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Abstract. Dimension three is the lowest dimension where we can find chaotic behaviour for flows
and it may be helpful to distinguish in advance “equivalent” complex dynamics. In this article, we give

numerical invariants for the topological equivalence of vector fields on three-dimensional manifolds whose
flows exhibit one-dimensional heteroclinic connections involving saddle-foci and/or periodic solutions.
Computed as a infinite limit time, these moduli of topological equivalence rely heavily on the local
behaviour near the invariant saddles. We also present an alternative proof of the Togawa’s Theorem.

1. Introduction

The classification of vector fields according to their topological properties is a major preoccupation in
the theory of dynamical systems. The problem of the classification of homo and heteroclinic cycles in
low-dimensional spaces has been frequently asked in recent years. For planar vector fields, based on a
Bowen’s example, Takens [41] described a complete set of moduli of topological equivalence for attracting
heteroclinic cycles using asymptotic properties of non-converging time averages.

Dimension three is the lowest dimension where one finds chaotic systems for flows; among them, there
is a vast catalogue of exotic phenomena associated with cycles involving either saddle-foci or periodic
solutions. One of the most famous examples is the homoclinic cycle associated to a saddle-focus studied
by Shilnikov [36, 37, 38]; in its neighbourhood, under an eigenvalue condition, Shilnikov proved the exis-
tence of infinitely many periodic solutions of saddle-type, nowadays known as infinitely many suspended
horseshoes. Their existence does not require the breaking of the homoclinic connection as in the case
of saddles whose linearization has only real eigenvalues. As proved in [3], the exact knowledge of global
twisting around cycles involving saddle-foci is not necessary to predict shadowing properties of these
cycles, since the spiralling associated to the presence of complex eigenvalues spreads solutions around the
cycle – see also [5, 6].

Until the eighties, these spiralling sets have not attracted as much attention as the Lorenz attractor
because in general it is difficult to understand the topology associated to non-real eigenvalues. Recently,
the dynamics of spiralling attractors have been studied more systematically – see for example [17, 22, 27,
28, 31, 32] and references therein.

In order to distinguish in advance two complex dynamics, topological invariants are gratefully wel-
comed; they are relevant for comparison of families of vector fields. Roughly speaking, a topological
invariant or a modulus of topological equivalence is a function of the vector field that is invariant under
topological equivalence – a more formal definition will be given later in Subsection 2.2 of this paper.
An important subject in the study of dynamical systems is the notion of these quantities that remain
invariant under C0–change of coordinates.

The most famous topological invariant associated to a circle S1 ≡ R (mod 2π) is the Poincaré rotation
number [20]: if f : S1 → S1 is a homeomorphism, let F : R → R be a lift to R. If x ∈ R, then:

lim
n∈N

Fn(x)− x

n
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exists for all x and is equal to ρ(f) ∈ R, which does not depend neither on the lift nor on x ∈ R, up to

multiples of 2π – this limit is what we call the Poincaré rotation number. In particular, if f and f̃ are
h–topologically conjugate preserving orientation then:

ρ(f) = ρ(h−1 ◦ f ◦ h) = ρ(f̃).

There are some occurrences of moduli in structurally unstable systems with two periodic solutions
having a quadratic tangency. The seminal example of moduli appear in 1978: J. Palis [30] proved that
heteroclinic connections that have a tangency between the stable and unstable manifolds of two periodic
solutions give rise to a modulus that can be expressed as the ratio of the leading Floquet multipliers of
the limit cycles. It has also been proved that homoclinic tangencies of the invariant manifolds of periodic
solutions give rise to infinitely many topological invariant – an overview of these results may be found in
Gonchenko et al [18].

Let Cp, Ep, αp ∈ R+. In a three-dimensional flow, in the case of a homoclinic cycle to a saddle-focus
p whose linearization has eigenvalues

−Cp ± iαp and Ep,

several authors proved that the ratio
Cp

Ep
is a topological invariant [11, 12, 42] – this ratio is called

the saddle index of the equilibrium p. This modulus seems somewhat surprising since the eigenvalues
themselves are not topological invariants. The first proof is due to Shilnikov [37]; he did not use this
term, but the description of the non-wandering set proved explicitly that its structure depends on this
parameter. If the saddle index is greater than 1, then the dynamics near the homoclinic cycle is trivial
(the homoclinic cycle is attracting). If the saddle index is lesser than 1, periodic solutions bifurcate
from the homoclinic cycle, a phenomenon which may be considered as an internal bifurcation within the
Morse-Smale systems. In a classical work, Afraimovich and Ilyashenko [1, Section 5.6] also proved that
the saddle index is a modulus of topological equivalence. Other proofs arose: Ceballos and Labarca [11],
based on the first return map to a transverse section to the cycle; Dufraine [12] and Togawa [42] used
link types of the closed trajectories that appear near the separatrix.

For a heteroclinic cycles associated to a saddle-focus p as before and a periodic solution C with real

Floquet multipliers CC and EC such that |CC| < 1 and |EC| > 1, Beloqui [8] derived that
Cp

αp ln(EC) is a

topological invariant. Heteroclinic connections of codimension two have also been considered by Bonatti
and Dufraine [9] and by van Strien [44], who found other topological invariants.

Motivated by these results and using recent results of Aguiar et al [3], Rodrigues et al [34] and Takens
[41], in this article we revive the research of Dufraine [12]. We present local necessary conditions to
prove topological equivalence of vector fields defined on a smooth three-dimensional manifold, whose flow
exhibits at least one connection involving either a saddle-focus or a periodic solution. The spiralling
behaviour associated to the presence of “rotation” spreads solutions near the connections and offers
complementary information about the dynamics, as we will observe. Since parts of the spiralling set
swirl around the one-dimensional connection, we will make use of the information “encoded” in the
neighbourhood of the connections which appears as a phenomenon of codimension one or two. Explicit
examples of vector fields where these connections can be found analytically are reported in Aguiar et al
[2, Section 4] and Rodrigues and Labouriau [33, Section 2].

2. Preliminaries

Let f be a C2–vector field on a C∞-Riemannian three-dimensional differential manifold M3 possibly
with boundary, with flow given by the unique solution x(t) = ϕ(t, x0) ∈ M3 of

(1) ẋ = f(x) and x(0) = x0.

2.1. Heteroclinic Terminology. Following Field [15], if A is a compact invariant set for the flow of f ,

we say that A is an invariant saddle if A ⊆ W s(A)\A and A ⊆ Wu(A)\A, where A is the closure of A.
In this paper all the saddles will be hyperbolic.

Given two invariant saddles A and B, a heteroclinic connection from A to B, denoted [A → B], is a
solution of the Initial Value Problem (1) contained in Wu(A) ∩ W s(B). There may be more than one
connection from A to B as shown in [34, Section 8].
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Let S ={Aj : j ∈ {1, . . . , k}} be a finite ordered set of mutually disjoint invariant saddles. We say
that there is a heteroclinic cycle associated to S if

∀j ∈ {1, . . . , k},Wu(Aj) ∩W s(Aj+1) 6= ∅ (mod k).

If k = 1 we say that there is a homoclinic cycle associated to A1. In other words, there is a connection
whose trajectories tend to A1 in both backward and forward time. We also refer to the saddles defining
the heteroclinic cycle as nodes. The dimension of the local unstable manifold of a saddle Aj will be called
the Morse index of Aj .

In many articles, all nodes are equilibria, but in this paper we explicitly consider the case in which
one of the saddles is a periodic solution with real Floquet multipliers, that we denote by C. The saddles
under consideration consist of either saddle-foci or non-trivial closed trajectories – these saddles are what
the authors of [3] call rotating nodes.

In a three-dimensional manifold, a Bykov cycle is a heteroclinic cycle associated to two hyperbolic
saddle-foci with different Morse indices, in which the one-dimensional manifolds coincide and the two-
dimensional invariant manifolds have a transverse intersection – see Bykov [10]. A Bykov cycle is also
called by T [erminal]–point because it corresponds to a point on the space of parameters where such cycles
appear [14, 27].

2.2. Modulus of Topological Equivalence. Following Shilnikov et al [39, Chapter 2], two three–
dimensional systems:

ẋ = f1(x) and ẋ = f2(x)

defined in regions D1 ⊂ M3 and D2 ⊂ M3 respectively, are topologically equivalent in the subregions
U1 ⊂ D1 and U2 ⊂ D2 if there exists a homeomorphism h : U1 → U2, which maps trajectories of the first
system into trajectories of the second one.

For i ∈ {1, 2}, let ϕi(t, x0) be the unique solution of ẋ = fi(x) with initial condition x(0) = x0. If the
homeomorphism h is time preserving, that is, if:

∀y ∈ M3, ∀t ∈ R, ϕ1(t, h(y)) = h(ϕ2(t, y)),

we say that the flows are topologically conjugate and h is a conjugacy. When h is a Cr–diffeomorphism,
we say that the flows are Cr–conjugate (r ∈ N0).

Remark 1. The notion of topological conjugacy is restrictive since one requires the solutions ϕ1(t, ⋆)
and ϕ2(t, ⋆) to be topologically conjugate for all t, which is much more than require that trajectories of
ẋ = f1(x) are mapped into trajectories of ẋ = f2(x) homeomorphically.

A vector field f is said to have a modulus of topological equivalence (resp. modulus of topological
conjugacy) if, in some subspace U ⊃ {f} of the space of vector fields, a continuous, locally non-constant

functional η is defined such that if f and f̃ are topologically equivalent (resp. topologically conjugate),

then η(f) = η(f̃). We require that in the region of the definition of η, there are no open sets in
a neighbourhood of f where the functional η takes a constant value – see Gonchenko et al [18] and
Shilnikov et al [40, Chapter 8]. By Remark (1), moduli of topological conjugacy are quite often while
moduli of topological equivalence are not.

2.3. Suspension flows. Suppose that M is a smooth compact riemannian manifold and f is a C∞–
diffeomorphism. Consider the space Ω = M× [0, 1]/ ∝ where ∝ is the identification of (x, 1) with f(x, 0).
The standard suspension of f is the flow on Ω defined by φt(y, s) = (y, t+ s), for 0 ≤ t+ s < 1. It is well
known that Ω is a smooth compact riemannian manifold and φt is C∞. We refer the reader to [24] for
more information about suspensions.

3. A tour along the main results

Let M3 denote a C∞ Riemannian three-dimensional differential manifold possibly with boundary.
Throughout this paper, we assume that h is a homeomorphism mapping the trajectories of the flow
induced by the vector field f : M3 → TM3 into trajectories of the flow induced by f̃ : M3 → TM3. If
p ∈ M3, we set p̃ = h(p). Note that the homeomorphism h under consideration may reverse the time
orientation.



4 ALEXANDRE A. P. RODRIGUES
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Figure 1. Shilnikov cycle Γp: the homeomorphism h preserves time-orientation.

Our first object of study is the set H of C2–vector fields f : M3 → TM3, satisfying the following
property – see Figure 1:

(H1) There is a homoclinic cycle Γp associated to a hyperbolic saddle-focus p, where the imaginary
part of the complex conjugate eigenvalues of Dfp is ±αp 6= 0.

These cycles will be called Shilnikov cycles. The equilibrium p may have Morse index 1 or 2: if its
Morse index is 1, then p is denoted by v and its eigenvalues are −Cv ± αvi and Ev where Cv, Ev > 0;
otherwise p is denoted by w and its eigenvalues are Ew ± αwi and −Cw where Cw, Ew > 0.

If we do not ask for C1–smoothness of h, then the eigenvalues of Dfp and Df̃p̃ may be different.
Hereafter, we use the following convention: if λp is an eigenvalue of Dfp, then λp̃ is the h–corresponding

eigenvalue of Df̃p̃. Of course that if h reverses time orientation, then contracting eigenvalues are mapped
into expanding eigenvalues; more precisely, according to our notation, if Ep > 0 is an eigenvalue of Dfp,

then −Cp̃ < 0 is the h–corresponding eigenvalue of Df̃p̃.

The strenght of the swirling motion around the one-dimensional local invariant manifold of p is mea-
sured be the absolute value of the imaginary part of the complex (non-real) eigenvalues of Dfp. The first
item of Theorem 1 says that this number is a topological invariant in H.

Theorem 1. Let f, f̃ ∈ H. If f̃ is h–topologically equivalent to f , then:

(1) |αp| = |αp̃|;

(2)
Cp

Ep
=

Cp̃

Ep̃
, if h preserves time-orientation;

(3)
Cp

Ep
=

Ep̃

Cp̃
, if h reverses time-orientation.

Item (1) of Theorem 1 has been proved by Dufraine [12] in 2001 using linking numbers and knots
arguments. Item (2) has been shown by Togawa [42] in 1987 and later by Ceballos and Labarca [11]
in 1992. Based on the recent work of Rodrigues et al [34] and using a similar approach to that of
Gaunersdorfer [16] and Takens [41], we address an alternative proof of items (1) and (2) of Theorem 1 in
Section 6. Using the topological concept of spinning in average, we give a more elegant proof of item (1)
of Theorem 1 in Section 7.

There are homeomorphisms that transform a hyperbolic saddle-equilibrium p, where the eigenvalues
of Dfp are real, into a saddle-focus. Item (1) of Theorem 1 excludes the possibility that such homeomor-
phisms transform a homoclinic cycle to a saddle into a homoclinic cycle to a saddle-focus.

Corollary 2. A homoclinic cycle to a saddle and a homoclinic cycle to a saddle-focus cannot be topolog-
ically equivalent.

Generalizing the above notation, our second goal is the study of the set B of C2–vector fields f on M3

satisfying the following property depicted in Figure 2:
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Figure 2. Heteroclinic connection associated to two saddle-foci of different Morse indices.

(B1) There is a one-dimensional heteroclinic connection [v → w] associated to two hyperbolic saddle-
foci of different Morse index v and w (the Morse indices of v and w are 1 and 2, respectively).
The eigenvalues of Dfp are:
(a) −Cv ± αvi and Ev with Cv, Ev > 0, for p = v;
(b) Ew ± αwi and −Cw with Cw, Ew > 0, for p = w.

Connections satisfying (B1) will be called Bykov connections. We now compute a topological invariant
for heteroclinic connections associated to two saddle-foci of different Morse indices.

Theorem 3. Let f, f̃ ∈ B. If f̃ is h–topologically equivalent to f , then:

(1) Cv

Ew
= Cṽ

Ew̃
if h preserves time-orientation;

(2) Cv

Ew
= Eṽ

Cw̃
if h reverses time-orientation;

(3) (αvEw + αwCv)×(Cv + Ew)
−1

= (αṽEw̃ + αw̃Cṽ)×(Cṽ + Ew̃)
−1

if h preserves time-orientation;

(4) (αvEw + αwCv)×(Cv + Ew)
−1

= − (αṽCw̃ + αw̃Eṽ)×(Eṽ + Cw̃)
−1

if h reverses time-orientation.

We address the proof of Theorem 3 in Subsection 7.3.

A heteroclinic connection from a saddle-focus to a non-trivial periodic solution is a phenomenon of
codimension one in M3. Our third goal is the study of the set P of C2–vector fields f on M3 such that
the flow has a heteroclinic connection between a saddle-focus and a non-trivial periodic solution with real
Floquet multipliers – see Figure 10. More precisely, the set P satisfies the following properties :

(P1) There is a one-dimensional heteroclinic connection [v → C] associated to a saddle-focus v and a
non-trivial periodic solution C of period T > 0 such that:
(a) the eigenvalues of Dfv are −Cv ± αvi and Ev with Cv, Ev > 0;
(b) the Floquet multipliers of C are real and given by e−CC < 1 and eEC > 1.

(P2) The local manifolds W s
loc(C) and Wu

loc(C) are smooth two-dimensional surfaces which are home-
omorphic to a cylinder as illustrated in Figure 4.

We do not consider saddle periodic solutions with two-dimensional stable and unstable manifolds which
are homeomorphic to a Moebius band. A description of a heteroclinic connection where (P2) does not
hold has been given in [39, Chapter 3].

Theorem 4. Let f, f̃ ∈ P. If f̃ is h–topologically conjugate to f , then:

(1) Cv

EC
= Cṽ

E
C̃

if h preserves orientation;

(2) Cv

EC
= Eṽ

C
C̃

if h reverses orientation;

(3)
(

αvEC + 2π
T
Cv

)

× (EC + Cv)
−1

=
(

αṽEC̃ + 2π
T̃
Cṽ

)

× (EC̃ + Cṽ)
−1

if h preserves orientation;
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(4)
(

αvEC + 2π
T
Cv

)

× (EC + Cv)
−1

= −
(

αṽCC̃ + 2π
T̃
Eṽ

)

× (CC̃ + Eṽ)
−1

if h reverses orientation.

The proof of Theorem 4 is similar to that given in Section 7 for Theorem 3; for the sake of completeness,
we sketch the main steps of the proof in Subsection 7.4.

The rest of this paper is organized as follows: in Section 4, applying coordinate changes, we C1–
linearize the vector field f around the nodes (saddle-foci and periodic solution); we introduce some
notation that will be used in the rest of the article and we obtain a geometrical description of the way the
flow transforms a curve of initial conditions lying across the stable manifold of the saddle in Section 5. We
show that along one-dimensional heteroclinic connections, the global distortion induced by the transition
map is bounded. Based in [13], we present the first proof of Theorem 1 in Section 6, emphasizing that
the invariant is topological. Using the concept of spinning in average, in Section 7 we present a new proof
for item (1) of Theorem 1. Moreover, we prove Togawa’s Theorem, we derive a topological invariant for
Bykov cycles and conjugacy invariants for cycles involving a non-trivial closed trajectory. We end this
article with a short discussion about the results.

Reversing the time-orientation of trajectories does not add significant difficulties. This is why we
restrict the proofs to the time-orientation preserving case. When there is no ambiguity, we remove the
subscripts which identify the homo/heteroclinic connection under consideration. We have endeavoured
to make a self contained exposition bringing together all topics related to the proofs. We have stated
short lemmas and we draw illustrative figures to make the paper easily readable.

4. Local Maps

Historically, in order to study homo and heteroclinic bifurcations, two approaches have been taken. In
the first one, due to Shilnikov, one rewrites the differential equation in integral form and uses smoothness
results for the integral equations to derive approximations of the Poincaré map. A different technique,
used by Tresser and coworkers, uses linearization results obtained via a normal form procedure. In this
article, we are going to use the second approach; we establish local coordinates near the hyperbolic
saddle-foci p and define some terminology that will be used in the rest of the paper. The letter p denotes
v or w when the results hold for both equilibria.

The behaviour of the vector field f in the neighbourhood of each heteroclinic connection [A → B] is
given, up to topological equivalence, by the linear part of f in the neighbourhood of A and B and by the
transition map between two discs transversal to the flow in those neighbourhoods. We choose coordinates
in the neighbourhoods of A and B in order to put f in canonical form and we assume that the transition
map is linear.

The crucial point is the application of Samovol’s Theorem [35] to C1–linearize the flow around the
nodes1– equilibrium or periodic solution – and to introduce cylindrical coordinates around them – see
also Homburg and Sandstede [23, Section 3.1]. We use neighbourhoods with boundary transverse to the
linearized flow.

4.1. C1–linearization comes “for free”for saddlle-foci. Given two cross sections Σin
p and Σout

p that
are transverse to the stable and unstable manifolds of p, respectively, the local transition Φp is the map:

Φp : Σin
p → Σout

p ,

that sends points in the boundary where the flow goes in into points in the boundary where it goes out.
The Hartman-Grobman Theorem [19] asserts that there is a continuous change of coordinates h near p
that transforms the solutions of ẋ = f(x), in a small neighbourhood of p, into the solutions of the linear
system ẏ = Dfp(y − p), in a neighbourhood of h(p). With these new coordinates, the return map is a
homeomorphism but is not evident the real geometry of the flow. Also, it is not clear how expansions and
contractions in y ∈ Σin

p can be derived. Belitskii [7] and Samovol [35] derived the following eigenvalue
condition which ensures the existence of a differentiable change of coordinates that linearizes the original
flow:

(2) Re(λi) 6= Re(λj) +Re(λk),

1In Subsection 4.1, we show that in a three-dimensional smooth manifold, if p is a hyperbolic saddle-focus, then any

C0–linearization is also a C1–linearization.
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Figure 3. Cylindrical neighbourhoods of the saddle-foci v (a) and w (b). The flow in the
neighbourhood of a saddle-focus swirls around the one-dimensional invariant manifold much as
air flow swirls around the core of a tornado.

where λ′
ns are the nonzero eigenvalues of Df at p. When the inequality (2) does not hold, the authors

of [39, Section 3.13] say that the eigenvalues exhibit a 2–resonance. If p is a saddle-focus in M3, the
C1–linearization holds because condition (2) is always satisfied. After the linearization, we may compute
Φp explicitely.

4.2. Saddle-foci. Recall that the Morse index of v and w is 1 and 2, respectively. Since v and w are
hyperbolic, by Samovol’s Theorem, the vector field f is C(1+ε)–conjugate to its linear part around each
saddle-focus v and w (ε > 0). As in the classic work of Tresser [43], we choose cylindrical coordinates
(ρ, θ, z) near v and w so that the linearized vector field can be written as:

(3) ρ̇ = −Cvρ ∧ θ̇ = αv ∧ ż = Evz

and

(4) ρ̇ = Ewρ ∧ θ̇ = αw ∧ ż = −Cwz.

After a linear rescaling of the local variables, we consider cylindrical neighbourhoods of v and w in
M3 of radius 1 and height 2 that we denote by V and W , respectively – see Figure 3. Their boundaries
consist of three components: the cylinder wall parametrized by x ∈ R (mod 2π) and |y| ≤ 1 with the
usual cover (x, y) 7→ (1, x, y) = (ρ, θ, z) and two disks (top and bottom). We take polar coverings of these
disks (r, ϕ) 7→ (r, ϕ, j) = (ρ, θ, z) where j ∈ {−1,+1}, 0 ≤ r ≤ 1 and ϕ ∈ R (mod 2π). By convention,
the intersection point of the one-dimensional homo or heteroclinic connection with the wall of the cylinder
has zero angular coordinate.

As depicted in Figure 3(a), the cylinder wall of V is denoted by Σin
v . The top and the bottom of the

cylinder are simply denoted by Σout
v . Note that W s

loc(v) corresponds to the circle y = 0. The boundary
of V can be written as the disjoint union:

∂V = Σin
v ∪̇Σout

v ∪̇Ωv,

where Ωv is the part of ∂V where the flow is not transverse. It follows by the above construction that:

Lemma 5. Solutions starting:

(1) at Σin
v go inside the cylinder V in positive time;

(2) at Σout
v go outside the cylinder V in positive time;
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(3) at Σin
v \W s(v) leave the cylindrical neighbourhood V at Σout

v .

If (x, y) ∈ Σin
v \W s

loc(v), let Tv(x, y) be the time of flight through V of the trajectory whose initial
condition is (x, y). It only depends on y 6= 0 and is given explicitly by

(5) Tv(x, y) =
1

Ev

ln

(

1

|y|

)

.

In particular limy→0 Tv(x, y) = +∞. Now, we obtain the expression of the local map that sends points
in the boundary where the flow goes in, into points in the boundary where the flows goes out. The local
map Φv : Σin

v → Σout
v near v is given by

(6) Φv(x, y) =
(

yδv ,−αv

Ev
ln |y|+ x

)

= (r, φ)

where δv = Cv

Ev
> 0 is the saddle index of v. Observe that for a fixed x0 ∈ R, limy→0 |Φv(x0, y)| =

(0,+∞).

Similarly, after linearizing and rescaling the local variables, we get dual cross sections near w. We
omit the details because they are similar to those of v. The set W s

loc(w) is the z–axis, intersecting the
top and bottom of the cylinder W at the origin of its coordinates – see Figure 3 (b). The set Wu

loc(w) is
parametrized by z = 0. We denote by Σin

w , the two connected components (top and bottom of W ). By
construction, we may easily conclude that:

Lemma 6. Solutions starting:

(1) at Σin
w go inside W in positive time;

(2) at Σout
w go outside the cylinder W in positive time;

(3) at Σin
w \W s

loc(w) leave the cylindrical neighbourhood W at Σout
w .

Of course, points in W s
loc(w) ∩ Σin

w do not return to Σout
w . If (r, ϕ) ∈ Σin

w , let Tw(r, ϕ) be the time of
flight through W of the trajectory whose initial condition is (r, ϕ). The time of flight only depends on
r ∈ R+ and is given explicitly by:

(7) Tw(r, ϕ) =
1

Ew

ln

(

1

r

)

.

For the connected component of Σin
w \W s

loc(w) with y > 0, the local map:

Φw : Σin
w \W s

loc(w) → Σout
w

near w is given by:

(8) Φw(r, ϕ) =
(

−αw

Ew
ln r + ϕ, rδw

)

= (x, y)

where δw = Cw

Ew
> 0 is the saddle index of w. The same expression holds for the local map from the

other connected component of Σin
w \W s

loc(w) to Σout
w where y < 0, with the exception that the second

coordinate of Φw changes its sign.

In Homburg [22], the author obtains precise asymptotic expansions for the local map Σin
v → Σout

v ,
similar to that of Ovsyannikov and Shilnikov [29]. In the present article, we omit high order terms
because they are not needed to our purposes.

4.3. Periodic Solution. Observing that the Floquet multipliers of C do not depend on the specific
choice of p ∈ C, let us consider a local cross-section Π⋆ at a point p in C. Since C is hyperbolic, by
Hartman [19], there is a neighbourhood V ⋆ of p in Π⋆ where the first return map π is C1–conjugated to
its linear part. The eigenvalues of Dπ are eEC and e−CC , where CC, EC > 0. Suspending the linear map
gives rise, in cylindrical coordinates (ρ, θ, z) around C, to the system of differential equations:

(9)







ρ̇ = −CC(ρ− 1)

θ̇ = 2π
T

ż = ECz

which is orbitally equivalent to the original flow near C; T > 0 is the period of C. In these coordinates,
the T–periodic trajectory C is the circle defined by ρ = 1 and z = 0, its local stable manifold, W s

loc(C),
is the plane z = 0 and Wu

loc(C) is the surface defined by ρ = 1 – see Figure 4.
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Figure 4. Neighbourhood of the closed trajectory C, invariant manifolds and corresponding
cross sections. (a) and (b): general cylindrical coordinates on the neighbourhood of C. (b): the
sets W s

loc(C) and Wu

loc(C) are smooth two-dimensional surfaces homeomorphic to a cylinder as
stated in (P2).

With this kind of suspension in which the ceiling map is constant, we might lose some information
about the original dynamics: in particular, it does not preserve the return time of the original trajectories.
However, at the limit, the time spent for initial conditions near W s

loc(C) may be approximated by the
time of flight through the suspended neighbourhood, which are preserved under conjugacy. This is the
only point where the conjugacy is used.

After a rescaling of variables (if necessary), we will work with a hollow three-dimensional cylindrical
neighbourhood VC of C contained in the suspension of V ⋆ (see Figure 4):

VC = {(ρ, θ, z) : 1− ε ≤ ρ ≤ 1 + ε, −1 ≤ z ≤ 1 and θ ∈ R (mod 2π)} .

Its boundary is a disjoint union:

∂VC = Σin
C ∪̇Σout

C ∪̇ΩC

such that Σin
C is the union of the walls of the cylinder, ρ = 1 ± ε, locally separated by Wu

loc(C) – see
Figure 4. The set Σout

C is the union of two anuli, the top and the bottom of the cylinder, z = ±1,
locally separated by W s

loc(C). The vector field is transverse to ΩC at all points except at the four circles

ΩC = Σin
C ∩ Σout

C . It follows directly by construction that:

Lemma 7. Solutions starting:

(1) at Σin
C go inside the hollow cylinder VC in positive time;

(2) at Σout
C go outside the hollow cylinder VC in positive time.

The two cylinder walls, Σin
C , are parametrized by the covering maps:

(θ, z) 7→ (1± ε, θ, z) = (ρ, θ, z),

where θ ∈ R (mod 2π), |z| < 1. In these coordinates, Σin
C ∩W s

loc(C) is the union of the two circles z = 0.
The two anuli Σout

C are parametrized by the coverings:

(ϕ, r) 7→ (r, ϕ,±ε) = (ρ, θ, z),

for 1−ε < r < 1+ε and ϕ ∈ R (mod 2π) and where Σout
C ∩Wu

loc(C) is the union of the two circles r = 1.
In these coordinates, the set ΩC is the union of the four circles defined by ρ = 1± ε and z = ±ε. Noting
that the trajectory whose initial condition is (θ, z) ∈ Σin

C arrives at Σout
C at time:

(10) TC(θ, z) =
1

EC

ln

(

1

|z|

)

,
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the local maps φC from a connected component of Σin
C into the corresponding connected component of

Σout
C are given by:

(11) ΦC(θ, z) =

(

θ −
2π

TEC

ln |z|, 1± εzδC
)

= (ϕ, r) where δC =
CC

EC

> 0 .

The constant δC is called the saddle index of C. The signs ± depend on the component of Σin
C we started

at, + for trajectories starting with ρ > 1 and − for ρ < 1. More details about the local maps may be
found in [3, 34].

4.4. Transition Maps and First Return Maps. Let A and B denote two nodes not necessarily
different. Here, we study the lowest order map for the transition Ψ[A→B] : Σout

A → Σin
B along the

connection [A → B] for the three cases under consideration:

• Shilnikov cycles (Subsection 4.4.1);
• Bykov connections (Subsection 4.4.2);
• heteroclinic connections between a saddle-focus and a periodic solution (Subsection 4.4.2).

By the Tubular Flow Theorem [21], solutions starting near Σout
A ∩Wu

loc(A) follow the one-dimensional
homo/heteroclinic connection. The return map is highly nonlinear since the distortion near the hyperbolic
saddle-foci is tremendous. Since our topological invariants will be computed as a “limit” involving times
of flight, we are interested in the map ηAB defined by Ψ[A→B] ◦ ΦA : Σin

A → Σin
B to compute the ratio of

“consecutive” times of flight.

4.4.1. Homoclinic cycle to v. The map Φv defined in (6) is given in polar coordinates (r, φ) in Σout
v .

Since the coordinates in Σin
v may be considered as rectangular coordinates, it is required to change

them in order to compose the maps. Let X = r cos(φ) and Y = r sin(φ). In rectangular coordinates,
the global transition from Σout

v to Σin
v can be approximated by the linear diffeomorphism given by

Ψ[v→v] : Σ
out
v → Σin

v where:

x = a11X + a12Y and y = a21X + a22Y

and det

(

a11 a12
a21 a22

)

6= 0. Neglecting high order terms, the first return map:

Πv = Ψ[v→v] ◦ Φv : Σin
v → Σin

v

is given explicitely by:

(12)

(

x
y

)

7→





yδv .
(

a11 cos
(

αv

Ev
ln |y| − x

)

− a12 sin
(

αv

Ev
ln |y| − x

))

yδv .
(

a21 cos
(

αv

Ev
ln |y| − x

)

− a22 sin
(

αv

Ev
ln |y| − x

))



+ . . . ,

where the dots mean smooth functions which tend to zero as y → 0 to the order of yδv . A determination
of the precise form of the Poincaré map that also takes higher-order terms into consideration can be
found in [40, Chapter 13].

4.4.2. Heteroclinic connections [v → w] and [v → C]. The linear part of the map Ψ[v→w] may be
represented, in rectangular coordinates (X,Y ), as the composition of a rotation of the coordinate axes
and a change of scales. As in Bykov [10] and Homburg and Sandstede [23], after a rotation and a
uniform rescaling of the coordinates, we may assume, without loss of generality, that Ψ[v→w] is given in
rectangular coordinates by the linear map:

(13) Ψ[v→w]

(

X
Y

)

=

(

a 0
0 1

a

)(

X
Y

)

+ . . . a ∈ R+,

where the dots mean smooth functions which tend to zero as X,Y → 0. To compose this map with Φw,
it is required to change the coordinates. More precisely, let ηvw the map defined by:

Ψ[v→w] ◦ Φv : Σin
v → Σin

w .

The initial condition (x, y) ∈ Σin
v under the local map near v, Φv, is mapped into:

(14) Φv(x, y) =

(

yδv , x−
αv

Ev

ln |y|

)

= (r, ϕ).
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β
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Figure 5. The image of a segment β, under Φ−1
v or Φw, is a helix accumulating on the circle

defined by y = 0 in local coordinates. The double arrows represent the orientation and not the
flow: (a) Equilibrium v with Morse index 1. (b) Equilibrium w with Morse index 2.

Transforming the polar coordinates of Φv(x, y) into rectangular coordinates, it yields:

(15)

{

X = r cos(ϕ)
Y = r sin(ϕ)

Therefore, we may write the radial component of Ψ[v→w] ◦ Φv(x, y) as:

(16) R =

√

a2r2 cos2(ϕ) + a−2r2 sin2(ϕ)

where r = yδv and ϕ = x − αv

Ev
ln |y|. If the argument of

(

ar cos(ϕ), 1
a
r cos(ϕ)

)

lies in the interval
(

kπ
2 , (k+1)π

2

)

, with k ∈ N, then the argument of Ψ[v→w](X,Y ) lies in the same interval. Formula (16)

will be useful to the computation of the times of flight in Subsection 7.3. Similar arguments can be used
to conclude that the radial component of the transition map Ψ[v→C] from Σin

v to Σin
C takes a similar form

to that of (16).

5. Local Geometry

The coordinates and notations of Section 4 will be used to study the geometry of the local dynamics
near each node. This is the main goal of the present section but first we introduce the concept of a
segment on Σout

v and Σin
w .

Definition 1. A segment β:

(1) on Σout
v is a smooth regular parametrized curve β : [0, 1] → Σout

v that meets Wu
loc(v) at the

point β(0) and such that, writing β(s) = (r(s), φ(s)), both r and φ are monotonic and bounded
functions of s – see Figure 5(a).

(2) on Σin
w is a smooth regular parametrized curve β : [0, 1] → Σin

w that meets W s
loc(w) at the point

β(0) and such that, writing β(s) = (r(s), ϕ(s)), both r and ϕ are monotonic and bounded functions
of s – see Figure 5(b).
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The definition of a segment may be relaxed: the components do not need to be monotonic for all
s ∈ [0, 1]. We use the assumption of monotonicity to simplify the proof of item (1) of Theorem 1. The
following definition adapted from [3, 34] will be useful in the sequel.

Definition 2. Let a, b ∈ R such that a < b and let Σout
w or Σin

v be a surface parametrized by a covering
(x, y) ∈ R× [a, b] where θ is periodic. A helix on Σout

w accumulating on the circle y = y0 is a curve

γ : [0, 1] → Σin
v or γ : [0, 1] → Σout

w

such that its coordinates (x(s), y(s)) satisfy lims→0 y(s) = y0, lims→0+ |x(s)| = +∞ and the maps x and
y are monotonic.

The next result characterizes the local dynamics near the two types of steady-state.

Lemma 8. A segment β:

(1) on Σin
w is mapped by Φw into a helix on Σout

w accumulating on the circle defined by Σout
w ∩Wu

loc(w);
(2) on Σout

v is mapped by Φ−1
v into a helix on Σin

v accumulating on the circle defined by Σin
v ∩W s

loc(v).

Proof. We prove item (1); the proof of (2) follows straightforwardly reversing the time. Let β be a
segment on Σin

w as shown in Figure 5(b). Write β(s) = (r⋆(s), ϕ⋆(s)) ∈ Σin
w , where s ∈ [0, 1], ϕ⋆ is a

decreasing map as function of s and lims→0+ r⋆(s) = 0. We omit the dependence on s to simplify the
notation. The function Φw maps the curve β ⊂ Σout

w into the curve defined by:

Φw(β(s)) = Φw[r⋆(s), ϕ⋆(s)] =

[

−
αw

Ew

ln r⋆(s) + ϕ⋆(s), (r⋆(s))δw
]

= (x(s), y(s)).

The map Φw ◦ β is a helix accumulating on the circle defined by Σout
w ∩Wu

loc(w) because x(s) and y(s)
are monotonic and

lim
s→0+

(r⋆(s))δw = 0 and lim
s→0+

∣

∣

∣

∣

−
αw

Ew

ln r⋆(s) + ϕ⋆(s)

∣

∣

∣

∣

= +∞.

�

Remark 2. The coordinates (x, y) ∈ Σout
w may be chosen so as to make the map ϕ⋆ increasing or

decreasing, according to our convenience.

In the context of Theorem 1, recall that by convention, the point Wu(v) ∩W s(v) ∩ Σin
v has angular

coordinate equal to zero. For τ > 0 very small, we define the two lines:

Cv = {(x, y) ∈ Σin
v : y = 0 and 0 < |x| ≤ τ}.

Analogously for w, as depicted in Figure 6, we set:

Cw = {(x, y) ∈ Σout
w : y = 0 and 0 < |x| ≤ τ}.

The following geometrical result is the main ingredient for the proof of Theorem 1 in Section 6. Despite
the fact that the stable manifold of v continued along the homoclinic cycle in backward time has a helicoid
form, next lemma states that its first intersection with Σin

v has two segments. Similar reasonings work
for w. The leading rotation occurs near the invariant saddle and not during the homo/heteroclinic
connection; more precisely, the distortion induced by Ψ−1

[v→v] and Ψ[w→w] is small and controlled. The

proof of the following result is an immediate application of the Tubular Flow Box Theorem [21].

Lemma 9. The set:

(1) Cv is mapped by Ψ−1
[v→v] into two segments in Σout

v ;

(2) Cw is mapped by Ψ[w→w] into two segments in Σin
w .

Item (2) of Lemma 9 is illustrated in Figure 6. Let f, f̃ ∈ H such that f and f̃ are h-topologically
equivalent. If h(v) =: ṽ, then:

(1) if h preserves orientation, then each connected component of Ψ−1
[ṽ→ṽ](Cṽ)\W

s
loc(ṽ) is a segment

in Σout
ṽ ;

(2) if h reverses orientation, then each connected component of Ψ[ṽ→ṽ](Cṽ)\W
u
loc(ṽ) is a segment in

Σout
ṽ .

Dual results hold for w.
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wC

ψ
[w    w]

Σ in

w

Figure 6. The set Cw is mapped by Ψ[w→w] into two segments in Σin

w meaning that the
distortion along the transition map Ψ[w→w] is small.

6. Topological invariants for Shilnikov homoclinic cycles

In this section, we deal with homoclinic cycles of Shilnikov type associated to a saddle-focus p. For
convenience, we concentrate our analysis on the case where the Morse index of p is 2 (equilibrium w) and
h preserves time-orientation. The other cases have a similar treatment reversing the time. The following
topological proof is based on the works of [3, 13, 16, 41]. Although we are using the time of flight of
trajectories through the neighbourhoods V and W , the result does not depend on the conjugacy because
the invariants are constructed as a limit.

6.1. Proof of item (1) of Theorem 1: the imaginary part. Let f, f̃ ∈ H and let f̃ be a vector field
that is h–topologically equivalent to f (preserving time-orientation) around w. We want to prove that
|αw| = |αw̃|.

Let us find two neighbourhoods of w and w̃ where it is possible to linearize the vector fields around
the saddle-foci, as done in Subsection 4.2. If the homeomorphism given by the linearizations are denoted
by ξw and ξw̃, then the map h⋆ := ξw̃ ◦ h ◦ (ξw)−1 can be considered as a homeomorphism between two

cylinders W and W̃ , where formulas of Section 4 can be applied, up to higher order terms. With no loss
of generality and in order to simplify the notation, we may consider h ≡ h⋆ the homeomorphism between
two cylinders as those defined before.

Let α be one of the two segments Ψ[w→w](Cw) ⊂ Σin
w parametrized by s ∈ [0, 1]: α(s) = (rα(s), ϕα(s)).

By definition, it follows that ϕα(s) is bounded for [0, 1] – in fact, are asking for this restriction for s ≈ 0.
Using (8), we have:

Φw(α(s)) =

(

αw

Ew

ln(rα(s)) + ϕα(s); r
δ
α(s)

)

= (x, y).

Let ϕ0 ∈ [0, 2π[. For n ∈ N, let sn ∈ R be such that (see Figure 7):

(17) −
αw

Ew

ln(rα(sn)) + ϕα(sn) = 2nπ + ϕ0

and define An = α(sn), Bn = Φw(α(sn)) = Φw(An) ∈ Σout
w and Ãn = h(An) = h(Φ−1

w (Bn)). We also set

B̃n = Φ−1
w̃ (Ãn) as suggested in Figure 7. First we are going to show that for all n ∈ N, we have:

(18) ϕ̃(Ãn) = x̃(B̃n)−
αw̃

αw

(2nπ + ϕ0 − ϕ(An)) + o(|rα(s)|).

Indeed, using (8), it follows that:

(19) ϕ̃(Ãn)− x̃(B̃n) = ϕ̃(Ãn) +
αw̃

Ew̃

ln(r̃α(sn))− ϕ̃(Ãn).

By (7), note that − 1
Ew̃

ln(r̃α(sn)) is the time of flight inside W̃ of a trajectory whose initial condition is

(r̃α(sn), ϕ̃α(sn)), where:
Σin

w̃ = h(Σin
w ) and Σout

w̃ = h(Σout
w ).
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Figure 7. Topological equivalence: An = α(tn) , Bn = Φw(α(sn)) = Φw(An) ∈ Σout

w , Ãn =

h(An) = h(Φ−1
w (Bn) and B̃n) = Φw̃(Ãn).

Near Wu
loc(w) ∩ Σin

w (ie when rα(s) ≈ 0), up to higher order terms, the (real) time of flight inside a
small neighbourhood of w of a point in Σin

w is essentially governed by Tw given in formula (7). Thus, we
may write:

(20)
αw̃

Ew̃

ln(r̃α(sn)) =
αw̃

Ew

ln(rα(sn)) + o(|rα(sn)|).

Combining (19) and (20), we have ϕ̃(Ãn)− x̃(B̃n) =
αw̃

Ew
ln(rα(sn))+ o(|rα(sn)|). Using now (17), we get:

αw̃

Ew

ln(rα(sn)) + o(|rα(sn)|) = (−2nπ − ϕ0 + ϕα(sn))×
αw̃

αw

.

and so ϕ̃(Ãn)− x̃(B̃n) = −αw̃

αw
(2nπ + ϕ0 − ϕ(An)) + o(|rα(sn)|). Formula (18) is shown.

By Lemma 9 and the subsequent remark, h(α) must be a segment on Σin
w̃ . Thus ϕ̃(h(α(s)) is bounded;

this means that there exists k ∈ R+ such that |ϕ̃(Ãn)| < k. Equality (18) implies that there exists
k ∈ R+ such that:

(21)

∣

∣

∣

∣

x̃(Bn)−
αw̃

αw

(2πn+ ϕ0 − ϕ(An)) + o(|rα(sn)|)

∣

∣

∣

∣

< k.

Taking the limit of (21) for n ∈ N, it implies that:

(22) lim
n∈N

∣

∣

∣

∣

x̃(Bn)

n
−

αw̃

αw

(

2π +
ϕ0

n
−

ϕ(An)

n

)

+
o(|rα(sn)|)

n

∣

∣

∣

∣

= 0

Since the sequence ϕ(An) is bounded, then limn∈N
ϕ(An)

n
= 0. Consequently,

(23) lim
n∈N

∣

∣

∣

∣

x̃(Bn)

n

∣

∣

∣

∣

=

∣

∣

∣

∣

αw̃

αw

2π

∣

∣

∣

∣

.
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By construction, one knows that limn∈N x(Bn) = ϕ0, then:

lim
n∈N

x̃(h(Bn)) = lim
n∈N

x̃(B̃n) = ϕ̃0,

for some ϕ̃0 ∈ [0, 2π[. Therefore there exists M ∈ R+ such that:

x̃(B̃n)− 2πn < M and x̃(B̃n) + 2πn < M

and hence for all n ∈ N, it follows that
∣

∣

∣

x̃(B̃n)
n

± 2π
∣

∣

∣
< M

n
, meaning that limn∈N

∣

∣

∣

x̃(B̃n)
n

∣

∣

∣
= 2π. Using

(23), it implies that αw = ±αw̃. A novel and more elegant proof of item (1) of Theorem 1 will be given
in Section 7.

6.2. Togawa’s Theorem: the saddle index. Togawa’s Theorem states that the saddle index of a
saddle-focus is a topological invariant. The idea behind the proof of [42] is the concept of link types of
periodic solutions when δv = Cv

Ev
< 1; more precisely, if Cv < Ev, Shilnikov [36, 37, 38] proved that there

are infinitely many linked solutions (of saddle-type) arbitrarily close to the homoclinic cycle. The author
considered double round periodic solutions and knot invariants to count the number of twists around
the homoclinic separatrix. The ratio of twists in the first and the second turns determines the ratio of
eigenvalues Cv and Ev.

The topological invariance of the saddle index reflects the dependence of the configuration of the
invariant manifolds on the saddle index. It may have further implications for the bifurcation diagrams of
two coexisting saddle-foci as those of [27, 33] but this subject is beyond the scope of this article.

Let Tvv(x, y) denote Tv(Πv(x, y)). We will prove that if (xn, yn)n ∈ Σin
v is a sequence such that:

(24) lim
n∈N

(xn, yn) ∈ W s
loc(v) (⇔ lim

n∈N
yn = 0),

then the limit limn∈N
Tvv(xn,yn)
Tv(xn,yn)

does not depend on the sequence (xn, yn)n and then it is a topological

invariant.

Alternative proof of item (2) of Theorem 1: Let (xn, yn) ∈ Σin
v as in (24). By (5), we have Tv(xn, yn) =

− 1
Ev

ln |yn|. Using the expression (12), we know that:

Πv(xn, yn) =





|yn|
δv .
(

a11 cos
(

αv

Ev
ln |yn| − xn

)

− a12 sin
(

αv

Ev
ln |yn| − xn

))

|yn|
δv .
(

a21 cos
(

αv

Ev
ln |yn| − xn

)

− a22 sin
(

αv

Ev
ln |yn| − xn

))





Using the argument of Takens [41, Section 3.2], it follows that:

Tvv(xn, yn) = −
1

Ev

ln

(

|yn|
δv

(

a21 cos

(

αv

Ev

ln |yn| − xn

)

− a22 sin

(

αv

Ev

ln |yn| − xn

)))

+ o(|yn|
δv).

Thus, we may write:

lim
n∈N

Tvv(xn, yn)

Tv(xn, yn)
= lim

n∈N

ln
(

|yn|
δv .
(

a21 cos
(

αv

Ev
ln |yn| − xn

)

− a22 sin
(

αv

Ev
ln |yn| − xn

)))

+ o(|yn|
δv)

ln |yn|
.

Using the properties of ln, one concludes that:

(25) lim
n∈N

Tvv(xn, yn)

Tv(xn, yn)
= lim

n∈N

δv ln |yn|+ ln
[

a21 cos
(

αv

Ev
ln |yn| − xn

)

− a22 sin
(

αv

Ev
ln |yn| − xn

)]

ln |yn|
.

Since a21 cos
(

αv

Ev
ln |yn| − xn

)

− a22 sin
(

αv

Ev
ln |yn| − xn

)

is bounded and limn∈N ln |yn| = +∞ (because

limn∈N yn = 0), we focus on the leading terms and we conclude immediately that (25) is equal to δv, the
saddle index of v. �

If δv > 1, the homoclinic cycle Γv is attracting and limn∈N
Tvv(xn,yn)
Tv(xn,yn)

> 1, which is consistent with

previous results in the literature, which say that the time of flight through V increases geometrically
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Figure 8. Example of a trajectory turning twice around a periodic solution with respect to Πp.

in consecutive visits of a solution to V . If k ∈ N, since limn∈N
Tv(Π

k+1
v (xn,yn))

Tv(Πk
v(xn,yn))

= δv, then it follows

straightforwardly that:

lim
n∈N

Tv(Π
k
v(xn, yn))

Tv(xn, yn)
= δkv.

7. Spinning in Average

The following definitions and ideas have been motivated by the concept of chaotic double cycling of
Rodrigues et al [34].

7.1. Definition and properties. Throughout this section, let p denote either a saddle-focus or a pe-
riodic solution. Given a homoclinic cycle associated to p, Γp, let Vp be a compact neighbourhood of
the node p such that each boundary ∂Vp is a finite union of smooth manifolds with boundary, that are
transverse to the vector field almost everywhere. The set Vp is called an isolating block for p.

Consider a codimension one submanifold with boundary Πp ⊂ Vp of M3, such that (see Figure 8
where p is a non-trivial closed trajectory):

• the flow is transverse to Πp;
• Πp intersects ∂Vp transversely;
• W s

loc(p) ⊂ ∂Πp and Wu
loc(p) ⊂ ∂Πp.

We call Πp a counting section. We are interested in trajectories that go inside the neighbourhood Vp in
positive time and hit the counting section Πp a finite number of times (which can be zero) until they
leave the neighbourhood. Every time the trajectory makes a turn inside Vp it hits the counting section.
It is natural to have the following definition where int(A) is the topological interior of A ⊂ M3:

Definition 3. Let Vp be an isolating block for p and Πp a counting section. Let q ∈ ∂Vp be a point such
that the following properties hold:

• ∃τ > 0, ∀t ∈ (0, τ), ϕ(t, q) ∈ int(Vp)
• ϕ(τ, q) ∈ ∂Vp.

The trajectory of q turns n times around p in Vp, relatively to Πp if

(26) spin(q, Vp,Πp) := # ({ϕ(t, q), t ∈ [0, τ ]} ∩Πp) = n ≥ 0 .
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Figure 9. The sets Vp and V ⋆

p are two isolating blocks of p such that Vp ⊃ V ⋆

p . The point
ϕ(q, δ) belongs to the wall of the narrower cylinder V ⋆

p .

Hereafter, this integer will be called by spinning number of q, which strongly depends on the isolating
block and on the counting section. We state the following technical result that we use in the sequel.

Lemma 10. Let (xn, yn) ∈ Σin
p be a sequence such that limn∈N(xn, yn) ∈ W s

loc(p) and let Tp(xn, yn) be
the time spent in Vp by the trajectory whose initial condition is (xn, yn). The limit

(27) lim
n∈N

spin((xn, yn), Vp,Πp)

Tp(xn, yn)

does not depend neither on the isolating block Vp nor on the cross section Πp.

Proof. Let (xn, yn) ∈ Σin
p and let Tp(xn, yn) be as in the statement. In order to simplify the arguments,

let Vp and V ⋆
p be two isolating blocks of p such that Vp ⊃ V ⋆

p as shown in Figure 9. Let Π⋆
p ⊂ V ⋆

p and
Πp ⊂ Vp be two counting sections at p.

First note that for each q = (xn, yn) ∈ Σin
p , there exists a bounded map k : Σin

p → Z such that:

(28) spin(q, Vp,Πp) = spin(ϕ(q, δ), V ⋆
p ,Π

⋆
p) + k(q),

where δ = min{t ∈ R+ : ϕ(q, t) ∈ ∂V ⋆
p } – it means that ϕ(q, δ) is the first intersection of {ϕ(q, t)}|t>0

with the wall of the narrower cylinder V ⋆
p . Using (28), it implies that:

lim
n∈N

spin(ϕ((xn, yn), δ), Vp,Πp)

Tp(xn, yn)
= lim

n∈N

spin(ϕ((xn, yn), δ), V
⋆
p ,Π

⋆
p) + k(xn, yn)

Tp(xn, yn)

= lim
n∈N

spin(ϕ((xn, yn), δ), V
⋆
p ,Π

⋆
p)

Tp(xn, yn)
+ lim

n∈N

k(xn, yn)

Tp(xn, yn)

= lim
n∈N

spin(ϕ((xn, yn), δ), V
⋆
p ,Π

⋆
p)

T ⋆
p(xn, yn) + τ

,

where τ > 0 is the upper limit of time that trajectories spend from Vp to V ⋆
p and T ⋆

p(xn, yn) is the time
of flight of ϕ((xn, yn), δ) through V ⋆

p . The last equality follows because limn∈N Tp(xn, yn) = +∞ and k
is bounded. �
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Limit (27) is what we call spinning in average, which does not depend on the choice of coordinates.
Observe that a homeomorphism h maps the local invariant manifolds into local invariant manifolds and
cylindrical coordinates into cylindrical coordinates. Thus, we may conclude that:

lim
n∈N

spin((xn, yn), Vp,Πp)

Tp(xn, yn)
= lim

n∈N

spin(h(xn, yn), h(Vp), h(Πp))

Tp(h(xn, yn)) + o(|yn|)
= lim

n∈N

spin(h(xn, yn), h(Vp), h(Πp))

Tp(h(xn, yn))
.

For an equilibrium point p, from now on we use as counting section the following rectangle denoted by
Πp:

Πp = {(ρ, θ, z) : θ = 0, 0 ≤ ρ ≤ 1 and 0 ≤ z ≤ 1} .

The coming step is to compute (27) and show that it does not depend on the sequence (xn, yn)n∈N.
Denoting by [a] the greatest integer less than or equal to a, we have the following result, whose proof
follows from the expression of the angular component of Φv in (6) and Φw in (8).

Lemma 11 (Rodrigues et al [34], adapted). The spinning number of (xn, yn) ∈ Σin
p inside Vp with

respect to Πp is given by:

spin((xn, yn), Vp,Πp) =

∣

∣

∣

∣

[

αpTp(xn, yn) + xn

2π

]∣

∣

∣

∣

.

which tends to +∞ when yn tends to zero.

7.2. Shilnikov cycle. In the present section, we give an alternative proof of item (1) of Theorem 1,
where the absolute value of the imaginary part of the eigenvalues of Df at the saddle-focus may be
considered a topological invariant in H.

Alternative Proof of item (1) of Theorem 1. Let (xn, yn) ∈ Σin
p be a sequence such that limn∈N(xn, yn) ∈

W s
loc(p) and let Tp(xn, yn) be the time spent in Vp by the trajectory whose initial condition is (xn, yn).

By Lemma 11, there exists K ∈ R+ such that:

spin((xn, yn), Vp,Πp)−

∣

∣

∣

∣

αpTp(xn, yn) + xn

2π

∣

∣

∣

∣

< K.

Since limn∈N Tp(xn, yn) = +∞, it implies that:

lim
n∈N

spin((xn, yn), Vp,Πp)−
∣

∣

∣

αpTp(xn,yn)+xn

2π

∣

∣

∣

Tp(xn, yn)
= 0

and then:

(29) lim
n∈N

spin((xn, yn), Vp,Πp)

Tp(xn, yn)
= lim

n∈N

∣

∣

∣

αpTp(xn,yn)+xn

2π

∣

∣

∣

Tp(xn, yn)
= lim

n∈N

|αp|Tp(xn, yn)

2πTp(xn, yn)
=

|αp|

2π
.

Since the spinning in average is preserved under homeomorphisms, it follows that |αp| is a modulus of
topological equivalence. �

The previous result allows us to conclude that asymptotically we have:

(30)
spin((xn, yn), Vp,Πp)

Tp(xn, yn)
≈

|αp|

2π
,

which means that up to multiplication by a positive constant, the time of flight of trajectories with initial
condition (xn, yn) through Vp (with limn∈N yn = 0) can be replaced by the number of revolutions around
p as defined in (26). The one-dimensional invariant manifold of p behaves as a vortex core curve since
solutions spiral around it.
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Figure 10. Heteroclinic connection involving a saddle-focus v of Morse index 1 and a periodic
solution C.

7.3. Bykov connection. Using the concept of spinning in average, we prove item (1) of Theorem 3. If
(x, y) ∈ Σin

v , let Tvw(x, y) denote Tw(ηvw(x, y)) – please recall the definiton of ηvw in Subsection 4.4.

Proof of item (1) of Theorem 3. Let (xn, yn) ∈ Σin
v such that limn∈N(xn, yn) ∈ W s

loc(v). Using (5), we
may write Tv(xn, yn) = − 1

Ev
ln |yn|. In the polar coordinates of Σin

w , the radial component of ηvw(xn, yn)
is given by:

R = r

√

a2 cos2(ϕ) + a−2 sin2(ϕ),

where r = |yn|
δv and ϕ = xn − αv

Ev
ln |yn|. Writing the expressions explicitely, we have:

Tvw(xn, yn) = −
1

Ew

ln

(

|yn|
δv ×

√

a2 cos2
(

xn −
αv

Ev

ln |yn|

)

+ a−2 sin2
(

xn −
αv

Ev

ln |yn|

)

)

+ o(|yn|
δv)

and thus:

lim
n∈N

Tvw(xn, yn)

Tv(xn, yn)
= lim

n∈N

1
Ew

ln
(

|yn|
δv ×

√

a2 cos2(xn − αv

Ev
ln |yn|) + a−2 sin2(xn − αv

Ev
ln |yn|)

)

+ o(|yn|
δv)

1
Ev

ln |yn|

Using the properties of ln, it follows that:

lim
n∈N

Tvw(xn, yn)

Tv(xn, yn)
= lim

n∈N

Ev

Ew

δv ln |yn|+
1
2 ln

(

a2 cos2(xn − αv

Ev
ln |yn|) + a−2 sin2(xn − αv

Ev
ln |yn|)

)

ln |yn|

Noting that ln
(

a2 cos2(xn − αv

Ev
ln |yn|) + a−2 sin2(xn − αv

Ev
ln |yn|)

)

is bounded, the previous limit can

be written as Cv

Ew
. �

In order to prove item (3) of Theorem 3, we generalize the notion of spinning in average for two
nodes connected by a one-dimensional heteroclinic connection of the type [v → w]. We are interested in
trajectories that go inside a neighbourhood V in positive time and hit the counting section Πv a finite
number of times until they leave the neighbourhood and jump for W repeating the process. Every time
the trajectory makes a turn inside the neighbourhoods, it hits the corresponding counting sections. This
is the motivation for the following definition:

Definition 4. Let V and W be isolating blocks for v and w, respectively, and let Πv, Πw be the corre-
sponding counting sections. Let q ∈ ∂V be a point such that the following properties hold:

• ∃τ1 > 0, ∀t ∈ (0, τ1), ϕ(t, q) ∈ int(V ) ;
• ϕ(τ1, q) ∈ ∂V ;
• ∃τ2 > 0, ∀t ∈ (0, τ2), ϕ(t, ηvw(q)) ∈ int(W ) ;
• ϕ(τ2, ηvw(q)) ∈ ∂W ;
• between V and W the solution ϕ(t, ⋆) does not visit the neighbourhood of any other saddle.

The trajectory of q turns n1 times around v in V , relatively to Πv and n2 times around w in W , relatively
to Πw, if spin(q, V,Πv) = n1 and spin(ηvw(q),W,Πw) = n2.
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We may then define the spinning number along the heteroclinic connection [v → w] as:

spin(q, V,W,Πv,Πw) = spin(q, V,Πv) + spin(ηvw(q),W,Πw)

Roughly speaking, if q ∈ Σin
v , the number spin(q, V,W,Πv,Πw) counts the number of hits in Πv and

Πw of the trajectory with initial condition q. The following proof has been based on [12, 34, 41].

Proof of item (3) of Theorem 3. Let (xn, yn) ∈ Σin
v be a sequence such that limn∈N(xn, yn) ∈ W s

loc(v).

By (30), there exists k ∈ R+ such that
∣

∣

∣

∣

spin((xn, yn), V,W,Πv,Πw)−
|αv|

2π
Tv(xn, yn)−

|αw|

2π
Tw(ηvw(xn, yn))

∣

∣

∣

∣

< k.

Thus:

lim
n∈N

spin((xn, yn), V,W,Πv,Πw)−
[

|αv|
2π Tv(xn, yn) +

|αw|
2π Tw(ηvw(xn, yn))

]

τn(xn, yn)
= 0

where τn(xn, yn) = Tv(xn, yn)+sn+Tw(ηvw(xn, yn)) and sn is the time of flight of the transition between
Σout

v and Σin
w . Let us compute the following limit:

lim
n∈N

|αv|Tv(xny, yn) + |αw|Tw(ηvw(xn, yn))

Tv(xn, yn) + sn + Tw(ηvw(xn, yn))

Since limn∈N sn = s ∈ R+, then we may deduce the following:

lim
n∈N

|αv|Tv(xn, yn) + |αw|Tw(ηvw(xn, yn))

Tv(xn, yn) + sn + Tw(ηvw(xn, yn))
=

= lim
n∈N

|αv|Tv(xn, yn) + |αw|Tw(ηvw(xn, yn))

Tv(xn, yn) + Tw(ηvw(xn, yn))
=

= lim
n∈N

|αv|Tv(xn, yn) + |αw|Tw(ηvw(xn, yn))

Tv(xn, yn)
× lim

n∈N

Tv(xn, yn)

Tv(xn, yn) + Tw(ηvw(xn, yn))
=

= |αv|+ lim
n∈N

|αw|Tvw(xn, yn)

Tv(xn, yn)
× lim

n∈N

(

1 +
Tvw(xn, yn)

Tv(xn, yn)

)−1

=

(∗)
=

(

|αv|+ |αw|
Cv

Ew

)

×

(

1 +
Cv

Ew

)−1

=

= (|αv|Ew + |αw|Cv)× (Cv + Ew)
−1

,

which does not depend on the sequence (xn, yn)n∈N. Equality (*) follows from the proof of item (1) of

Theorem 3 where we have shown that limn∈N
Tvw(xn,yn)
Tv(xn,yn)

= Cv

Ew
.

�

On the proof of Theorem 3, the time τn can be replaced by the sum of the local time of flight near the
two saddles because asymptotically solutions spend almost all the time near the saddles and not during
the transition from Σout

v and Σin
w .

7.4. Heteroclinic connection involving a saddle-focus and a periodic solution. The proof of
Theorem 4 is similar to that performed for Theorem 3. We sketch here the main steps of the proof. First
of all, observe that Lemmas 10 and 11 hold for the case where p is a non-trivial closed trajectory. If
(θn, zn) ∈ Σin

C , the spinning number of (θn, zn) inside VC, an isolating block of C, with respect to the
counting section:

ΠC = {(ρ, θ, z) : θ = 0, 1 ≤ ρ ≤ 1 + ε and 0 ≤ z ≤ 1}

is given by:

spin((θn, zn), VC,ΠC) =

[

θn
2π

−
ln |zn|

TEC

]

,

which tends to +∞ when zn tends to zero. By (10), one knows that TC(θn, zn) = − 1
EC

ln (zn), hence:

lim
n∈N

spin((θn, zn), VC,ΠC)

TC(θn, zn)
= lim

n∈N

− ln |zn|
TEC

TC(θn, zn)
= lim

n∈N

TC(θn, zn)

T × TC(θn, zn)
=

1

T
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The argument used in Subsection 7.3 to prove (1) of Theorem 3 is valid to show that:

TvC(xn, yn) = −
1

EC

ln

(

|yn|
δv ×

√

a2 cos2
(

xn −
αv

Ev

ln |yn|

)

+ a−2 sin2
(

xn −
αv

Ev

ln |yn|

)

)

=
Cv

EC

.

and then

lim
n∈N

|αv|Tv(xny, yn) +
2π
T
TC(ηvC(xn, yn))

Tv(xn, yn) + sn + TvC(xn, yn)
=

=

(

|αv|+
2π

T

Cv

EC

)

×

(

1 +
Cv

EC

)−1

=

=

(

|αv|EC +
2π

T
Cv

)

× (EC + Cv)
−1.

Theorem 4 is now proved. Before finish this section, we would like to stress that we have used the
conjugacy of Theorem 4 just in Subsection 4.3 to construct the suspension around VC. Once we obtain
a linear vector field whose flow has a non-trivial closed trajectory of period T , we do not need anymore
the conjugacy.

8. Discussion and Final Remarks

In dealing with nonlinear dynamics people are used to ask questions on their asymptotic in time
properties. Even most of concepts used in nonlinear dynamics like Lyapunov exponents or decay of
correlations involve an infinite time limit. Although general answers to these questions are very difficult
to obtain, in this article, in the spirit of the works [16, 34, 41], we have shown that some questions about
topological invariants could be partially answered and that the local dynamics near one-dimensional
homo/heteroclinic connections could be seen as a signature for the global dynamics.

For three-dimensional flows with connections involving saddle-foci, the spiral patterns contain vortices ;
the strenght of this swirling motion is measured by the absolute value of the imaginary part of the complex
eigenvalues. The spiralling dynamics and cycling behaviour described in [3, 33, 34] bring strong properties
that should not be neglected in terms of topological dynamics, and constitute the main ingredient for
the proofs throughout all article. The rotation around each equilibrium constitutes a different situation
from that where all eigenvalues of the linearization at the node are real.

For a system with a homoclinic cycle to a saddle-focus, we gave an alternative proof that the absolute
value of the imaginary part of the complex eigenvalues is a topological invariant, in the set of vector
fields whose flow has a Shilnikov cycle. Our proof is different to that presented in [12], in which the
author used knots-type arguments. Furthermore, we have also constructed numerical invariants for cycles
involving rotating nodes, where the saddles are either saddle-foci or periodic solutions. The invariants
depend heavily on the eigenvalues of the linearization of the vector fields at the nodes and they allow to
distinguish different complex dynamics, up to topologically equivalence. These results generalize those
of Gaunersdorfer [16] and Takens [41] for planar vector fields.

A crucial argument of our proofs is the analysis of the dynamics near structurally unstable connections
of dimension one. The Flow Box Theorem does not allow “irregular” behaviour. If the heteroclinic
connections have codimension zero then transverse connections appear, chaos will occur and we would
“lose” information about the “consecutive” times of flight. If the cycle Γvw were asymptotically stable,
then we may generalize Theorem 3: besides Cv

Ew
, the ratio Cw

EC
would also be a topological invariant and

then the constant δ = δvδw > 1 which appear in [16], [25, 26] and [27] would become a modulus. The
time averages of continuous functions along trajectories that converge to the heteroclinic cycle typically
do not converge – we refer to Takens [41] for a relation between the moduli and these time averages (on
the plane). A systematic study on this subject in dimension three is in preparation.

For higher dimensional cycles of rotating nodes, there are works in the literature which describe the
local behaviour near the connections – see for instance Rodrigues et al [34, Section 6]. The extension
relies strongly on the Center Manifolds for Heteroclinic Cycles [39]. Structurally unstable heteroclinic
connections in higher dimensions may require infinitely many new moduli besides known ones for their
description. A lot more needs to be done in order to characterize a complete set of topological invariants
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for cycles of rotating nodes and their non-wandering dynamics. We hope that this article could be a
starting point for further related studies.

Acknowledgments The author thanks to the anonymous referee for helpful comments.
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(A. A. P. Rodrigues) Centro de Matemática da Universidade do Porto, and Faculdade de Ciências da Univer-

sidade do Porto, Rua do Campo Alegre 687, 4169–007 Porto, Portugal

E-mail address, A.A.P.Rodrigues: alexandre.rodrigues@fc.up.pt


