
(SEMI)CONTINUITY OF THE ENTROPY OF SINAI

PROBABILITY MEASURES FOR PARTIALLY

HYPERBOLIC DIFFEOMORPHISMS

M. CARVALHO AND P. VARANDAS

Abstract. We establish sufficient conditions for the upper semiconti-
nuity and the continuity of the entropy of Sinai probability measures
invariant by partially hyperbolic diffeomorphisms and discuss their ap-
plication in several examples.

1. Introduction

Given a diffeomorphism f : M → M of a smooth compact Riemannian
manifold M , a Borelian f -invariant probability measure µf is said to be a
Sinai probability measure (as proposed in [30, page 205]) if its Oseledets de-
composition defines unstable Pesin sub-manifolds almost everywhere along
which the measure is absolutely continuous with respect to Lebesgue. The
probability µf is called Sinai-Ruelle-Bowen measure (SRB for short) if its
basin of attraction (that is, the set of points x ∈ M such that the averages
of Dirac measures along the orbit of x converge to µf in the weak* topology)
is a positive Lebesgue measure subset of the whole manifold.

The study of the continuity properties of the measure theoretical entropy
goes back to Newhouse [35] and Yomdin [48], and it is known for SRB
probability measures of C2 uniformly hyperbolic diffeomorphisms due to
the fact that they are equilibrium states of well behaved potentials (details
in [20]). The continuity of the SRB entropy for families of endomorphisms
admitting singular points was studied in [4] by constructing induced maps
and exploring the connection between the entropy of the SRB measure of
the initial system and that of the corresponding measure of the induced
system. Among conservative diffeomorphisms, the C1-generic continuity of
the metric entropy function has been obtained by the contribution of many
authors, among which we cite [13, 41, 47]. In this setting, the continuity
of the metric entropy relies on the C1-generic continuity of each Lyapunov
exponents and the C1-generic validity of Pesin’s entropy formula.

On the contrary, within the dissipative non-uniformly hyperbolic setting
there is no natural reference invariant measure and the previously mentioned
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generic properties do not hold, or are yet to be known. For instance, generic
measures of C1-generic diffeomorphisms do not satisfy the Pesin’s entropy
formula (see [1]). In addition, it has been conjectured by J. Palis that in
the complement of uniform hyperbolicity (a C1-open property) every diffeo-
morphism may be approximated by another exhibiting either a homoclinic
tangency or a heteroclinic cycle, a phenomenon whose generic unfolding may
generate infinitely many sinks or sources. Thus, although the existence of
a Sinai probability measure has been conjectured to hold generically, its
uniqueness may be, in some sense, a rare event. For all these reasons, we
will analyze the continuous dependence of the Sinai probability measure and
its entropy in cases where it happens to exist and to be unique.

After L.S. Young pioneering work [49], the existence of Markov towers for
dynamical systems has become a suitable machinery to deduce fine statisti-
cal properties of invariant measures; see, for instance [4]. The construction
of Markov towers is a hard subject, mostly understood for non-uniformly
hyperbolic dynamical systems (the ones without zero Lyapunov exponents).
Proposing a complementary approach to attain continuity of the metric
entropy map with respect to the dynamics, we will demand the existence
of a dominated splitting that is adapted to the Sinai probability measure,
although no request is made concerning the absence of zero Lyapunov ex-
ponents.

2. Setting

Consider r ∈ [1,+∞[ and let Diff r(M) denote the set of C r diffeomor-
phisms, endowed with the Cr topology, of a smooth compact Riemannian
manifold M to itself.

2.1. Dominated splittings. Given f ∈ Diff 1(M) and a compact f -invariant
set Λ ⊂M , we say that Λ admits a dominated splitting if there exists a Df -
invariant decomposition TΛM = E ⊕ F and constants C > 0 and % ∈ (0, 1)
such that

∀n ∈ N ‖Dfn(x) |Ex ‖ . ‖(Dfn(x) |Fx)−1‖−1 ≤ C%n.
Recall that a dominated splitting (and, in particular, the dimension of its
spaces) persists under small C1 perturbations and varies continuously with
the base point and the dynamics; details in [19].

2.2. Partial hyperbolicity. A set Λ is said to be strongly partially hy-
perbolic if the tangent bundle over Λ splits as a direct sum of continuous
sub-bundles Eu⊕Ec⊕Es, invariant under the derivative Df and such that:

• at least two of the three sub-bundles are nontrivial (that is, both
have positive dimension);
• Df|Eu is uniformly expanding and Df|Es is uniformly contracting;
• Df|Ec is never as expanding as Df|Eu nor as contracting as Df|Es

(although its behavior may vary from point to point); that is, the
Df -invariant decompositions Eu ⊕ Ec and Ec ⊕ Es are dominated.

Λ is hyperbolic precisely when the central bundle Ec may be taken trivial.
The set Λ is said to be partially hyperbolic if the tangent bundle over Λ has a
dominated splitting E⊕F , invariant under the derivative Df and such that
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either E or F is hyperbolic (that is, uniformly expanding or uniformly con-
tracting, respectively). The diffeomorphism f is called partially hyperbolic
if M itself is a partially hyperbolic set.

2.3. Robust transitivity. A diffeomorphism f is transitive if there exists
a point x ∈M whose forward orbit {fn(x) : n ∈ N} is dense in M . It is C1-
robustly transitive if there exists a C1 neighborhood U of f such that each
g ∈ U is transitive. In [34], R. Mañé proved that, in dimension 2, C1-robust
transitivity implies hyperbolicity (so Anosov diffeomorphisms are the only
robustly transitive ones) and, moreover, that this implication no longer holds
in higher dimensions. Yet, in [25] it has been proved that, in dimension 3,
every robustly transitive diffeomorphism is partially hyperbolic. Although
this characterization do not carry over to dimensions bigger or equal to 4
(more information may be found in [17]), it was proved in [18] that a C1

robustly transitive diffeomorphism always admits a dominated splitting.

2.4. Sinai probability measures. Among C1+α uniformly hyperbolic dif-
feomorphisms, the property that characterizes a SRB measure is linked to
the absolute continuity of the measure with respect to Lebesgue along un-
stable manifolds; see [20]. This last property is a necessary and sufficient
condition, as proved in [31], for the metric entropy of the Sinai probability
measure, say µf , to be computed as the integral of the positive Lyapunov
exponents, that is,

hµf (f) =

∫ ( ∑
λi(x,f)>0

λi(x, f)
)
dµf (2.1)

where λ1(x, f) ≥ λ2(x, f) ≥ · · · ≥ λdim M (x, f) denote all Lyapunov char-
acteristic exponents of µf at x. We will refer to µf as a Sinai probability
measure whenever µf is absolute continuous with respect to Lebesgue along
unstable manifolds associated to its Oseledets-Pesin decomposition.

Given a C1+α diffeomorphism f , an open W ⊆ M and a transitive hy-
perbolic attractor Λf :=

⋂
n≥0 f

n(W) of f , the entropy of the natural Sinai
probability measure µf for f|Λf

is well known to exist and vary continuously

with f since it is the equilibrium state for f with respect to the potential

x ∈ Λf 7→ − log |detDf(x) |Eux |.

For C1-diffeomorphisms Sinai probability measures may not exist even in
the uniformly hyperbolic setting, as hinted in [9, 10].

3. Main results

As proved in [1], generic (with respect to the weak* topology) ergodic
probability measures invariant by C1-generic diffeomorphisms are hyper-
bolic (that is, they exhibit no zero Lyapunov exponents) and have zero
metric entropy. In particular, this property implies that C1-generically the
generic measures do not satisfy Pesin’s formula, unless all their Lyapunov
exponents are negative. Moreover, recent contributions [9, 10] suggest that,
in the dissipative setting, C1 generically the existent SRB probability mea-
sures may not be absolutely continuous with respect to Lebesgue measure
along unstable Pesin foliations, even in the uniformly hyperbolic context.
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Additionally, Pesin’s entropy formula may fail in the C1-topology. Accord-
ingly, we will restrict our study to the set of Cr diffeomorphisms (r ≥ 1)
with a unique Sinai probability measure.

3.1. Upper semicontinuity. We will start showing that if for a family of
C1 diffeomorphisms Sinai probability measures exist, are unique and vary
continuously, then the corresponding measure theoretical entropy map is
upper semicontinuous.

Theorem A. Let U ⊂ Diff r(M), r ≥ 1, be a Baire set of Cr diffeomor-
phisms of M such that, for every f ∈ U , there exists a unique Sinai proba-
bility measure µf which varies continuously with f . Then the entropy map

hS : U → R+
0 given by

f ∈ U 7→ hµf (f) (3.1)

is upper semicontinuous. In particular, there exists a Cr-residual subset
R ⊂ U of continuity points of the function hS.

Proof of Theorem A. It follows from [30] that, as µf is a Sinai probability
measure, then

hµf (f) = lim
n→∞

1

n

∫
log ‖Dfn(x)∧‖ dµf (3.2)

where

‖Dfn(x)∧‖ := 1 +
dimM∑
j=1

‖Dfn(x)∧j‖

and Dfn(x)∧j denotes the jth exterior power of the linear map Dfn(x).
Moreover, it is clear that the map

f ∈ U 7→ 1

n

∫
log ‖Dfn(x)∧‖ dµf

is continuous. Besides, it is not hard to check that, given f , the sequence of
real functions (log ‖Dfn(x)∧‖)n∈N is sub-additive. Indeed, for every m,n ≥
1 and x ∈M ,

log ‖Dfn+m(x)∧‖ ≤ log
(

1 +
dimM∑
j=1

‖Dfn(x)∧j‖ ‖Dfm(fn(x))∧j‖
)

≤ log
[(

1 +

dimM∑
j=1

‖Dfn(x)∧j‖
)(

1 +
dimM∑
j=1

‖Dfm(fn(x))∧j‖
)]

= log ‖Dfn(x)∧‖+ log ‖Dfm(fn(x))∧‖.

Therefore, the measure theoretical entropy of µf is given by

hµf (f) = inf
n≥1

1

n

∫
log ‖Dfn(x)∧‖ dµf

and so it is the greatest lower bound of a sequence of real continuous func-
tions on U . Therefore, the map

f ∈ U 7→ hµf (f)
4



is upper semicontinuous, which proves the first assertion in the theorem. The
second assertion is a direct consequence of the first one by general topology
arguments. �

Some comments are in order. Firstly, observe that the uniqueness as-
sumption in the theorem was not strictly used. In particular, the upper
semicontinuity of the entropy map f 7→ hµf (f) holds for any given family
of Sinai probability measures that varies continuously with the dynamics in
the weak* topology. A second comment concerns the differentiability as-
sumption on the theorem. As stated, given a family of Cr diffeomorphism
parameterized by some Baire space, the theorem yields a Cr-generic set of
points of continuity for the metric entropy map. The set of continuity points
is clearly Cr-dense, hence C1-dense as well.

Remark 3.1. Equation (3.2), which is the key characterization used in
the previous argument, has been established in [30] also for C1+α endomor-
phisms f with a singular set Sf satisfying the following conditions:

(LS1) If Bε(Sf ) stands for the ε-ball around Sf , there are uniform constants
Cf,1 and β > 0 such that, for every small enough ε > 0,

µf (Bε(Sf )) ≤ Cf,1 εβ.
(LS2) There exists Cf,2 > 0 such that∫

log+ ‖Df(x)±‖ dµf ≤ Cf,2 <∞

where log+(t) = max{log(t), 0}.
Therefore, Theorem A is valid in the more general context of C1+α local
diffeomorphisms or C1+α endomorphisms with singular sets Sf satisfying
the conditions (LS1) and (LS2) and for which

(LS3) ∀ n ∈ N, f 7→
∫

log ‖Dfn(x)∧‖ dµf is continuous.

We shall discuss this setting later, in Section 4.

3.2. Conservative case revisited. Let M be a smooth compact Riemann-
ian manifold, m be a normalized Lebesgue measure on M and Diff1

m(M) be
the set of C1 volume-preserving diffeomorphisms of M endowed with the C1

topology. In this setting, we may gather significant information concerning
dominated splittings, the metric entropy of m, its Lyapunov spectrum and
the validity of Pesin’s entropy formula.

As proved in [41] and [42], Pesin’s entropy formula holds C1 generically
among volume-preserving diffeomorphisms. Moreover, according to [15],
there is a residual subset of Diff1

m(M) such that, for any f in that set and
m-almost every point x, either all Lyapunov exponents at x are zero or the
Oseledets splitting of f is dominated on the orbit of x. In particular, see
[14], for any compact surface M there is a residual set of area preserving dif-
feomorphisms which are either Anosov or have zero Lyapunov exponents m
almost everywhere. The proofs of these results indicate that, in the conser-
vative setting, the entropy map f ∈ Diff1

m(M) → hm(f) is not continuous.
Nevertheless, it has been established recently in [11] that the Lyapunov
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spectrum is C1-generically continuous; together with the C1-generic valid-
ity of Pesin’s entropy formula, this implies that there is a residual subset of
Diff1

m(M) of continuity points of the entropy map; see [47].
From these results and [15] it is now easy to deduce, after intersecting the

corresponding residual sets, that, if f ∈ Diff 1
m(M) is a generic continuity

point of the entropy map, then:

(a) If M is the 2-torus, then f is either Anosov or hm(f) = 0.
(b) If M is a compact surface other than the 2-torus, then hm(f) = 0.
(c) If dim M > 2, then either f has a dominated splitting or hm(f) = 0.

We recall that the set Diff 1
m(M) is closed but has empty interior in

Diff 1(M). Moreover, the probability m, although preserved by all elements
in Diff1

m(M), may not be a Sinai probability measure. Still, according to
[1], inside the family of robustly ergodic conservative diffeomorphisms there
is an open dense subset V where m is hyperbolic with respect to any dif-
feomorphism in V (that is, its Lyapunov exponents are all non-zero) and its
Oseledets decomposition is dominated. Additionally, by [16], if f belongs to
Diff1+α

m (M) and is C1 robustly ergodic (that is, m is ergodic for f and for
any C1 near-by element of Diff1+α

m (M)), then f may be C1 approximated
by g ∈ Diff1+α

m (M) for which m is hyperbolic. These results motivate the
following application of Theorem A to Cr conservative diffeomorphisms.

Corollary A. Assume that U ⊂ Diff r
m(M), r ≥ 1, is a Baire space and that

m is a Sinai probability measure for any f ∈ U . Then the entropy function

hm : f ∈ U 7→ hm(f)

is upper semicontinuous. Consequently, there exists a Cr residual subset
R ⊂ U of continuity points of hm.

3.3. Continuity. In the C1+α uniformly hyperbolic setting, Sinai proba-
bility measures are equilibrium states of an Hölder continuous potential,
namely

x 7→ ϕu(x) = − log | detDf(x) |Eux |,
and so the metric entropy of such Gibbs measures is given by

hµf (f) =

∫
−ϕu(x) dµf .

In general, a similar formula also holds in Diff1+α(M), that is, µf has an
adequate Jacobian as well. This is the key to prove the following property.

Theorem B. Given α > 0, assume that U is a Baire subset of Diff r(M),
r ≥ 1 + α, such that every f ∈ U has a Df -invariant dominated splitting
TM = Ef ⊕Ff and a Sinai probability measure µf which has exactly dimFf
non-negative Lyapunov exponents. Then:

(a) If the Sinai probability measure is unique and the entropy map

hS : f ∈ U → hµf (f) (3.3)

is upper semicontinuous, then it is continuous.
(b) If the Sinai probability measures vary continuously with the dynam-

ics, then hS is continuous.
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Proof of Theorem B. The proof of this theorem makes use of the regularity
of the Jacobian along the F sub-bundle as we now describe. As a dominated
splitting and the dimensions of the corresponding subspaces vary continu-
ously with the base point [19], the map x ∈M 7→ Ff,x is continuous and so
the Jacobian

x ∈M 7→ JfFf,x(x) := |detDf(x) |Ff,x |
is continuous as well. Then, from the proof of Proposition 2.5 in [30], we
get ∫ ( ∑

λi(x)≥0

λi(x)
)
dµf =

∫
log JfFf,x(x) dµf . (3.4)

In particular, the continuity of the entropy function in (3.3) is now a direct
consequence of the continuity of the previous expression with the dynamical
system f . Thus, we are left to prove this last assertion.

Firstly, for each f ∈ U , let TM = Ef⊕Fg be the corresponding dominated
splitting. Our assumptions ensure that the map

(f, x) ∈ U ×M 7→ JfFf,x(s) := | detDf(x) |Ff,x | (3.5)

is continuous.

(a) Assume that the entropy map is upper semicontinuous (a property valid
if U ⊂ Diff ∞(M); see [35, 48]) and that the Sinai probability measure is
unique for each f ∈ U . Then:

Lemma 3.1. The map

f ∈ U 7→ µf

is continuous in the weak* topology.

Proof. Consider a sequence (fn)n∈N in U converging to f ∈ U and (taking a
subsequence if necessary) such that (µfn)n∈N converges in the weak* topol-
ogy to ν. Therefore:

(i) Given the property (3.5) and the fact that ν is the weak* limit of µfn ,
we have

lim
n→+∞

∫
log JfnFfn,x

(x) dµfn =

∫
log JfFf,x(x) dν.

(2i) As µfn is a Sinai probability measure for each n,

lim sup
n→+∞

hµfn (gn) = lim
n→+∞

∫
log JfnFfn,x

(x) dµfn .

(3i) By assumption, we know that lim supn→+∞ hµfn (fn) ≤ hν(f). Hence,∫
log JfFf,x(x) dν ≤ hν(f).

(4i) From from Proposition 2.5 in [30], which is valid for any invariant prob-
ability measure, we get∫ ( ∑

λi(x)>0

λi(x)
)
dν =

∫
log JfFf,x(x) dν,
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so ∫ ( ∑
λi(x)>0

λi(x)
)
dν ≤ hν(f).

(5i) Finally, by Ruelle’s inequality [38],

hν(f) ≤
∫ ( ∑

λi(x)>0

λi(x)
)
dν

and so ν is a Sinai probability measure. As f has a unique Sinai probability
measure, ν must be µf . �

Consequently, the right hand side of (3.4) varies continuously with the
dynamics. Thus,

f ∈ U 7→ hµf (f) =

∫
log JfFf,x(x) dµf

is a continuous function, and this ends the proof of Theorem B (a).

(b) By assumption, the Sinai probability measures vary continuously with
the dynamics in U , thus, by (3.5), the function

f ∈ U 7→
∫

log JfFf,x(x) dµf

is continuous. Moreover, for any f ∈ U ,

hµf (f) =

∫
log JfFf,x(x) dµf

so the entropy varies continuously with the dynamics. �

Remark 3.2. The previous theorem can be strengthened in several ways.
Firstly, the full assumption on domination is not essential for the proof of
Theorem B; we just need a Df -invariant continuous sub-bundle Ff ⊂ TM so
that the Jacobian x→ log JfFf,x is continuous and varies continuously with
f . In Subsection 4.2 we will illustrate that the latter regularity may hold
for diffeomorphisms with no dominated splitting, although the set of points
with lack of domination must be a meager set. Secondly, the assumption
on the continuity of the Sinai measures can be replaced by the uniqueness
plus the assumption of the existence of a uniform δ > 0 such that every
partition P with diameter at most δ is generating for every µf with f ∈ U .
This last condition is valid, for instance, if each µf has infinitely many
(σµf , δ)-hyperbolic times almost everywhere, for some σµf > 1 and uniform
δ > 0. Following [45], this condition implies the upper semicontinuity of the
measure theoretical entropy, and ultimately the continuity of the (unique)
Sinai measure of the dynamical system.

Remark 3.3. One says that a f -invariant compact set Λ ⊆ M is a ro-
bustly transitive attractor if there exist a neighborhood U of Λ and a C1

neighborhood N of f such that

• Λ is the maximal invariant set of f in U ;
• for every g ∈ N , the maximal invariant set Λg =

⋂
n∈N gn(U) of g

in U contains dense orbits.
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The set Λ is said to be a partially hyperbolic attractor if there exists a
dominated splitting TΛM = Es ⊕ Ecu and constants C > 0 and % ∈ (0, 1)
such that

• ‖Dfn(x) |Esx ‖ ≤ C%
n (uniform contraction along Es);

• Ecu is non-uniformly expanding, that is,

lim sup
n→∞

1

n

n−1∑
j=0

log ‖(Df(f j(x)) |F
fj(x)

)−1‖ < 0.

We note that the previous theorem is valid for invariant compact sets Λ
which are robustly transitive and partially hyperbolic attractors.

3.4. Regularity of the Lyapunov spectrum. Given a C1+α diffeomor-
phism f , an open W ⊆ M and a transitive hyperbolic attractor Λf :=⋂
n≥0 f

n(W) of f , the entropy of the natural Sinai probability measure µf
for f|Λf

is well known to exist and vary continuously with f . Consequently,

we also have regularity of the Lyapunov exponents in this context.

Theorem C. Let U ⊂ Diff r(M), where r ≥ 1 + α and α > 0, be an open
set of transitive Anosov diffeomorphisms. There exists a residual subset
R ⊂ U such that every f ∈ R is a continuity point of the Lyapunov exponent
function

f ∈ U 7→ Li(f) := inf
n≥1

1

n

∫
log ‖Dfn(x)∧i‖ dµf

for every 1 ≤ i ≤ dimM .

Proof. Since the Sinai probability measure is unique for every f ∈ U and
varies continuously with f , it follows from the sub-additivity of the sequence
of functions (log ‖Dfn(x)∧i‖)n∈N that the function U 3 f 7→ Li(f) is upper
semicontinuous, for any 1 ≤ i ≤ dimM . Thus, there exists a residual subset
Ri ⊂ U of continuity points for Li. We are left to intersect these residual
subsets, obtaining R :=

⋂
1≤i≤dimM Ri. �

3.5. Flows. For volume preserving flows, the C1-generic continuity of the
metric entropy function has been obtained in the three-dimensional setting
in [13] by proving the C1-generic continuity of each Lyapunov exponent
and the C1-generic validity of Pesin’s entropy formula; it remains an open
question in the higher dimensional setting.

Given a vector field X ∈ Xr(M) (r ≥ 1) on a compact Riemannian
manifold M , it generates a Cr-smooth flow (ϕtX)t∈R. Moreover, for any
invariant probability measure its Lyapunov exponents with respect to the
flow (ϕtX)t∈R coincide with the ones for the time-one Cr-diffeomorphism ϕ1

X .
The measure theoretical entropy of the flow is also defined as the entropy of
ϕ1
X . Therefore, the extension of Theorem A for flows is straightforward.
Clearly, if TM = E ⊕ F is a dominated splitting for the flow (ϕtX)t∈R,

then it is also a dominated splitting for the time-one map ϕ1
X . Moreover,

since dominated splittings vary continuously with the base point, the one-
dimensional Dϕ1

X -invariant subspace generated by the vector field X is con-
tained in one of the subbundles E or F and gives rise to a zero Lyapunov
exponent. Hence, the existence of a dominated splitting for the flow yields
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a dominated splitting for ϕ1
X and gives rise to a natural counterpart of The-

orem B for flows. As an illustration let us observe that geometric Lorenz
attractors Λ for three-dimensional manifolds admit a unique Sinai measure
(see [8]) which varies continuously with the vector field (see [6]). Since there
exists an invariant splitting TΛM = Es⊕F on the attractor Λ, which varies
continuously with the vector field and there are dimF = 2 non-negative
Lyapunov exponents for the flow then the counterpart of Theorem B in this
setting yields that the entropy of the Sinai measure varies continuously with
the vector field.

4. Examples

4.1. Diffeomorphisms derived from Anosov. A particularly well stud-
ied family of partially hyperbolic diffeomorphisms is the family of C1+α de-
rived from Anosov diffeomorphisms; see [34, 23, 24]. These systems are not
uniformly hyperbolic neither structurally stable but they are robustly tran-
sitive and intrinsically stable (see [22] for details; their topological entropy is
in fact constant in a neighborhood and they each have a unique measure of
maximal entropy with respect to which periodic orbits are equidistributed).
Moreover each has a unique SRB probability measure which is an equilib-
rium state of an Hölder potential and absolutely continuous with respect to
Lebesgue along the unstable Pesin sub-manifolds. Therefore, we may apply
either Theorem B (a) or Theorem B (b) according to the arcs considered,
thus deducing that the metric entropy of the Sinai probability measure varies
continuously within these dynamics.

4.2. Heteroclinic bifurcations of Anosov diffeomorphisms. In [26],
another family of maps at the boundary of the set of the Anosov diffeomor-
phisms has been studied from an ergodic viewpoint. Given a C2 transitive
Anosov diffeomorphism f0 : M → M , the new dynamics f1 is obtained by
isotopy from f0 as a first bifurcation through a cubic tangency between the
stable and unstable manifolds of two distinct periodic points of f0. The
author proves that f1 is conjugate to f0, so it is transitive as well, and has
a unique Sinai probability measure µ1 with respect to which f1 is Bernoulli
and has a Pesin region with full measure. The key property of these bi-
furcations is that the invariant stable and unstable foliations persist in M ,
although at the tangency point they are no longer transversal. Moreover, if
the dimension of M is two and f0 is conservative, then the isotopy may be
taken in the space of conservative diffeomorphisms and µ1 is the Lebesgue
measure. These family does not satisfy the requirements of Theorem B due
to the point of heteroclinic tangency. Nevertheless, the unstable sub-bundle
extends continuously to that point and so Theorem B (b) applies to this
setting.

4.3. Mostly expanding or mostly contracting diffeomorphisms. For
C1-perturbations of a diffeomorphism that admit a unique Sinai probability
measure continuously parametrized by a Baire space, Theorem A ensures
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that C1-generically the measure theoretical entropy of the Sinai probabil-
ity measure varies continuously. For instance, we may consider the C1-
perturbations of mostly expanding or mostly contracting partially hyper-
bolic diffeomorphisms, introduced in [2] and [17], respectively. Moreover,
we note that, under the assumption of robust transitivity, it was proved
in [2, 17] that, in this context, there exists a unique SRB probability mea-
sure which is absolutely continuous with respect to Lebesgue measure along
unstable Pesin manifolds, it is a u-Gibbs measure [37] and its statistical
stability was obtained in [45]. Consequently,

Corollary B. The entropy of the SRB measure for mostly contracting or
mostly expanding diffeomorphisms varies continuously with the dynamical
system.

4.4. Maps with singularities and discontinuities. A robust class U of
multidimensional non-uniformly expanding C2 endomorphisms, now called
Viana maps, were introduced in [46] as perturbations of skew products of
fiber quadratic maps. Some extensions have been studied more recently in [5,
44] and references therein. These are transitive maps with a zero Lebesgue
meassure singular set Sf and a unique Sinai probability measure µf which
varies continuously in the weak* topology (and even in the L1 topology;
details in [3]). Using Markov structures, that exist and vary continuously
with the dynamics in U , it was proved in [4] that the entropy of the Sinai
probability measure also varies continuously with the endomorphism. What
information may we get in this setting from Theorem A?

Two of the demands made in Remark 3.1, needed to apply Theorem A,
pose no problem. Indeed:

• As µf has positive Lyapunov exponents in every direction and almost
every point, by [32, 39] the Pesin’s entropy formula is valid, that is,

hµf (f) =

∫
log |detDf | dµf .

So, instead of condition (LS3) of Remark 3.1, we are left to verify
that, in spite of the singular region, the map

f 7→ log | detDf |

is continuous. This demand is fulfilled within well chosen subfamilies
of U .
• In U , the Lyapunov exponents are uniformly bounded from above

and below, so there exists a uniform constant A > 0 such that, for
any f ∈ U , we have

(D) |
∫

log | detDf | dµf | ≤ A.

This means, in particular, that condition (LS2) of Remark 3.1 holds.

However, condition (LS1) of Remark 3.1, which is linked to a slow rate of
approximation of the orbits to the singular set, is not guaranteed for Viana
maps.

11



Yet, Viana maps satisfy another property which is enough to prove di-
rectly the continuity of the entropy with the dynamics. Namely, it is pos-
sible to choose adequately the skew product of the fiber quadratic maps,
of whose perturbations is made U , in order to produce a parameterized C3

small enough arc

(ft)t∈ [−ρ0, ρ0]

of C2 endomorphisms in U , exhibiting singular sets

Sft = S

with µft(S) = 0 and such that there exist constants c > 0 and β > 0
satisfying, for every t, s ∈ [−ρ0, ρ0] and all x ∈M \ S,

(E) | log |detDft(x)| − log | detDfs(x)| | ≤ c |t− s|β.

Taking into account that µft varies continuously in the L1 topology with
t, that the measure µft is regular and that µft(S) = 0 for any t, given
ε > 0 there is an open neighborhood of S in M , say a ball Bδ(S) for some
δ = δ(ε) > 0 independent of t ∈ [−ρ1, ρ1] ⊂ [−ρ0, ρ0], such that, for every
t,

µft(Bδ(S)) < ε/2.

By condition (D), the map log | detDft| ∈ L1(µft) and, consequently, from
property (E) we get

|
∫
Bδ(S)

log | detDft| dµft | . c |t|β +

∫
Bδ(S)

log |detDf0| dµft .

Additionally, for any fixed t, the Dominated Convergence Theorem yields

lim
δ→0

∫
Bδ(S)

log |detDf0| dµft = 0.

This proves that

lim sup
δ→0

lim sup
t→0

∫
Bδ(S)

log |detDft| dµft = 0.

Hence, as

hµft (ft) =

∫
Bδ(S)

log | detDft| dµft +

∫
M\Bδ(S)

log |detDft| dµft

we finally conclude from the weak* convergence of the measures that

lim
δ→0

lim
t→0

∫
M\Bδ(S)

log |detDft| dµft =

∫
M

log | detDf0| dµf0 = hµf0 (f0).

Therefore,

lim
t→0

hµt(ft) = hµ0(f0).

Remark 4.1. Condition (E) has been used, among other assumptions, in
[7] to provide an alternative proof for the continuity (in the weak* topology)
of the equilibrium states of the Viana maps. Property (E) also holds for the
family of Benedicks-Carleson quadratic maps.
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4.5. Intermittency phenomenon for interval maps and diffeomor-
phisms. We observe that the statement of Theorem B does not require,
a priori, neither hyperbolicity of the Sinai probability measures nor their
continuity with the dynamics. We can illustrate this detail by the so-called
Manneville-Pomeau transformations [33] and the setting of almost Anosov
diffeomorphisms [29, 28].

Given α > 0, let fα : [0, 1]→ [0, 1] be defined by

fα(x) =

{
x(1 + 2αxα) if 0 ≤ x ≤ 1

2
2x− 1 if 1

2 < x ≤ 1.

For α = 0 the map is expanding and (piecewise) C∞, while for α > 0
these maps have an indifferent fixed point at zero. It is well known that
f0 preserves the Lebesgue measure m and that, for every α ∈ (0, 1), there
exists a unique ergodic fα-invariant Sinai probability measure µα � m; see
[33]. Lifting the dynamics to the circle, we obtain a diffeomorphism, so we
may omit the discontinuity points and say that fα ∈ C1+α.

Corollary C. The entropy map

α ∈ [0, 1) 7→ hµα(fα)

is continuous.

Proof. As a direct consequence of Theorem B and Remark 3.1 we deduce
that, for any α0 > 0, the entropy map

α ∈ [α0, 1) 7→ hµα(fα)

is continuous.
The continuity of the entropy map at α = 0 requires another argument

since there is no r > 1 such that fα ∈ Cr for every α ∈ [0, 1). Nevertheless,
for any α ∈ [0, 1) the map fα is C1+α and so, by the Pesin entropy formula,

hµα(fα) =

∫
log |f ′α| dµα.

Moreover, the Jacobian map

α ∈ [0, 1) 7→ log |f ′α| ∈ C0([0, 1])

is continuous. Finally, the continuity of the Sinai probability measure (µα)α∈[0,1)

follows from its uniqueness together with the existence of a generating par-
tition for the family (fα)α∈ [0,1], as explained in Remark 3.2. �

Conditions for the existence of Sinai probability measures for diffeomor-
phisms that present an intermittency phenomenon, and for which our results
apply, may be found in [29, 28, 27]. An argument entirely analogous to the
previous ones yields the continuity of the entropy of the Sinai measure in
this context as well.

4.6. Conservative diffeomorphisms derived from the standard map.
In [12] it has been introduced a C2 open class U of volume-preserving non-
uniformly hyperbolic diffeomorphisms, obtained by perturbing a skew prod-
uct of standard maps driven by a parameter over an Anosov diffeomorphism.
These systems are partially hyperbolic on T2 × T2 with a two-dimensional
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central direction and belong to a neighborhood of f0 : T2 × T2 → T2 × T2

given by

f0(z, w) = (s(z) + π1 ◦AN (w), A2N (w))

where s : T2 → T2 denotes the standard map, π1 stands for the projection of
R2 onto the first coordinate, A is a linear Anosov automorphism and N ∈ N
is chosen large enough (see [12, Theorem 1.1] for details).

To address the continuity of the metric entropy of the Lebesgue mea-
sure, which is a Sinai probability measure for this family of dynamics, and
apply Theorem A, we have to require uniqueness of the Sinai probability
measure. By Pesin’s ergodic decomposition theorem for non-uniformly hy-
perbolic measures invariant by C2 volume-preserving diffeomorphisms (see
[36]) the uniqueness is a direct consequence of the ergodicity of the Sinai
probability measure. Moreover, as stated in [21], stable ergodicity for C2

partially hyperbolic diffeomorphisms follows from accessibility and center
bunching conditions; and stable ergodicity is a C1 open and dense property
in the space of partially hyperbolic diffeomoprhisms in Diff r(M) (r ≥ 1).

Now, by [12, Section 7], every diffeomorphism in U is partially hyperbolic
and center bunched. In conclusion, it follows from the previously mentioned
results that there is a C2 open and dense set V ⊂ U of (stable) ergodic
diffeomorphisms. Additionally, V is a Baire space of C2 diffeomorphisms.
Thus, the following is an immediate consequence of Theorem A:

Corollary D. There is a C2 residual subset R ⊂ V of continuity points of
the metric entropy function f 7→ hm(f).

4.7. Conservative diffeomorphisms with a dominated splitting. In
[43] the author presents open sets U of C2 volume-preserving diffeomor-
phisms on the torus T4 which are not partially hyperbolic but are stably er-
godic. These diffeomorphisms have a dominated splitting T T4 = Ecs⊕Ecu
for which the Lebesgue measure is hyperbolic, exhibiting two positive and
two negative Lyapunov exponents. Besides, the entropy map of the Lebesgue
measure is continuous at a residual subset of these maps [47]. Now, Theo-
rem B improves this conclusion:

Corollary E. The entropy map f ∈ U 7→ hm(f) is continuous.
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