
Submanifolds in Poisson geometry: a survey

Marco Zambon

Abstract We describe various classes of submanifolds of a Poisson manifold M,
both in terms of tensors on M and of constraints: coisotropic submanifolds, Poisson-
Dirac submanifolds (which inherit a Poisson structure), and the very general class of
pre-Poisson submanifolds. We discuss embedding results for these classes of sub-
manifolds, quotient Poisson algebras associated to them, and their relationship to
subgroupoids of the symplectic groupoid of M.

1 Poisson geometry

The phase space of a physical system, in the hamiltonian formalism, is usually given
the structure of a symplectic manifold. When the system is invariant under symme-
tries, it makes sense to consider the “reduced” phase space obtained quotienting the
original phase space by the symmetries. The reduced phase space in general is no
longer symplectic, but rather has the structure of a Poisson manifold. We recall some
basic facts about Poisson manifolds (see Weinstein’s seminal 1983 paper [14] or the
book [12] for detailed expositions).

The algebraic definition of Poisson manifold is the following:

Definition 1. A Poisson manifold is a manifold M such that the algebra of functions
C∞(M) is endowed with a Lie bracket {·, ·} satisfying { f ,gh} = { f ,g}h + g{ f ,h}
for all f ,g,h.

Often it is convenient to use a more geometric definition:

Definition 2. A Poisson manifold is a manifold M endowed with a bivector field
π ∈ Γ (∧2T M) satisfying [π,π] = 0.
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2 Marco Zambon

Here [·, ·] denotes the Schouten bracket of multivector fields, which extends the
Lie bracket of vector fields on M. The Poisson bracket {·, ·} and π are related by
{ f ,g}= π(d f ,dg).

Let M be a Poisson manifold. The bivector field π ∈ Γ (∧2T M) can be equiva-
lentely described by

] : T ∗M→ T M, ]ξ = π(ξ , ·),

a bundle map which is skew-symmetric (i.e., ]∗ =−]). One can show that Im(])⊂
T M is an involutive singular distribution1, so M is foliated by leaves (immersed
submanifolds of varying dimensions) whose tangent spaces are exactly given by
Im(]).

At every p ∈M the kernel of ]p : T ∗p M→ Im(πp) is the annihilator (Im(]p))◦ :=
{ξ ∈ T ∗p M : ξ |Im(]p) = 0}, hence inverting the induced isomorphism

T ∗p M/(Im(]p))◦ ∼= Im(]p)∗→ Im(]p)

we obtain a linear symplectic from ωp on Im(]p). One can show that the 2-form ω

on each leaf O is actually symplectic. So we conclude that an equivalent characteri-
zation of Poisson manifold is the following: a manifold foliated by leaves of varying
dimensions, each of which carries a symplectic form varying smoothly with the leaf.

Example 1. a) A symplectic form ω on a manifold M can be regarded as a Poisson
bivector field, by the requirement ] =−ω̃−1 where ω̃ : T M→ T ∗M,v 7→ ω(v, ·).

b) If g is a finite dimensional real Lie algebra, then g∗ has a natural Poisson
structure, determined by {v,w} = [v,w] where v,w ∈ g are also viewed as linear
functions on g∗. The symplectic leaves of g∗ are the coadjoint orbits.

For instance, the symplectic leaves in su(2)∗ are spheres centered at the origin,
with symplectic form growing linearly with the radius. The Poisson bivector field
is given by x3

∂

∂x1
∧ ∂

∂x2
+x1

∂

∂x2
∧ ∂

∂x3
+x2

∂

∂x3
∧ ∂

∂x1
in suitable linear coordinates on

su(2)∗.
c) On every manifold M, setting π = 0 one obtains a Poisson bivector field. Each

point of M is a symplectic leaf.

1.1 Submanifolds and symplectic leaves

Let (M,π) be a Poisson manifold. In this Subsection we use the symplectic foliation
described above as a guide to determine classes of submanifolds.

A natural class of submanifolds are symplectic leaves (leaves O endowed with
the symplectic form ω as above). Generalizing this slightly, we obtain Poisson sub-
manifolds, which are just unions of (open subsets of) symplectic leaves.

Definition 3. [12, §6.6] N ⊂ (M,π) is a Poisson submanifold iff πp ∈ ∧2TpN for
every p ∈ N.

1 Indeed T ∗M is a Lie algebroid (see §1.2), and the image of the anchor of any Lie algebroid is an
involutive singular distribution.
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Equivalent conditions are ]T N◦ = {0} or Im(]|N)⊂ T N.
Given a symplectic vector space (V,ω), an interesting class of subspaces W are

the coisotropic ones, i.e. those for which W ω ⊂W . Another interesting class is given
by the symplectic subspaces, i.e. those for which W ω ∩W = {0}.

It is natural to consider submanifolds of the Poisson manifold (M,π) whose in-
tersections with the symplectic leaves are coisotropic or symplectic submanifolds of
the leaves. Since these intersections are usually not smooth, we are lead to consider
tangent spaces.

Lemma 1. Let N be a submanifold of (M,π). For all p ∈ N denote by (O,ω) the
symplectic leaf through p. The symplectic orthogonal of TpN∩TpO in (TpO,ωp) is
(TpN∩TpO)ωp = ]TpN◦. Hence:

• TpN∩TpO is a coisotropic subspace of (TpO,ωp)⇔ ]TpN◦ ⊂ TpN,
• TpN∩TpO is a symplectic subspace of (TpO,ωp)⇔ ]TpN◦∩TpN = {0}.
The above lemma follows from a simple computation and from (TpN ∩ TpO)∩
(TpN∩TpO)ωp = ]TpN◦∩TpN.

Submanifolds satisfying the first condition above are called coisotropic. In some
cases they are the replacement in Poisson geometry of the symplectic-geometric
notion of “Lagrangian”, see Ex. 2 b). Those that satisfy the second condition and an
additional smoothness requirement are called Poisson-Dirac submanifolds. We will
elaborate on them in §2 and §3 respectively. The intersection between the classes of
coisotropic and Poisson-Dirac submanifolds are exactly the Poisson submanifolds.

1.2 Lie algebroids and Dirac manifolds

In order to determine further classes of submanifolds of a Poisson manifold, we in-
troduce two notions that are canonically associated to Poisson geometry.

A Lie algebroid [12, §16] consists of a vector bundle A→ N together with a Lie
bracket on the space of sections Γ (A) and a bundle map ρ : A→ T N (called anchor)
satisfying [a, f ·b] = ρ(a) f ·b+ f · [a,b] for all sections a,b and functions f . When
N is a point, this notion reduces to that of Lie algebra.

For any Poisson manifold (M,π), T ∗M is naturally a Lie algebroid [12, §13] with
anchor −] : T ∗M→ T M, and bracket determined by [d f ,dg] := d{ f ,g}.

A Dirac manifold [9, §2.2] is a manifold P together with a subbundle L⊂ T P⊕
T ∗P which is maximal isotropic w.r.t. the pairing 〈X1⊕ ξ1,X2⊕ ξ2〉 = 1

2 (iX2ξ1 +
iX1ξ2) and whose sections are closed under the Courant bracket

[X1⊕ξ1,X2⊕ξ2] =
(
[X1,X2] ⊕ LX1ξ2−LX2ξ1 +

1
2

d(iX2ξ1− iX1ξ2)
)
. (1)

on Γ (T P⊕T ∗P). Given any submanifold N ⊂ (P,L), one can pull back the Dirac
structure L to N, by defining LN = L∩ (T N ⊕ T ∗M|N)/L∩ T N◦. This subset of
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T N⊕T ∗N is not necessarily a smooth subbundle, but when it is, it is automatically
a Dirac structure on N [9, §3.1].

For any Poisson manifold (M,π), L := graph(π) := {(]ξ ,ξ ) : ξ ∈ T ∗M} is a
Dirac structure. Viewing a Poisson manifold as a Dirac manifold has the advantage
that, even though we can not restrict the Poisson bivector field π to a submanifold
N ⊂ M (except when N is a Poisson submanifold), N is always endowed with the
geometric structure LN , which is a Dirac structure whenever LN is a smooth subbun-
dle.

2 Coisotropic submanifolds

In this section we elaborate on coisotropic submanifolds [12, §6.4].

Definition 4. N ⊂ (M,π) is a coisotropic submanifold iff ]T N◦ ⊂ T N.

Let N be a submanifold of (M,π). Then

I := { f ∈C∞(M) : f |N = 0}

is a multiplicative ideal of the Poisson algebra C∞(M). The submanifolds for which
I is also a Poisson subalgebra (i.e., {I ,I } ⊂I ) are exactly the coisotropic sub-
manifolds. Those satisfying the stronger condition that I is a Poisson ideal (i.e.,
{I ,C∞(M)} ⊂I ) are exactly the Poisson submanifolds.

In the physics literature, sometimes submanifolds are specified by constraints, i.e.
open subsets {Uα} of M and, for each α , independent functions ϕ1

α , . . . ,ϕk
α defined

on Uα such that N ∩Uα is the common zero set of ϕ1
α , . . . ,ϕk

α . As we just saw, the
coisotropic submanifolds are exactly those given by so-called first class constraints,
i.e. constraints satisfying {ϕ i,ϕ j}|N = 0.

Example 2. a) Poisson submanifolds are coisotropic.
b) If ϕ : (M1,π1)→ (M2,π2) is a Poisson morphism, then its graph is coisotropic

in (M1×M2,π1−π2).
c) If h is a Lie subalgebra of the Lie algebra g, then h◦ is a coisotropic submani-

fold of g∗. (See Ex. 5 for an extension of this example.)

Remark 1. The intersection of a coisotropic submanifold with the symplectic leaves
O of M is usually not clean: for instance, the symplectic foliation of su(2)∗ is given
by concentric spheres in R3. Any plane N in su(2)∗ not containing the origin is
coisotropic, has a (unique) point p at which N is tangent to a symplectic sphere O ,
and at that point Tp(N∩O) 6= TpN∩TpO .

Coisotropic submanifolds enjoy nice properties: their conormal bundle T N◦ is a
Lie subalgebroid of T ∗M, and they admit a natural quotient which is again a Pois-
son manifold, provided it is smooth. We will discuss these properties for the more
general class of pre-Poisson submanifolds in §4.3 and §4.2 respectively.
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3 Poisson-Dirac submanifolds

Poisson-Dirac submanifolds, introduced by Crainic and Fernandes [10, §8] in 2002,
are the submanifolds of (M,π) which have a canonically induced Poisson structure.

Definition 5. [10, Def. 4, §8]. N is a Poisson-Dirac submanifold of (M,π) if it has
a Poisson structure such that:

(i) N intersects cleanly2 the symplectic leaves of M, and the symplectic leaves of N
are the connected components of N ∩O as O ranges over all symplectic leaves
of M,

(ii)N∩O is a symplectic submanifold of O , for every symplectic leaf O of M .

An alternative characterization, along the lines of our reasoning at the end of §1,
is the following. Let N be a submanifold of M such that, for any p ∈ N, TpN ∩TpO
is a symplectic subspace of (TpO,ωp). Here (O,ω) denotes the symplectic leaf
through p. Then the restriction of ωp to TpN ∩ TpO is a non-degenerate bilinear
form, and inverting it we obtain a bivector (πN)p ∈ ∧2TpN. Notice that in general
πN is not a smooth section of ∧2T N (see [10, Ex. 3, §8]).

Definition 6. [10, Cor. 11, §8] N ⊂ (M,π) is a Poisson-Dirac submanifold iff
]T N◦∩T N = {0} and the induced tensor πN on N is smooth.

In that case, πN is automatically a Poisson tensor [10, Prop. 6, §8]. The name
“Poisson-Dirac” derives from the fact that graph(πN) is equal to LN , the Dirac struc-
ture obtained pulling back graph(π) via the inclusion N ↪→M.

Any submanifold N such that ]T N◦ ∩T N = {0} and for which ]T N◦ has con-
stant rank, is automatically Poisson-Dirac3. Indeed the latter condition implies
that pulling back the Dirac structure graph(π) we obtain a smooth subbundle of
T N⊕T ∗N (see §1.2), which hence is the graph of a smooth bivector field on N. In
this case the Poisson bracket on N is computed as follows:

{ f ,g} := { f̂ , ĝ}|N

where f̂ , ĝ ∈C∞(M) are extensions of f ,g ∈C∞(N) such that d f |]T N◦ = 0.
Examples of Poisson-Dirac submanifolds are:

Example 3. a) If (M,ω) is a symplectic manifold, then a submanifold N is Poisson-
Dirac iff it is a symplectic submanifold.

b) Poisson submanifolds.
c) Lie-Dirac submanifolds, in particular cosymplectic submanifolds. We will

elaborate on them in §3.1 and §3.2.

2 This means that N∩O is a manifold with T (N∩O) = T N∩TO .
3 It also falls into the more restrictive class of quasi-Dirac submanifolds [13, Def. 2.2], see also
[10, Prop. 7, §8].
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Within the class of Poisson-Dirac submanifolds, the cosymplectic ones and the
Poisson submanifolds lie at opposite extremes: for the former the rank of ]T N◦ is
maximized, for the latter it is zero.

3.1 Lie-Dirac submanifolds

Lie-Dirac submanifolds were introduced by Xu4 in 2001 [15]. They are special cases
of Poisson-Dirac submanifolds [10, §8.3].

Definition 7. [15, Def. 2.1] N ⊂ (M,π) is a Lie-Dirac submanifold iff there exists a
subbundle E with T M|N = T N⊕E such that E◦ is a Lie subalgebroid of T ∗M.

Recall [11, Def. 4.3.14] that if A→M is a Lie algebroid with anchor ρ , a subbun-
dle B→ N is a Lie subalgebroid if ρ(B)⊂ T N and for all sections X ,Y of A one has
(X |N ,Y |N ∈ Γ (B)⇒ [X ,Y ]|N ∈ Γ (B)) and (X |N = 0,Y |N ∈ Γ (B)⇒ [X ,Y ]|N = 0).

The embedding T ∗N→ T ∗M, given by the canoncial identification between the
vector bundles T ∗N and E◦, is actually a morphism of Lie algebroids, giving rise
to a Lie subalgebroid of T ∗M [15, Thm. 2.3 iii)]. (Here the Lie algebroid structures
or T ∗N and T ∗M are those given by the Poisson bivector fields on N and M.) The
fact that Lie-Poisson submanifolds come with a canonical Lie subalgebroid of T ∗M
accounts for several good properties of Lie-Poisson submanifolds, see for example
Prop. 4.

A characterization in terms of functions is

Definition 8. [13, Def. 2.1] N ⊂ (M,π) is a Lie-Dirac submanifold iff there exists
a subbundle E containing ]T N◦ for which T M|N = T N⊕E, such that for all f ,g ∈
C∞(M)

d f |E = 0,dg|E = 0⇒ d{ f ,g}|E = 0.

Being a Lie-Dirac submanifold is global property of the submanifold N: if we
can find subbundles as above on open subsets of N, in general we can not glue them
into a subbundle E over N as above.

Example 4. a) Points of Poisson manifolds are Lie-Dirac submanifolds.
b) Cosymplectic submanifolds, which we will introduce in §3.2, are Lie-Dirac

submanifolds [15, Cor 2.11].
c) Symplectic leaves of Poisson manifolds are usually not Lie-Dirac submani-

folds. For instance, the symplectic foliation of su(2)∗ consist of concentric spheres,
and among these only the origin is a Lie-Dirac submanifold. The exact obstruction
for regular5 symplectic leaves is given in [10, Cor 13, §8], see also [15, Ex. 2.17].

4 Xu introduced them with the name “Dirac submanifolds”; the name “Lie-Dirac” was proposed
in [10].
5 I.e., leaves such that all the symplectic leaves in a neighborhood have the same dimension.
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3.2 Cosymplectic submanifolds

The notion of cosymplectic submanifold is much older than that of Poisson-Dirac
or Lie-Dirac submanifold.

Definition 9. [14, §1] N ⊂ (M,π) is a cosymplectic submanifold iff ]T N◦⊕T N =
T M|N .

Hence cosymplectic submanifolds are exactly the submanifolds given by second
class constraints, i.e. constraints {ϕA} such that {ϕA,ϕB}|p is an invertible matrix
at all points p ∈ N. This follows from the fact for any Poisson-Dirac submanifold
]T N◦ is a symplectic subbundle, see Lemma 1.

Cosymplectic submanifolds constitute a useful tool in hamiltonian mechanics.
Let (M,π) be the Poisson manifold representing the phase space of a physical sys-
tem. Sometimes the physical system is constrained to a submanifold N ⊂ M with
an induced Poisson structure (a Poisson-Dirac submanifold), and one would like to
express the induced Poisson bracket {·, ·}N on N in terms of the Poisson bracket
{·, ·} on M.

The case when N is cosymplectic is well-known in the physics literature, and
has been threated using the so-called Dirac bracket. We describe it as follows. Let
ϕ1, . . . ,ϕk be constraints for the cosympectic submanifold N defined on an open
subset U ⊂ M. Since the matrix CAB := {ϕA,ϕB} is invertible on N ∩U , we may
assume that it is invertible on U , shrinking U if necessary. We denote its inverse by
CAB. The Dirac bracket is the bracket on C∞(U) defined by

{ f ,g}Dirac := { f ,g}−{ f ,ϕA}CAB{ϕB,g}. (2)

It is a Poisson bracket, and it allows to recover easily the bracket {·, ·}N on N: the
latter is computed extending in any arbitrary way functions on N to functions on
M and taking their Dirac bracket. (Notice that computing {·, ·}N by means of the
Poisson bracket {·, ·} on M, as in §3, requires specific extensions of the functions on
N: the extensions must annihilate ]T N◦.)

We explain the above statement as follows. Denote by πDirac the Poisson bivector
field U given by the Dirac bracket. It can be shown [4, §5.1] that the level sets of
the constraints (in particular N) are cosymplectic submanifolds of (M,π) and also
Poisson submanifolds of (U,πDirac), and that the Poisson structures on the level sets
induced by π and πDirac coincide.

4 Pre-Poisson submanifolds

Given a symplectic manifold (X ,Ω), a submanifold ι : C ↪→ X is called presymplec-
tic if the characteristic distribution ker(ι∗Ω) = TC∩TCΩ has constant rank along
C, or equivalently if TC + TCΩ has constant rank. In this Section we consider an
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extension of the notion of presymplectic submanifold to Poisson geometry, and in
the three Subsections we establish various interesting properties.

Let (M,π) be a Poisson manifold and N a submanifold. It is natural to consider
the kernel of ω|TpN∩TpO , where ω is the symplectic form on the symplectic leaf
O through p, and impose that it have constant rank for all p ∈ N. By Lemma 1 this
amounts to asking that char(N) := T N∩]T N◦ has constant rank along N. This turns
out not to be a good notion. For instance, char(N)⊂ T M|N may have constant rank
but fail to be a smooth subbundle of T M|N (see Ex. 5.7 of [7]).

Instead of the intersection of T N and ]T N◦, it is better to consider their sum:

Definition 10. [7, Def. 2.2] A submanifold N of a Poisson manifold (M,π) is called
pre-Poisson if the rank of T N + ]T N◦ is constant along N.

Such submanifolds were first considered by Calvo and Falceto [2, 3] in 2004, and
studied by Cattaneo and the author in [6],[7]. A first good property of T N + ]T N◦

is the following: if the rank of ]T N◦+ T N is constant, then it is automatically a
smooth subbundle of T M|N , because smooth sections spanning ]T N◦+ T N can be
easily constructed from a smooth frame for T N and the image under ]|N of a smooth
frame for T N◦.

Example 5. 1) If (M,ω) is a symplectic manifold, a submanifold N is pre-Poisson
iff it is presymplectic.

2) Coisotropic submanifolds (see §2) are pre-Poisson.
3) Poisson-Dirac submanifolds (see §3) or even Lie-Dirac submanifolds (see

§3.1) are usually not pre-Poisson, but cosymplectic submanifolds (see §3.2) are.
4) Let h be a Lie subalgebra of a Lie algebra g and fix λ ∈ g∗. Then the affine

subspace h◦+λ is pre-Poisson [6, §5].

To put into perspective Def. 10, let N be an arbitrary submanifold of (M,π) and
consider three “singular subbundles”:

• ]T N◦

• char(N) = T N∩ ]T N◦

• T N + ]T N◦.

The first two are the domain and kernel respectively of

φ : ]T N◦→ νN,

the restriction of the projection prνN : T M|N → νN := T M|N/T N. The image of φ

is prνN(]T N◦+T N). Hence it is clear that

Lemma 2. Let N be a submanifold of M. Whenever any two of char(N), ]T N◦, ]T N◦+
T N have constant rank, then the remaining one also does.

We elaborate on the properties that N has when one of the three above “singular
subbundles” has constant rank. By definition Pre-Poisson submanifolds are exactly
those for which ]T N◦+ T N, or equivalently the image Im(φ), has constant rank.
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The following table taken from [7]6 characterizes submanifolds of symplectic and
Poisson manifolds in terms of Im(φ):

M symplectic M Poisson
Im(φ) = 0 N coisotropic N coisotropic
Im(φ) = νN N symplectic N cosymplectic
Rk(Im(φ)) =const N presymplectic N pre-Poisson

If ]T N◦ has constant rank, then pulling back the Dirac structure graph(π) via the
inclusion N ↪→M one obtains a smooth Dirac structure on N.

When char(N) has constant rank and is smooth, then char(N) is an involutive
distribution on N, whose quotient (when smooth) has nice properties, see §4.2.

Lie−Dirac

Cosymplectic

rank(Char)=const.

Pre−Poisson

Coisotropic

Poisson

Poisson−Dirac

Fig. 1 Relation between the classes of submanifolds considered in this note. Recall that a subman-
ifold N is Pre-Poisson iff rank(]T N◦+T N) = const. and that char(N) = ]T N◦∩T N.

6 [7] considers the map prνN ◦ ] : T N◦→ νN, whose image is of course the same as the one of φ .
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4.1 Embeddings of pre-Poisson submanifolds

In this Subsection we show that pre-Poisson submanifolds of (M,π) can be regarded
as coisotropic ones (in some other Poisson manifold), and hence share many prop-
erties of coisotropic submanifolds.

Given a pre-Poisson submanifold N, one can find constraints (defined on some
open subset U ⊂ M) that are split into first and second class constraints [3, §2.1].
More precisely, choose constraints {ϕν} such that dϕν |]T N◦ = 0, and complete by
adding other constraints {ϕA}. The map ] : T N◦ → ]T N◦ maps ]dϕν into T N, so
the ϕν are first class constraints (i.e., {ϕν ,ϕµ} and {ϕν ,ϕA} vanish along U ∩N).
Further it maps span{dϕA} isomorphically onto a complement W of T N∩ ]T N◦ in
]T N◦, and in the basis of W dual to dϕA|W the isomorphism is represented by the
matrix {ϕA,ϕB}. So the ϕA are second class constraints (i.e., the matrix {ϕA,ϕB}
is non-degenerate along U ∩N).

The zero level set of the second class constraints ϕA is a cosymplectic submani-
fold M̃ of (M,π), see §3.2. The submanifold U ∩N ⊂ M̃ is given by the remaining
constraints ϕν |M̃ , which are first class, hence U ∩N is a coisotropic submanifold of
M̃.

The above argument is a local one. One can show that the result holds globally,
with a uniqueness statement:

Proposition 1. [7, Thm 3.3 and Thm. 4.3] Let N be a pre-Poisson submanifold of a
Poisson manifold (M,π). Then there exists a cosymplectic submanifold M̃ contain-
ing N such that N is coisotropic in M̃.

Further M̃ is unique up to neighborhood equivalence: if M̃0, M̃1 are cosymplec-
tic submanifolds that contain N as a coisotropic submanifold then, shrinking M̃0
and M̃1 to a smaller tubular neighborhood of N if necessary, there is a Poisson
diffeomorphism from M̃0 to M̃1 which is the identity on N.

The above proposition does not imply that all questions involving pre-Poisson
submanifolds can be reduced to questions about coisotropic ones. For instance in
[2, §6] the authors consider two distinct pre-Poisson submanifolds N1 and N2 with
non-empty intersection, and in general it is not possible to find a cosymplectic sub-
manifold containing coisotropically both N1 and N2.

4.2 Quotients of pre-Poisson submanifolds

In this Subsection we show that every submanifold N of a Poisson manifold has an
associated “reduced” Poisson algebra which – when certain assumptions on N are
satisfied – corresponds to the quotient of N by char(N) = T N ∩ ]T N◦. We follow
[7, §6].

For any submanifold N of (M,π), consider again the multiplicative ideal I :=
{ f ∈C∞(M) : f |N = 0} of the Poisson algebra C∞(M). Its Poisson normalizer
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F := { f̂ ∈C∞(M) : { f̂ ,I } ⊂I }

is a Poisson subalgebra of C∞(M), and by construction F ∩I is a Poisson ideal
in F . Hence the quotient F/(F ∩I ) is a Poisson algebra. Notice that F/(F ∩
I ) is exactly the subset of functions f on N which admits an extension to some
function f̂ ∈ C∞(M) whose differential annihilates ]T N◦ (or equivalently X f̂ |N ⊂
T N). In geometric terms, the induced Poisson bracket on F/(F ∩I ) is computed
as follows:

{ f ,g}= { f̂ , ĝ}|C = X f̂ (g)|N

for extensions f̂ , ĝ ∈F , where the second Poisson bracket is the one on C∞(M).
On the other hand char(N)p ⊂ TpN is the kernel of the bilinear form ι∗ωp, where

(O,ω) is the symplectic leaf of M through p and ι : N ∩O ↪→ O the inclusion.
Hence, from a geometric point of view, it is natural to consider the set of basic
functions on N, i.e.

C∞
bas(N) = { f ∈C∞(N) : d f |]T N◦∩T N = 0}.

When char(N) is regular and smooth and the quotient N is a smooth manifold, then
C∞

bas(N) is isomorphic to C∞(N).
In general we have F/(F ∩I ) ⊂C∞

bas(N). When N is a pre-Poisson subman-
ifold one has equality [2, Thm. 3]. Hence, for pre-Poisson submanifolds, the set of
basic functions has a Poisson algebra structure, and whenever the quotient N is a
smooth manifold, it has an induced Poisson structure.

4.3 Relation to subgroupoids of Γ (M)

Generalizing the fact that Lie algebras are the infinitesimal objects associated to Lie
groups, Lie algebroids (see §1) are associated to so-called Lie groupoids [12, §13].
A groupoid is a category (so in particular it consists of a set of arrows with two
maps s and t to the set of objects) where every arrow is invertible. For Lie groupoids
we require that the sets involved in the definition be manifolds, the maps be smooth,
and s, t surjective submersions.

Let (M,π) be a Poisson manifold. When certain obstructions vanish [10, Thm.
2], there exists a Lie groupoid whose Lie algebroid is T ∗M. There exists a unique
(up to isomorphism) such Lie groupoid Γ (M) whose s-fibers are simply con-
nected. Γ (M) is actually a symplectic groupoid [8], i.e. it carries a symplec-
tic form Ω such that the graph of the multiplication (composition of arrows) in
(Γ (M)×Γ (M)×Γ (M),Ω ×Ω × (−Ω)) is Lagrangian, and so that the target map
t : Γ (M)→M is a Poisson map. For instance, if (M,ω) is a simply connected sym-
plectic manifold, then (Γ (M),Ω) = (M×M,ω × (−ω)), and the groupoid multi-
plication of Γ (M) is given by (x,y) · (y,z) = (x,z).
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Assume that the Poisson manifold (M,π) admits a symplectic groupoid Γ (M).
“Nice” classes of (immersed) subgroupoids of Γ (M) are given by the subgroupoids
which are coisotropic or symplectic submanifolds, or more generally presymplectic
submanifolds. It is natural to ask which classes of submanifolds of M are the bases
(sets of objects) of “nice” subgroupoids of Γ (M). Given a submanifold N ⊂M, any
Lie subalgebroid of T ∗M over N must be contained in ]−1T N (otherwise there is
no induced anchor). Further, the only subbundle of T ∗M naturally associated to the
submanifold N is T N◦. Hence we are lead to consider

• T N◦∩ ]−1T N (it has constant rank iff N a pre-Poisson submanifold)
• ]−1T N (it has constant rank iff its annihilator ]T N◦ does).

When they have constant rank, they are automatically Lie subalgebroids of T ∗M [7,
Prop. 3.6]. Now we look at the corresponding subgroupoids of Γ (M).

Considering the Lie subalgebroid T N◦∩ ]−1T N we have:

Proposition 2. [7, Prop. 7.2] Let N be a pre-Poisson submanifold of (M,π). Then
the subgroupoid of Γ (M) integrating T N◦ ∩ ]−1T N is an isotropic subgroupoid of
Γ (M).

The above subgroupoid is Lagrangian exactly when N is coisotropic [5, §5]. (In [5]
this correspondence is the main tool to show that the integration of Poisson mani-
folds can be derived from the one of Lie algebroids). When N is cosymplectic, then
the above subgroupoid is the trivial groupoid N ⇒ N.

Next assume that ]T N◦ has constant rank and consider the Lie subalgebroid
]−1T N. A subgroupoid of Γ (M) integrating it is s−1(N)∩ t−1(N).

Remark 2. We saw that the graph of π pulls back to a smooth Dirac structure on
N. It can be shown [7, Rem. 7.3] that s−1(N)∩ t−1(N), with the restriction of the
sympletic form Ω on Γ (M), is an over-pre-symplectic groupoid inducing the same
Dirac structure on N [1, Ex. 6.7].

Proposition 3. [7, Prop. 7.5] Let N be any submanifold of M. Then s−1(N)∩t−1(N)
is a presymplectic7 submanifold of Γ (M) iff N is pre-Poisson and char(N) has con-
stant rank. In this case the characteristic distribution of s−1(N)∩ t−1(N) has rank
2rk(char(N))+ rk(T N◦∩TO◦), where O denotes the symplectic leaves of M inter-
secting N.

We have the following special cases: if N is coisotropic and ]T N◦ has con-
stant rank, then s−1(N) ∩ t−1(N) is also coisotropic; if N is cosymplectic, then
s−1(N)∩ t−1(N) is also cosymplectic [7, Lemma. 7.1].

When N is pre-Poisson and char(N) has constant rank, the quotient N of N by
char(N) (when smooth) is a Poisson manifold, see §4.2. As seen in Prop. 3, s−1(N)∩
7 Recall that a submanifold S of the symplectic manifold (Γ (M),Ω) is presymplectic iff its char-
acteristic distribution T S∩T SΩ has constant rank.
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t−1(N) is a Lie subgroupoid and a presymplectic submanifold of Γ (M). When the
quotient s−1(N)∩ t−1(N) by its characteristic distribution (i.e., the leaf-space) is
smooth, one expects it8 to be a symplectic groupoid for N.

The following example, which is the only original contribution of present note,
shows that this is not the case: s−1(N)∩ t−1(N) usually is not even a set-theoretic
groupoid.

Example 6. Let N be the trivial circle bundle over the open 2-disk D, but with one
point removed in the fiber over 0 ∈ D. We write suggestively N = D× Ŝ1, where
Ŝ1 p denotes the circle for all non-zero p ∈ D, while Ŝ10 is the circle with a point
deleted. Notice that π1(N) = Z, generated by any of the circle fibers. It is easy to
see that the universal cover of N is Ñ = (D×R)− ({0}×Z). To emphatize the fact
that Ñ is a bundle over D we write N = D× R̂, where R̂p = R for non-zero p ∈ D
and R̂0 = R−Z.

Now we bring in Poisson structures. Let M = D× Ŝ1× I, where I is the open
interval, and endow it with the symplectic structure Ω obtained as the product of the
symplectic structure on the disk D and the (restriction of) the symplectic structure on
S1× I. The symplectic groupoid of (M,Ω) is Γ (M) = (M̃×Z M̃, t∗Ω−s∗Ω), where
M̃ denotes the universal cover of M and the action of π1(M) = Z is by diagonal deck
transformations.

We view N as a submanifold of M; it is a presymplectic submanifold, and clearly
N ∼= D. We have

s−1(N)∩ t−1(N) = (D× R̂)×Z (D× R̂).

The characteristic leaves of s−1(N)∩ t−1(N) almost coincide with the fibers of the
natural projection onto D×D: the characteristic leaves are9 F(p1,p2) = {[(p1, t1, p2, t2)] :
t1, t2 ∈ R} if (p1, p2) 6= (0,0) ∈ D×D (topologically these are either cylinders or
rectangles), whereas sitting over (0,0) ∈ D×D we have the quotient of (R−Z)×
(R−Z) by the diagonal Z action, which consists of countably many leaves. Hence
the leaf space is

s−1(N)∩ t−1(N) = D×̂D,

where the latter denotes the non-Hausdorff manifold obtained from D×D replacing
(0,0) with a copy of Z.

We ask whether the projection pr : s−1(N)∩ t−1(N)→ s−1(N)∩ t−1(N) induces
a groupoid structure (over N) on the quotient. We have well-defined source and tar-
get maps for s−1(N)∩ t−1(N), but the groupoid multiplication of s−1(N)∩ t−1(N)
does not descend to the quotient. Indeed, consider (0, p) ∈ D×̂D where p is
non-zero. A preimage under pr is [(0,µ1),(p,λ )] where µ1 ∈ R−Z and λ ∈ R
are arbitrary. Similarly, we consider (p,0) ∈ D×̂D and as a preimage we pick
[(p,λ ),(0,µ2)] where again µ2 ∈ R−Z is arbitrary. Now multiplying these two
elements of s−1(N) ∩ t−1(N) we obtain [(0,µ1),(0,µ2)]. The value of its pro-

8 For N a Poisson-Dirac submanifold this was already pointed out in [10, §8].
9 Square brackets denote equivalence classes under the Z-action on (D× R̂)× (D× R̂).
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jection under pr depends on the concrete choice of µ1 and µ2. This shows that
s−1(N)∩ t−1(N) does not have an induced groupoid structure.

In order to obtain a groupoid as a quotient of s−1(N)∩ t−1(N), one would need
to identify all the countably many characteristic leaves sitting over (0,0) ∈ D×D.

To end with, we consider a Lie-Dirac submanifold N. By the very definition (see
§3.1) there is a canonical embedding10 of Lie algebroids φ : T ∗N → T ∗M, giving
rise to a subgroupoid of Γ (M). We have

Proposition 4. [15, Thm. 3.7] If Γ ′⇒ N is a symplectic subgroupoid of Γ (M) then
N is a Lie-Dirac submanifold of (M,π). Conversely, if N is a Lie-Dirac submanifold
of (M,π), then φ(T ∗N) integrates to a symplectic subgroupoid of Γ (M).
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