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INTRODUCTION

Given two non negative integeasandb, with b # 0, we denote by modb the
remainder of the division af by b. A modular Diophantine inequalit{see [6]) is
an expression of the formxmodb < x. The set M4, b) of the integer solutions
of this inequality is a numerical semigroup, that is, a subset of thi séthe non
negative integers that is closed under addition, contains 0 and whose complement
in N is finite. Not all numerical semigroups can be described by an inequality of
this form. We say that a numerical semigragps modularwith modulus band
factor aif S = {x e N | axmodb < x}.

WhensS is a numerical semigroup, we denote the finited$&tS by H(S). The
elements of H%) are called theyapsof S, and its cardinality, denoted #Hj, is
an important invariant of the semigroup which is called sirgularity degreeof
S (see [2]). Another important invariant & is the greatest integer that does not
belong toS, which is called thd-robenius numbeof S and it is denoted by &)
(see [3]). Giverm € S\ {0}, the Apéry sef(so called due to Apry’s paper [1]) of
S with respect tanis defined by Apg, m) = {se S| S—-m¢ S}. Itis well-known
and easy to prove (see, for instance, [4]) that®pd) = {w(0), w(1),...,w(m-1)}
wherew(i) is the least element i8 that is congruent withh modulom. The set
Ap(S, m) completely determines the semigro8p sinceS = (Ap(S,m) U {m})
(where by(A) we denote the submonoid aff(+) generated by, that is, the set of
non negative integer linear combinations of elemen#)oBesides that, A&, m)
contains, in general, much more information than an arbitrary system of generators
of S; in particular the Frobenius number and the singularity degree can be easily
computed from Ap®, m).

In the first section we will give an explicit form of the set Ap(&4b),b). As
a consequence we obtain formulas for géy)) and #H(Mg, b)). Note that the
formula we give for #H(M&, b)) was already obtained in [6]; weffer here an
alternative proof.
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In the second section we introduce the concept of rotation of a numerical semi-
group and see how it is related with modular numerical semigroups. More pre-
cisely, if Sis a numerical semigroum € S\{0}, Ap(S, m) = {w(0), w(1),...,w(m-

1)} andais a positive integer, then we define tlaerf)-rotationof Sas RS, a, m) =
{x € N | waxmodm) < x}. We will see that R, a, m) is a numerical semi-
group that containsn and is contained in M{, m). Furthermore we will prove
that RS,a,m) = M(a,m) if and only if (a,m) € S, where &, y) denotes the
greatest common divisor of the integetsandy. In particular, we obtain that
M(a, b) = R(N, a, b) to any positive integera andb.

If Sisanumerical semigroup amts a positive integer, theﬁ ={xeN|dxe
S} is a numerical semigroup which clearly contaghésee [5]). Such a semigroup
will be called thequotientof S by d.

In Section 3 we will see how to construct Ap&é, m), m) from Ap(S, m). This
will allow us to give formulas or bounds for the Frobenius number and the singu-
larity degree of R$, a, m) in terms of the Frobenius humber and the singularity
degree of a quotient & in Section 5.

In Section 4 we show that whethis a positive divisor oim the set Ap(% ”a“)
is obtained dividing byd the elements of Ai®, m) that are multiples ofl. This
will allow us, in Section 5, to prove that ifa(m) = d, then #H(RE,a, m)) =
d#H(§)+ ==L and thatdg (§)+(d-1)T < g(R@S.a.m)) < dg(§)+m-1.
Notice that whera andb are coprime, a§ = S, these results relate the invariants
of S under study with the corresponding invariants oSRy, m).

Throughout this paper, and unless otherwise st&esla numerical semigroup
anda, d andm are positive integers, wittn € S \ {0} andd = (a, m). Furthermore
we will write Ap(S, m) = {w(0), w(1),...,w(m- 1)}. As Proposition 10 states that
R(S,a, m) is a numerical semigroup containimg we will already announce the
notation that will be used: Ap(Ra m),m) = {w(0),w(1),...,w(m - 1)}. For
clarity, in the statments of many of our results we recall the notations fixed here.

1. MODULAR NUMERICAL SEMIGROUPS

Recall that given two non negative integerandb, with b # 0, the set M4, b)
of integer solutions of an inequality of the foraxmodb < x is a numerical
semigroup, which is said to bmodular Recall also that i is a numerical semi-
group andm € S\ {0}, then the Agry set ofS with respect tamis Ap(S,m) =
{W(0), w(1),...,w(m— 1)}, wherew(i) is the least element i§ that is congruent
with i modulom.

The proof of the following result is immediate.

Lemma 1. Let a and b be positive integers. 1€i{0, 1,...,b - 1}, then

i — (ai modb) if aimodb<x<i,

(b+1—a)'m°db:{i—(aimodb)+b if aimodb>i.

Itis clear thatb € M(a, b) and, in addition, that every integer greater theaaiso
belongs to M4, b).
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Proposition 2. Let a and b be positive integers. Then
Ap(M(a, b),b) = {(@imodb) + (b+1—a)imodb|i=0,1,...,b-1}.
Proof. By Lemma 1 we know that
. . [ if aimodb<i,
(aimodb) + (b+ 1—a)i modb = { b if aimodb=i.
Thus
[ if ieM(ab),
i+b if i¢M(ab).
The proof of the proposition now follows easily from the definition of theeAp
set. i

(ai modb) + (b + 1 - a)i modb:{

Recall that ifS is a numerical semigroup, then #5)(and g&) denote the sin-
gularity degree and the Frobenius numbegpfespectively.
The following result is well-known and easy to prove.

Lemma 3. If S is a numerical semigroup andenS \ {0}, then
9(S) = max(Ap@S, m)) —m.
As an immediate consequence of Proposition 2, we get this result.

Corollary 4. Let a and b be positive integers. Then
g(M(a, b)) = maxX(ai modb) + (b+1—-a)imodb|i=0,1,...,b-1} - b.
The next result appears in [7] and shows how to compute the singularity degree

of a numerical semigroup, once the & set with respect to any of its non-zero
elements is known.

Lemmab. Let S be a numerical semigroup aAgd(S, m) = {w(0), w(1),...,w(m-—
1)}, where me S\ {0}. Then
1 m-1
#H(S) = P~ W) +---+w(m-1)) — —
A usefull reformulation of this lemma is the following:
Lemma6. If Ap(S,m) = {0, kkm+1,...,Kkn-1m+ (m— 1)}, then
#HES) = kg + ko + - -+ + Km1.

Recall that we are aiming to give a formula for #H@)). In view of the
formula given by Lemma 5 and due to the way Proposition 2 allows us to express
the elements of Ap(M{, b), b), an important step is the observation contained in
the following lemma. It provides a way to calculate the value of expressions of the
form >.>-1 ai modb.

Lemma 7. If a and b are positive integers and=tl(a, b), then

b-1
Z ai modb = M
i=1 2



4 M. DELGADO AND J. C. ROSALES

Proof. Clearly

o1l
|
=

b-1 b-1 b
iZ;aumodb_d;almoda_d i=d

,8(8-1)  bo-d)
2 - 2

1l
iy

O

Now we exhibit a formula for #H(Mg, b)), which already appeared in [6, The-
orem 12].

Proposition 8. Let a and b be positive integers. Then
b+1-(ab)-(a-1Db)

#H(M(a, b)) =

2
Proof. By Proposition 2 and Lemma 5 we know that
1 (ot b-1 b_1
#H(M(@.b) = .; ai modb + ;(b +1-a)imodb| - ——.
By Lemma 7 we have that
b-1
Z ai modb = M
. 2
i=1
and
b-1
Z(b+ 1— a)i modb = b(lb-(b+1-a,h)) _ b(b- (a- 1,b))'
i=1 2 2
Thus
_ 1(b(b-(ab)) bb-(a-1Db)) b-1
_ b-(ab) N b-(a-1b) b-1
B 2 2 2
_ b+1-(ab)-(a-1Db)
= > i

2. ROTATIONS AND MODULAR SEMIGROUPS

Recall that we use the notation&®@, m) = {x € N | wiaxmodm) < x} and
say that RE, a, m) is an @, m)-rotation of S. The main result of this section, The-
orem 17, shows that(m) € Sif and only if R(S, a, m) = M(a, m).

The following result can be easily deduced from [4, Proposition 10.5]. It plays
an important role in the proofs of Proposition 10 and Lemmal4.

Lemma 9. Let xe N. Then xe Sif and only if Wx modm) < x. Furthermore, if
i,j€{0,1,...,m=1}, then wi) +w(j) = w((i + j) modm).

Proposition 10. R(S, a, m) is a numerical semigroup containing m.
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Proof. As 0 = w(0) = wiammodm) < m, we have that In € R(S,a,m). Let
XYy € R(S,a,m). Thenw(axmodm) < x andw(ay modm) < y. By applying the
preceding lemma, we have thaa(x+y) modm) < w(ax mod m)+w(ay modm) <
X + Y, and thereforx + y € R(S,a,m). Leta = maXw(0),w(1),...,w(m— 1)}.
Clearly if x is an integer such that > a, thenx € R(S, a,m). ThusN \ R(S, a, m)
is finite and consequently B(a, m) is a numerical semigroup. O

Now we can fix the notation Ap(F{a, m),m) = {w(0),w(1),...,w(m — 1)}
already announced.

When @ m) € S the following lemma guarantees thai i€ {0,1,...,m— 1} is
a multiple of @ m), thenw(i) is not greater thain— 1. As a consequence we will
be able to prove a part of the main result of this section.
Lemmall.If (am)=de S and wi) = km+iforalli € {0,1,...,m- 1}, then
ki=kyg=---= k(%—l)d =0.
Proof. Asd € S we have tha{d, Zd(%‘ - 1) d} cS. From(%1 - 1)d <m, it
follows thatid - m¢ Sforalli e {1.2,...., 7 - 1}. Thus{d,2d.....(3-1)d} c
Ap(S, m). Hencew(id) = id for alli € {1, ool — 1} and consequentlgy = 0. O
Proposition 12. If (a,m) =d € S, therR(S, a, m) = M(a, m).
Proof. Recall thatx € R(S,a, m) if and only if wiaxmodm) < x. Let us sup-
pose again that(i) = km+iforalli € {0,1,...,m—-1}. Asw(axmodm) =
W(d(gx mod %)) andw(axmodm) = Ky(ax mogm)M + axmodm, by applying

Lemma 11, we have that(axmodm) = axmodm. Thusx € R(S,a, m) if and
only if axmodm < x. This proves that R, a, m) = M(a, m). O

Since @, m) always belongs tiN, the previous proposition has as an immediate
consequence that the set of all modular numerical semigroups coincides with the
set of all rotations oRN, as is stated in the following corollary.

Corollary 13. Let a and b be positive integers. Thelfa, b) = R(N, a, b).
From Lemma 9 one may deduce easily the following result.

Lemma 14. Let S and T be numerical semigroups containing the positive integer
m. LetAp(S, m) = {w(0),w(1),...,w(m-1)} andAp(T, m) = {W(0), W(1), ..., Ww(m—
1)}. Then Sc T if and only if W(i) < w(i) foralli € {0,1,...,m—1}.

Proposition 15. Let S and T be numerical semigroups such that § and let
me S\ {0}. ThenR(S,a,m) € R(T, a, m).

Proof. Suppose that AE m) = {w(0),w(1),...,w(m— 1)} and that ApT,m) =
{W(0), W(1),...,W(m-1)}. If x e R(S, a, m), thenw(axmodm) < x. By Lemma 14
we know thatv{axmodm) < w(axmodm) < x, and thereforexe R(T,a,m). O

Corollary 16. One has:R(S, a, m) € M(a, m).

Proof. SinceS C N, by Proposition 15 we know that B(a, m) € R(IN, a, m) and
by Corollary 13 we have that R( a, m) = M(a, m). O
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Next we show that the converse of Proposition 12 also holds, thus completing
the proof of the result announced.

Theorem 17. Let S be a numerical semigroup, a be a positive integet, 3, {0}
and d= (a,m). ThenR(S,a,m) = M(a,m) ifand only ifde S.

Proof. As we pointed out above, in view of Proposition 12 we only have to prove
necessity. Let Agg, m) = {w(0), w(1),...,w(m-1)}. If R(S, a, m) = M(a, m), then
from Proposition 2 we deduce thatmodm + (m+ 1 — a)i modm € R(S,a, m)
foralli € {0,1,...,m- 1}. Thusw(a(ai modm+ (m+ 1 — a)i modm) modm) <

ai modm+ (m+ 1—a)i modmand consequentiy(ai modm) < ai modm+ (m+

1 - a)i modm. Sincew(ai modm) is congruent withai modm modulom and
(m+1-a)i modme {0,1,...,m- 1}, we deduce that(ai modm) = ai modm. It
follows thatai modm e S for alli € {0,1,...,m—1}. As(3, ) = 1, there exists

te{l....,9 -1} such that mod§ = 1. Thend = d(3t mod §) = atmodm e
S. m

3. THE APERY SET OF A ROTATION

Recall that we have fixed some notation. Namely, the elements &, Ap@nd
Ap(R(S, a, m), m) are denoted bw(i) andw(i) respectively, wheree {0, 1,..., m-
1}.
Next result establishes a relationship between the elements of they Apts
Ap(S, m) and Ap(RE, a, m), m). It is then reformulated in a more convenient way
in Theorem 19.

Lemma 18. If w(i) = km+iforalli €{0,1,...,m— 1}, then

" | (Kaimodm+1)-m+i if ai modm>i.

Proof. Let x e N be suchthakmodm=1i¢€{0,1,...,m-1}. Thenx € R(S, a,m)
if and only ifw(ai modm) < x, which is equivalent t8a; mog m-m+(ai modm) < x.
Thusw(i) is the least integer congruent witmodulomthat is greater than or equal
t0 Kai modm - M+ (ai modm). The proposition is then easily deduced. O

Theorem 19.Ifi € {0,1,...,m- 1}, then

W(i) = w(ai modm) + (m+ 1 — a)i modm.
Proof. From Lemma 18, and taking into account théhi modm) = Kaj modm- M+
ai modm, we deduce thatife {0,1,...,m- 1}, then

i —aimodm if aimodmc<i,

W(i):W(aimOdm)+{i—aimodm+m if aimodm>i.

The rest of the proof follows by Lemma 1. O

As we have seen above, by having a good description of theyAget of a nu-
merical semigroup we can obtain important data of the given numerical semigroup.
Theorem 19 will be used in the rest of this paper to take profit of this fact.
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Example20. Let S = (5,7,9). We will use Theorem 19 to compute B, 5) and
S=(5,7,9).

Since ApG,5) = {w(0) = 0,w(1) = 16,w(2) = 7,w(3) = 18 w(4) = 9}, we get
that Ap(RS, 2,5),5) = {W(0) = 0,W(1) = 11 W(2) = 12, W(3) = 18 W(4) = 19}.
Thus RS, 2,5) = (5,11, 12,18, 19).

Since ApG, 9) = {(w(0) = O,w(1) = 10,w(2) = 20,w(3) = 12, w(4) = 22, W(5) =
5w(6) = 15wW(7) = 7,w(8) = 17}, we get that Ap(RS$,6,9),9) = {w(0) =
O,w(l) = 19wW(2) = 20,W(3) = 3,W(4) = 22W(5) = 14, W(6) = 6,W(7) =
16,w(8) = 17}. Thus RE, 6,9) = (9,19, 20, 3,22,14,6,16,17) = (3, 14, 16).

Theorem 17 suggests that the function assigning to each irdegg), 1, ..., m-
1} the numerical semigroup B(a, m) is not injective in general. Next exam-
ple shows, in particular, that this application not is injective even if we require
(am =1

Example2l. LetS = (5,6,7,8,9). Then ApG,5) = {(Ww(0) = O,w(1) = 6,W(2) =
7,w(3) = 8,w(4) = 9}. Using Theorem 19 we get that both Ap&2, 5),5) and
Ap(R(S, 4,5),5) are equal t¢0,11, 12 8,9}. Consequently Rg, 2,5) = R(S, 4,5).

Remark22. Recall that the Eulep function is defined by(n) = #i e N | 1 <

i <nand i) = 1}, for any positive integen. Observe that we have the equality
R(S,a, m) = R(S,amodm, m) and therefore g(R(S,a, m)) | (&, m) = 1} < ¢(m).
Example 21 shows that the previous bound is not attainable.

From Theorem 19 we deduce that max AgR{, m)) < max Ap@S, m) + m— 1.
By applying Lemma 3 we get the following result.

Corollary 23. g(R(S,a,m)) < g(S) + m— 1.

We intend now to continue the study of the Frobenius number and the singularity
degree of R, a, m). The study for the general case will only be done in Section 5,
since we need to study previously the quotients of a numerical semigroup by a pos-
itive integer, and this will be done in Section 4. But the case of co-prime rotations,
that is, @, m)-rotations with &, m) = 1, is easier. We leave the result on the singu-
larity degree for a corollary of Theorem 35, but we give here the result concerning
the Frobenius number, since this result motivates an example and the reader may
benefit from reading a simpler proof which contains the main ideas, although the
result is not as general as possible.

Proposition 24. If (a,m) = 1, theng(S) < g(R(S,a,m)) < g(S) + m- 1.

Proof. By Corollary 23 it sifices to prove that &) < g(R(S,a m)). By The-
orem 19 we know thaw(i) = w(aimodm) + (m+ 1 — a)i modm for all i €
{0,1,...,m-1}. As (&, m) = 1, thenfw(0), w(1),...,w(m-1)} = {w(ai modm) | i €
{0,1,...,m—1}}. Thus maxApgE, m) < maxAp(RE, a, m), m). Using Lemma 3
we get that gb) < g(R(S, a, m)). |

The following example shows that the upper bound given in previous proposi-
tion is attainable. The lower bound is clearly attainable, since if wedakd,, we
getRE,1,m) = S.
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Example25. Let S = (3,34). Then Apg,3) = {w(0) = O,w(1) = 34 w(2) =
68}. By Lemma 3 we have &) = 65. Applying now Theorem 19 we have
Ap(R(S,2,3),3) = {wW(0) = 0,w(1) = 70,w(2) = 35. By Lemma 3 we have
g(S) = 67.

4. Tue QUOTIENTS OF A NUMERICAL SEMIGROUP

Given a numerical semigroup and a positive intggédet % ={xe N | pxe M}.
Clearly% is a numerical semigroup containig Furthermoré\a" = Nif and only

if p e N. The semigroug! is calledquotient numerical semigrougf M by the
integerp (see [5]). In this sectiod is a positive divisor om.

Lemma 26. Leti € {0,.... 7 - 1}. Then wid) is a multiple of d. Furthermore
@ is congruent with i moduld.

Proof. Sincew(id) = km+ id for somek € N, w(id) is a multiple ofd and"@ =
kT +1. |
d

Observe thaf] € S and therefore it makes sense to talk abou(%\p[j—”). Next
result shows how to obtain this set from Apy(n).

Theorem 27. The seAp (% %) is obtained dividing by d the elementsAg#(S, m)
that are multiples of d.

Proof. Let ¢ € {0,...,m— 1} andw(¢) € Ap(S, m). Thenw({) = km+ £ for some
k € N. Asd is a divisor ofm we deduce thaiv(¢) is a multiple ofd if and only
if ¢ is a multiple ofd. Therefore{w(0), w(d).....w(d(J - 1))} is the set formed
by the elements of A, m) that are multiples ofl. Furthermore, from Lemma 26
we know that ifi € {0,.... % - 1}, then ™2 is congruent withi modulo¥. To
conclude the proof it diices to show thai“@ is the least element o} that is

congruent withi moduloJ. Letx € § be such thak is congruent with modulo™.
Thendx € S and, applying Lemma 9 we have thadx modm) < dx. Therefore
w(di) < dxand consequentl (('jd) < X |

Example28. LetS = (5,6,8). Then ApS, 6) = {0,13,8,15,10,5}. By the previ-
ous theorem we get that 4§, 3) = {0,4,5). Therefore3 = (3,4,5).

As an immediate consequence of Theorem 27, making use of Lemmas 6 and 3,
we get the following corollary.
Corollary 29. If Ap(S,m) = {0,kim+ 1, ..., kn1m+ (m— 1)}, then:
D) Ap(3.9)={0kaf +1... . km_g)ad + (5 -2))
(2) #H(5) =ka+ ko + - + K(p_1)a-
(3) 9(5) = max{0. ke + L. km_g)ad + (5 - 1)} -

al3
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5. SNGULARITY DEGREE AND FROBENIUS NUMBER OF A ROTATION

In this section we will obtain bounds for the Frobenius number and a formula for
the singularity degree of a rotation in terms of the same invariants of the original
semigroup. The following lemma exhibits an element o m) which proves
out to be fundamental in this task. Recall that (a, m).

Lemma 30. § € R(S,a, m).

Proof. As w(a modm) = w(0) = 0, we have thatv(a} modm) < 1 and there-
fore § € R(S,a,m). O

As T € R(S,a,m) it makes sense to talk about ,élE(S, a,m), %) Well, in this

section we will assume that AR(S,a.m),§) = (w(0).w(1).....w (§ - 1)}.
This set is contained in Ap(B(a, m), m), as shows the following lemma.

Lemma 31. If x € Ap (R(S, a,m), %) then xe Ap(R(S, a, m), m).

Proof. If x—me R(S,a, m) thenx— 3 € R(S,a,m), sincex—§ = x—m+(d-1)§
and{ € R(S,a,m). O

Now we are able to present a very convenient way to express the elements of
Ap(R(S, a, m), m). Notice that, in view of Theorem 17, the next result has Proposi-
tion 2 as an immediate consequence.

Theorem 32. If i € {0, B 1}, then
m
g
Proof. Observe that using Lemma 31 and the definition oéApset one immedi-
ately concludes that AfR(S, a, m), ) consists of the elements of Ap®(, m), m)
that subtracted b§{ do not belong to Rg, a, m).

By Theorem 19 we know tha&i(j) = w(aj modm)+(m+1-a)j modmfor every
j €{0,...,m—1}. Applying the definition of R, a,m) we have tha(j) - J ¢
R(S, a, m) if and only ifw(a(w(aj modm) + (m+ 1—a)j modm-— %‘) mod m) >
w(@jmodm) + (m+ 1 -a)j modm - §. Observe that(ajmodm) + (m+ 1 -
a)j modm modulom is preciselyaj + (m+ 1 — a)j modulom and therefore we
have thatv(a(w(aj modm) + (m+ 1 - a)j modm- &) modm) = w(aj modm).
ThusW(j) — F ¢ R(S,a m) if and only if w(aj modm) > w(aj modm) + (m+ 1 -
a)j modm— T and this equivalent tanf+ 1 — a)j modm < . Observe now that
(m+1-a)jmodm< Tifand only if (m+ 1-a)j modm= (m+1-a)j mod 1.
Consequently(j) - § ¢ R(S,a, m) if and only if W(j) = w(aj modm) + (m+ 1 -
a)j modT. As we haveajmodm = d(&jmod) = d((j mod) mod?) =
a(j mod %) modmand gn+1-a)jmod = (m+1-a)(j mod%) mod %, we
can say thai(j) - J ¢ R(S,a m) if and only ifW(j) = w(a(j mod ) modm) +
(m+1-a) (j mod %) mod §. Consequently, the elements of Ap8R&, m), m) that

w (i) = w(ai modm) + (m+ 1 — a)i mod
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subtracted byj do not belong to Rg, a, m) are those of the fornw(ai modm) +
(m+1-a)i modJ withiefo,...., 7 -1}, O
Example33. Let S = (5,7,9). We will use the preceding theorem to compute
R(S, 6,9). By Example 20 we know that AB(9) = {w(0) = O,w(1) = 10,w(2) =
20,w(3) = 12 w(4) = 22 w(5) = 5,w(6) = 15 w(7) = 7,w(8) = 17}. Using Theo-
rem 32 we have that Ap(I$(6, 9), 3) = {0, 16,14}. Thus RE, 6,9) = (3,14, 16).

Next we get bounds for the Frobenius number ddR( m).
Corollary 34. dg(§)+ (d-1)¥ < g(R@S.am) < dg(§)+m-1.

Proof. By Theorem 32 we know that' (i) = W(d(gi mod %))+(m+ 1-a)i mod

for all i € {0,....,7 — 1). We observe thaw(d(4i mod %)) is an element of
Ap(S, m) that is a multiple od. Applying then Theorem 27 we have the inequal-
ities d(maxAp(%, %)) < maxAp(R(S,a,m), %) < d(maxAp(%, %“)) + 01

If we apply now Lemma 3 we obtain thal(g($) + 5) < g(RS.am) + § <

d(g(5)+ %)+ 3 - 1. Consequentidg($)+(d-1)F < g(RES.a.m) < dg(5)+
m- 1. O

Notice that sincef— = S, Proposition 24 is an immediate consequence of Corol-
lary 34. Observe also that by Example 25 the bounds are attainable. Now comes
the announced result that relates the singularity degrees of a rotation and a quotient
of S.

S

Theorem 35. #H(R(S,a,m)) = d#H(E) ,m+l-d-(@-1im

2
Proof. Let us suppose that AB(m) = {kom+ 0,kim+ 1,....kn-am+ (m— 1)}
Then by Lemma 18 we know th@ai(i) = Kaj mogmm + i where

Kai _ J Kaimodm if aimodm<i,
imodm =1 . im+1 if aimodm>i.

By Lemma 6 we know that

m-1

#H(R(S,a,m)) = Z_ Kai modm
1

and by Proposition 8 that

m-1 m-1

_ m+l-d-(a-1m
Zkaimodm:ZKaimodm'i‘ ( )
i=1 i=1 2

Observe thaai modm = a(i mod r—(;‘) modm. Thus
m_g

m-1
;"ai modm = d; Ka(gi moa ) = d (ke + - +K(g1)a)

Applying (2) of Corollary 29 we have tha + --- + kim_g)q = #H($) and the
result follows. O
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Observing thal% = S we get the following corollary.

Corollary 36. If (a,m) = 1, then
m-(a-1,m)
—

A proof of this result could have given without using quotients. Notice that
as gm) = 1, the functiono : {1,....m-1} — {1,...,m - 1} defined by
o(i) = aimodm is a bijection. From Lemma 18 we could then deduce that
Ap(R(S,a,m),m) = {0, k,ym+1,...,Kym-ym+ (M- 1)}, where

= Ko if o()<i,
0 ={ o +1 i 08 i

The result would then follow by using Lemma 6 and Proposition 8.

#H(R(S, a, m)) = #H(S) +
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