1 ( Theorem 1.2 in [9]). All functions in Πy0(XΓ) are invariant under the action of (v, α) ∈
E(n) if and only if one of the following conditions holds:

I ((v, 0), α+) ∈ Γ;
II ((v, y0), α−) ∈ Γ;

III (0, y0) ∈ L and either ((v, y1), α+) ∈ Γ or ((v, y1), α−) ∈ Γ, for some y1 ∈ R.

3. Hexagonal Projected Symmetries

As we saw in the last section, there is a connection between a crystallographic group Γ in dimension
n + 1 and the group of symmetries of the set of projected functions Πy0(XΓ). In this work we aim to
know which crystallographic groups in dimension 3 can yield hexagonal symmetries after projection. In
other words, we want to describe how to obtain hexagonal plane patterns by projection.

Given a crystallographic group Γ, with a n+1-dimensional lattice  L, whose holohedry is HL, we denote
by Πy0(L) the translation subgroup of the crystallographic group of symmetries of Πy0(XΓ), whose point
group is a subset of the holohedry of Πy0(L). From theorem 1 we obtain

Corollary 1. Let Γ̃ be a crystallographic group with lattice L̃ ⊂ Rn. Suppose L̃ = Πy0(L), and let HL̃
and HL be the holohedries of L̃ and L ⊂ Rn+1, respectively. If α ∈ HL̃ then either α+ ∈ HL or α− ∈ HL.

Proof. To prove our claim, it is sufficient to apply theorem 1 to the case Γ̃ = L̃ u HL̃. Since α ∈ HL̃,
there exists v ∈ Rn such that f is (v, α)-invariant for all f ∈ Πy0(XΓ). By theorem 1, one of the three
conditions holds. Then, depending on whether (I), (II) or (III) is verified, either (w,α+) or (w,α−) is in
Γ where, w ∈ {(v, 0), (v, y0), (v, y1)}. By definition of holohedry, we have either α+ ∈ HL or α− ∈ HL.

�

Remark 1. We note that there is a non-trivial relation between the lattice L̃ of periods of the projected

functions and that of the original one. In fact, consider a (n+ 1)-dimensional lattice  L and L̃ = Πy0(L).

If v ∈ L̃ then (v, In) is a symmetry of Πy0(XΓ). Applying theorem 1 with α = In, one of the following

holds for each v ∈ L̃:

I ((v, 0), α+) = ((v, 0), In+1) ∈ Γ, or equivalently (v, 0) ∈ L;
II ((v, y0), α−) = ((v, y0), σ) ∈ Γ then ((v, y0), σ)2 ∈ Γ implying that (2v, 0) ∈ L;

III (0, y0) ∈ L and either (v, y1) or (2v, 0) is in  L, for some y1 ∈ R.

While condition I implies that L ∩ {(x, 0) ∈ Rn+1} ⊆ L̃, the other conditions show that this inclusion
is often strict. Furthermore, conditions II and III show that we may have no element of the form (v, y1)

in  L and yet v ∈ L̃. So, the lattice of periods of the projected functions is not obtained by deleting the
last coordinates of the original.

The next proposition provides sufficient conditions for a multiple of the projected lattice to exist as
the sublattice of a suspended lattice  L in Rn+1.

Proposition 1. Consider a crystallographic group Γ with a lattice L ⊂ Rn+1 and let L̃ = Πy0(L) =

〈l̃1, · · · , l̃n〉Z ⊂ Rn be the translation subgroup of Πy0(XΓ). Suppose for each l̃j one of the following
conditions holds:

i ((l̃j , 0), In+1) ∈ Γ;

iii ((l̃j , y1), σ) ∈ Γ, for some y1 ∈ R;

iii (0, y0), and (l̃j ,
p
q y0) ∈ L, for some p, q nonzero integers.

Then there exists r ∈ Z such that Lr = {r · (v, 0); v ∈ L̃ and r ∈ Z} is a sublattice of  L.
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Condition (iii) is a stronger version of condition III in theorem 1. The other condition follow from
theorem 1.

Proof. If one of the conditions i - iii is true, for some j ∈ {1, · · · , n}, then, using remark 1, either

(l̃j , 0) or (2l̃j , 0) ∈ L.

If condition iv holds for some j ∈ {1, · · · , n}, then (0, y0), (l̃j ,
pj
qj
y0) ∈ L, where pj , qj are nonzero

integers. Since  L is a lattice (qj l̃j , 0) ∈ L.

Therefore, for each j, we can chose rj = 2qj such that (rj l̃j , 0) ∈ L. Let r be the least common

multiple of the {rj}nj=1, then (rl̃j , 0) ∈ L for all j, finishing the proof.
�

For three-dimensional lattices we have the following stronger result. This gives the full description of
a 3-dimensional lattice which can be projected onto a prescribed 2-dimensional one.

Theorem 2. Let L ⊂ R3 be a lattice such that its projection is a plane lattice L̃ = Πy0(L) generated by
two linearly independent vectors

l̃1 and l̃2 = ρl̃1, for ρ ∈ HL̃.

There exists r ∈ Z\{0} such that the three-dimensional lattice  L has a sublattice Lr = 〈(rl̃1, 0), (rl̃2, 0)〉Z
if and only if for each v ∈ {l̃1, l̃2} one of the following conditions holds:

a. ((v, 0), I3) ∈ Γ;
b. ((v, y1), σ) ∈ Γ, for some y1 ∈ R;
c. (v, y1) ∈ L, for some y1 ∈ R.

Proof. That the conditions are necessary is immediate from remark 1. Let us prove that they are sufficient.

Suppose that for each v ∈ {l̃1, l̃2} one of the conditions a to c is verified. We will prove that there
exists r ∈ Z \ {0}, such that Lr is a sublattice of  L.

Since l̃2 = ρl̃1, it is sufficient to show that one of r(l̃1, 0) or r(l̃2, 0) is in  L. To see this, suppose, without

loss of generality, that r(l̃1, 0) ∈ L. Then since ρ ∈ HL̃, by corollary 1, either ρ+ ∈ HL or ρ− ∈ HL. As

ρ+(rl̃1, 0) = ρ−(rl̃1, 0) = (rl̃2, 0), it implies that r(l̃2, 0) ∈ L and therefore, L has a sublattice Lr.
If for some v ∈ {l̃1, l̃2} one of the conditions a or b is true then, by remark 1, (rv, 0) ∈ L, for r =

1 or r = 2. Hence, all that remains to prove is the case when l̃1 and l̃2 only satisfy condition c.
By hypothesis,

(2) (l̃1, y1) and (l̃2, y2) are in L, for some y1, y2 ∈ R
this implies that

(3) (l̃1 + l̃2, y1 + y2) ∈ L
Using (2) and corollary 1

either ρ+(l̃1, y1) = (l̃2, y1) ∈ L or ρ−(l̃1, y1) = (l̃2,−y1) ∈ L.

If (l̃2, y1) ∈ L then

(l̃2, y1) + (l̃2, y2) = (2l̃2, y1 + y2) ∈ L
thus, using (3)

(l̃1 + l̃2, y1 + y2)− (2l̃2, y1 + y2) = (l̃1 − l̃2, 0) ∈ L
Since {l̃1, l̃2} is a basis to L̃ and ρ ∈ HL̃ then

ρ(l̃1 − l̃2) = ml̃1 + nl̃2, m, n ∈ Z
where m, n are not both equal to zero. Suppose that n 6= 0, then

(4) n(l̃1 − l̃2, 0), (ml̃1 + nl̃2, 0) ∈ L

implying that the sum of these last two vectors ((n+m)l̃1, 0) ∈ L. Therefore, if n 6= −m, Lr is a sublattice

of  L, where r = m+ n ∈ Z. If n = −m, we subtract the two expressions in (4) to get (2nl̃1, 0) ∈ L.

If (l̃2,−y1) ∈ L then

−(l̃2,−y1) + (l̃2, y2) = (0, y1 + y2) ∈ L
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thus, using (3)

(l̃1 + l̃2, y1 + y2)− (0, y1 + y2) = (l̃1 + l̃2, 0) ∈ L
An analogous argument applied to ρ(l̃1 + l̃2, 0) finishes the proof.

�

Let L ⊂ R3 be a lattice and P ⊂ R3 be a plane such that P ∩ L 6= ∅. Given v ∈ P ∩ L there is a
rotation γ ∈ O(3) such that γ(P − v) is the plane X0Y = {(x, y, 0); x, y ∈ R}. Then we define the

y0-projection of  L into P as the lattice γ−1(L̃) ⊂ E(2) where L̃ is the symmetry group of Πy0(Xγ(L−v)).
We say that the y0-projection of  L into the plane P is a hexagonal plane lattice if and only if

the lattice L̃ admits as its holohedry a group isomorphic to D6.
Our main result is the following theorem.

Theorem 3. Let L ⊂ R3 be a lattice. The y0-projection of  L into the plane P is a hexagonal plane lattice
if and only if:

(1) P ∩ L contains at least two elements;
(2) there exists β ∈ HL such that:

– β has order 6;
– P is β-invariant.

Proof. Suppose first that (0, 0, 0) ∈ P ∩ L. To show that the conditions (1) and (2) are necessary let us
consider, without loss of generality, that P = X0Y . Therefore, the conditions hold by theorem 2.

To prove that the condition (1) and (2) are sufficient consider β ∈ HL, then either β is a rotation or
β is a rotation-inversion. In both cases we can write β = (−I3)kγ, k = 0, 1, where γ is a rotation and
I3 is the identity. Observe that, since the order of β is six, the order of γ should be either three or six.

By [7], theorem 2.1 and the proof of the crystallographic restriction theorem, in the same reference,
there exists only one subspace of dimension 2 invariant by β. Such a plane is the plane perpendicular to
the rotation axis of γ. So, let P be this plane.

Since P ∩ L 6= {0}, let v be a nonzero element of minimum length in P ∩ L and the lattice L′ =

{v, βv}Z = {v, γv}Z. If γ has order 6 then L′ is a hexagonal plane lattice. If γ has order 3, notice that

−v, −γv ∈ L′ , because L′ is a lattice, hence L′ is also a hexagonal lattice.
If (0, 0, 0) /∈ P ∩ L, note that the proof can be reduced to the previous case by a translation.

�

Remark 2. Theorem 3 shows that the only possibility to obtain patterns with hexagonal symmetry,
by y0-projection, is to project the functions f ∈ XL in a plane invariant by the action of some element
β ∈ HL with order six. After finding one of those planes, in order to obtain projections as in definition
1, we only need to change coordinates. The reader can see an example with the bcc lattice in [4].

Moreover, by theorem 2, if  L is a lattice such that the projection, L̃ = Πy0(L), of  L into the plane

X0Y is a hexagonal plane sublattice then  L has a sublattice Lr = {r · (v, 0); v ∈ L̃ and r ∈ Z}. This
implies that ∀f ∈ XL, we have Lr periodicity.

As a consequence of theorem 3, we are able to list all the Bravais lattices that may be projected to
produce a 2-dimensional hexagonal pattern.

Theorem 4. The Bravais lattices that project to a hexagonal plane lattice are:

1. Simple cubic lattice;
2. Body-centred cubic lattice;
3. Face-centred cubic lattice;
4. Hexagonal lattice; and
5. Rhombohedral lattice.

Moreover, up to change of coordinates, for the first three lattices the plane of projection must be parallel
to one of the planes in Table 1. For the hexagonal and rhombohedral lattice the plane of projection must
be parallel to the plane X0Y .

Proof. It is immediate from theorem 3 that we can exclude the following Bravais lattices: triclinic,
monoclinic, orthorhombic and tetragonal, since the holohedries of these lattices do not have elements of
order six.
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Table 1. Two-dimensional spaces perpendicular to the rotation axis of each one of the
rotations γi. Here we denote by 〈v〉, v ∈ R3 the subspace generated by v.

Rotation Rotation Axis Perpendicular Plane
γ1 〈(1, 1,−1)〉 P1 = {(x, y, z); z = x+ y}
γ2 〈(1,−1,−1)〉 P2 = {(x, y, z); z = x− y}
γ3 〈(1,−1, 1)〉 P3 = {(x, y, z); z = −x+ y}
γ4 〈(1, 1, 1)〉 P4 = {(x, y, z); z = −(x+ y)}

To see if the other Bravais lattices have hexagonal projected symmetries, we need to examine the
rotations of order three and six in their holohedries and see if the plane perpendicular to their rotation
axes intersects the lattice.

The group of rotational symmetries of the cubic lattice (as well as the body centred cubic lattice and
the face centred cubic lattice) is isomorphic to S4, the group of permutation of four elements. So, in the
holohedry of the cubic lattice we only have rotations of order one, two or three. Consider a systems of
generators for a representative for the cubic lattice  L, in the standard basis of R3, given by:

(1, 0, 0), (0, 1, 0), (0, 0, 1)

Then, the matrix representation of the rotations of order 3 in HL are:

γ1 =

 0 −1 0
0 0 1
−1 0 0

 , γ2 =

 0 1 0
0 0 −1
−1 0 0

 ,

γ3 =

 0 0 1
−1 0 0
0 −1 0

 , γ4 =

 0 1 0
0 0 1
1 0 0


Two-dimensional spaces perpendicular to the rotation axis of each one of these rotations are given in

Table 1.
This means that for the fist three lattices in the list, the projection of functions f ∈ XL into a plane

have hexagonal symmetries only if the plane is parallel to one of the plane subspaces given in table 1.
Consider now a 3-dimensional hexagonal lattice. Its group of rotational symmetries has order twelve

and it has a subgroup of order six consisting of the rotational symmetries of the rhombohedral lattice.
Let the representatives for the hexagonal and rhombohedral lattices, be generated by:

(1, 0, 0), (
1

2
,

√
3

2
, 0), (0, 0, c) c 6= 0, ±1.

(1, 0, 1), (−1

2
,

√
3

2
, 1), (−1

2
,−
√

3

2
, 1)

respectively. Then, the twelve rotations in the holohedry of the hexagonal lattice are generated by:

ρz =

 1
2 −

√
3

2 0√
3

2
1
2 0

0 0 1

 and γx =

 1 0 0
0 −1 0
0 0 −1


The generators of the group of rotational symmetries of the rhombohedral lattice are then ρ2

z and γx.
We conclude that the only rotations of order 6 in the holohedry of the hexagonal lattice are ρz and

ρ5
z, and of order 3 ρ2

z and ρ4
z.

Therefore, the y0-projection of the hexagonal and rhombohedral lattices is a hexagonal plane sublattice
if and only if the y0-projection is made into a plane parallel to the plane X0Y .

�
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4. Hexagonal projected symmetries of the simple cubic lattice

We conclude the article with an example to illustrate the hexagonal symmetries obtained by z0-
projection of functions with periods in the simple cubic lattice, for all z0 ∈ R.

Consider a three-dimensional crystallographic group, Γ = LuHL, where  L is the simple cubic lattice
generated by the vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) over Z, and HL its holohedry.

Without loss of generality, let us see the projection of Γ on P1 (see Table 1).
From theorem 3, the cubic lattice has a hexagonal plane sublattice that intersects P1. This sublattice

is generated by:

(5) (0, 1, 1), (1, 0, 1)

To make our calculations easier and to set up the hexagonal symmetries in the standard way consider
the new basis {(0, 1, 1), (1, 0, 1), (0, 0, 1)} for the lattice  L. Now multiply  L by the scalar 1√

2
in order to

normalise the vectors of (5). With these changes the crystallographic group Γ has the new translational
subgroup generated by the vectors:

v1 = (0,
1√
2
,

1√
2

), v2 = (
1√
2
, 0,

1√
2

), v3 = (0, 0,
1√
2

)

Projection of Γ on P1, as in definition 1, can be done after a change of coordinates that transforms P1

into X0Y . Consider that change given by the orthonormal matrix

A =

 0 1√
2

1√
2

2√
6

−1√
6

1√
6

1√
3

1√
3

−1√
3


Then, in the new system of coordinates X = Ax, we obtain the base for the simple cubic lattice given

by:

(6) l1 = (1, 0, 0), l2 = (
1

2
,

√
3

2
, 0), l3 = (

1

2
,

√
3

6
,
−
√

6

6
)

Observe that we changed the position of  L as prescribed by theorem 3.
We proceed to describe the symmetries of the space Πz0(XΓ), for each z0 ∈ R. For this, we need to

write up the subgroups Γ̂ and Γz0 of Γ. Denote by Σz0 = Lz0uJz0 the subgroup of E(2) of all symmetries
of Πz0(XΓ).

It is straightforward to see that the elements of Γ with orthogonal part α± are in the group

Γ̂ = {((v, z), ρ); (v, z) ∈ L, ρ ∈ Ĵ}

where Ĵ is the group generated by

γ =

 1
2 −

√
3

2 0√
3

2
1
2 0

0 0 −1

 and κ =

 −1 0 0
0 1 0
0 0 1


and the group Γz0 has a subgroup H = L u J , for all z0 ∈ R, where L is the translation subgroup
L = 〈l1, l2〉Z and J is the subgroup generated by ((0, 0, 0), κ) and ((0, 0, 0),−γ). Using statement I of

theorem 1, for all z0 ∈ R all the functions f ∈ Πz0(XΓ) are (1, 0), and ( 1
2 ,
√

3
2 ) periodic and invariant for

the action of

κ
′

=

(
−1 0
0 1

)
and − γ

′
=

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)
In Table 2 we list the group Γz0 , for each z0 ∈ R, and describe the respective projected symmetries.
We assume that all the functions f : R3 → R in XL admit a unique formal Fourier expansion in terms

of the waves

wk(x, y, z) = exp(2πi〈k, (x, y, z)〉)
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Table 2. Projection of Γ = LuHL, for each z0 ∈ R.

z0 ∈ R Γz0 Σz0 = Lz0 u Jz0
z0 = 3n√

6
, n ∈ Z\{0}

then (0, 0, n√
6
) ∈ L Γz0 = Γ̂

Lz0 = 〈( 1
2 ,
√

3
6 ), ( 1

2 ,
−
√

3
6 )〉Z

Jz0 = D6 = 〈γ′ , κ′〉
z0 = 3n−1√

6
, n ∈ Z\{0}

then ( 1
2 ,
√

3
6 ,

3n−1√
6

) ∈ L
Γz0 contains

(( 1
2 ,
√

3
6 ,

3n−1√
6

), γ)

Lz0 = 〈(1, 0), ( 1
2 ,
√

3
2 )〉Z

Jz0 = 〈(( 1
2 ,
√

3
6 ), γ

′
), κ

′〉
z0 = 3n+1√

6
, n ∈ Z\{0}

then ( 1
2 ,
−
√

3
6 , 3n+1√

6
) ∈ L

Γz0 contains

(( 1
2 ,
−
√

3
6 , 3n+1√

6
), γ)

Lz0 = 〈(1, 0), ( 1
2 ,
√

3
2 )〉Z

Jz0 = 〈(( 1
2 ,
−
√

3
6 ), γ

′
), κ

′〉
For z0 different

of the cases before Γz0 = H

Lz0 = 〈(1, 0), ( 1
2 ,
√

3
2 )〉Z

Jz0 = 〈−γ′ , κ′〉

where k is a wave vector in the dual lattice, L∗ = {k ∈ R3; 〈k, li〉 ∈ Z, i = 1, 2, 3}, of  L given in (6),
with wave number |k|, (x, y, z) ∈ R3 and 〈·, ·〉 is the usual inner product in R3. Thus,

f(x, y, z) =
∑
k∈L∗

zkwk(x, y, z)

where zk is the Fourier coefficient, for each k ∈ L∗, and with the restriction z−k = zk.
Therefore, we can write

XL =
⊕
k∈L̃

Vk

for

L̃ = {k = (k1, k2) ∈ L; k1 > 0 or k1 = 0 and k2 > 0}
and

Vk = {Re(zwk(x, y, z)); z ∈ C} ∼= C
Note that XΓ is a subspace of XL.
A straightforward calculation shows that the function

(7) u(x, y, z) =
∑
|k|=
√

2

exp(2πik · (x, y, z))

is Γ-invariant.
The contour plot of the projections of u are shown in the next figures, with respective symmetries

given in Table 2.
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