LARGE DEVIATIONS FOR NON-UNIFORMLY
EXPANDING MAPS

V. ARAUJO AND M. J. PACIFICO

ABSTRACT. We obtain large deviation results for non-uniformly expand-
ing maps with non-flat singularities or criticalities and for partially hy-
perbolic non-uniformly expanding attracting sets. That is, given a con-
tinuous function we consider its space average with respect to a physical
measure and compare this with the time averages along orbits of the
map, showing that the Lebesgue measure of the set of points whose
time averages stay away from the space average decays to zero exponen-
tially fast with the number of iterates involved. As easy by-products we
deduce escape rates from subsets of the basins of physical measures for
these types of maps.
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1. INTRODUCTION

Smooth Ergodic Theory provides asymptotic information of the behavior
of a dynamical system, given by a smooth transformation, when times goes
to infinity. This statistical approach to Dynamics has provided valuable
insights into many phenomena: from the remarkable result of Jakobson [24]
(see also [10, 11]) showing the existence of many (positive Lebesgue measure
of) parameters a € (0,2) for which the corresponding map of the quadratic
family  — a — 2 has positive Lyapunov exponent along almost every orbit;
a different set of ideas in higher dimensions provided the first clue to the
nature of the Hénon attractor [11, 31] or the existence of robust classes of
maps which are not uniformly expanding but exhibit several distinct positive
Lyapunov exponents [43], to the study of the statistical properties of these
and other classes of systems [35, 12, 47, 14, 2, 16, 6].

The basic ideas can be traced back to the Boltzman Ergodic Hypothesis
from Statistical Mechanics which was the main motivation behind the cele-
brated Birkhoff’s Ergodic Theorem ensuring the equality between temporal
and spatial averages with respect to a probability measure p invariant under
a measurable transformation f : M — M of a compact manifold M, i.e. for
every continuous map ¢ : M — R we have

n—1

1 .
Jim =% o (x) = /sodu (1)
j=0

for u almost every point x € M. Defining B(u), the ergodic basin of u, to
be the set of points for which (1) holds for every continuous function ¢, the
Ergodic Theorem says that u(B(,u)) = 1 for all ergodic f-invariant proba-
bility measures p. Since ergodic measures can be, for instance, Dirac masses
concentrated on periodic orbits, the Ergodic Theorem in itself does not al-
ways provide information about the asymptotic behavior of “big” subsets of
points. The notion of “big” can arguably be taken as meaning “having posi-
tive Lebesgue measure (or positive volume)”, since such sets are in principle
“observable sets” when interpreting f : M — M as a model of physical,
biological or economic phenomena. Correspondingly invariant probability
measures y for which B(u) has positive volume are called physical (or Sinai-
Ruelle-Bowen) measures.

This kind of measures was first constructed for (uniformly) hyperbolic
diffeomorphisms by Sinai, Ruelle and Bowen [42, 39, 17]. Such measures for
non-uniformly hyperbolic maps where obtained more recently [35, 12, 13, 2].

We say that a local diffeomorphism f of a compact manifold is (uniformly)
expanding if there exists n > 1 such that for all x and every non-zero tangent
vector v at x

[1Df*(@)vll = 2]jv]- 2)
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For diffeomorphisms of compact manifolds, the notion of hyperbolicity re-
quires the existence of two complementary directions given by two (contin-
uous) subbundles F and F of the tangent bundle admitting n > 1 such that
for all points x and non-zero tangent vectors (u,v) € E, @ Fy

1
IDf"(@)ull < Sllull - and  |[Df* (@)l = 2v]]. 3)

The statistical properties of physical measures are an object of intense study,
see e.g. [17, 47, 14, 3, 5, 4, 7, 21]. The leitmotif is that the sequence
{¢ o f"}n>0 behaves like an i.i.d. random variable, at least asymptotically.

Here we are concerned with the rate of convergence of the time aver-
ages (1) for non-uniformly expanding maps and partially hyperbolic non-
uniformly expanding diffeomorphisms (where condition (2) and the right
hand side condition of (3) are replaced by an asymptotic one, see the state-
ment of results below), extending some of the large deviation results in [46]
(see also [19, 20] for a different presentation).

This again strenghtens in a definite sense the idea that non-uniformly
hyperbolic systems are chaotic: they satisfy a version of the classical large
deviation results for i.i.d. random variables. More precisely, if we set § > 0
as an acceptable error margin and consider

n—1

B, = {:cEM: ‘%Zw(f](:r)) —/godu‘ >5}

then we are interested in knowing whether the Lebesgue measure of B,
decays to zero exponentially fast, i.e. wheather there are constants C,& > 0
such that

Leb (B,) < Ce " forall n>1. (4)

We are able to obtain such rates for non-uniformly expanding local diffeo-
morphisms and also for endomorphisms and maps with non-flat singulari-
ties and criticalities under a condition on the rate of approximation of most
orbits to the critical /singular set. In particular we are able to obtain an ex-
ponential decay rate as above for piecewise expanding maps with infinitely
many smoothness domains, for quadratic maps corresponding to a positive
Lebesgue measure subset of parameters and for a class of maps with infin-
itely many critical points. Moreover we also obtain the same kind of rates
for partially hyperbolic attracting sets with a non-uniformly expanding di-
rection.

The values of C,¢ > 0 in (4) depend on §, ¢ and on global invariants for
the map f which are also the object of study of Smooth Ergodic Theory,
such as the metric entropy and the pressure function of f, as detailed below.

1.1. Statement of the results. We denote by ||-|| a Riemannian norm on
the compact boundaryless manifold M, by d the induced distance and by
Leb a Riemannian volume form, which we call Lebesgue measure or volume
and assume to be normalized: Leb(M) = 1.

We start by describing one of the class of maps that we are going to
consider. Let f : M — M be a map of the compact manifold M which is a
C? local diffeomorphism outside a set § € M with zero Lebesgue measure.
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We assume that f behaves like a power of the distance close to 8: there are
constants B > 1 and (8 > 0 for which

S1) Ld(r.s)? < 127

el

(S2) [log|IDf ()| —log | Df(y) "Il | < B

< Bd(x,8)";

d(z,y)
d(z,8)P’
-1 —1 d(ilj‘, y) .

(53) log|det. D ()| ~log | det D ()| < B g5
for every z,y € M \ 8 with d(z,y) < d(z,8)/2 and v € T, M \ {0}. The
singular set § may be thought of as containing those points x where D f(x)
is either not defined or else is non-invertible. Note in particular that 8
contains the set C of critical points of f, i.e. the set of points (which may be
empty) where D f(z) is not invertible. We reffer to this kind of singular sets
as non-flat since conditions (S1) to (S3) above are natural generalizations
to arbitrary dimensions of the notion of non-flat critical point from one-
dimensional dynamics, see e.g.[18].

In what follows we write S,p(x) for 7" o(f*(z)) and a function ¢ :
M — R. We say that f as above is non-uniformly expanding if there exists
¢ > 0 such that

, ()

for Lebesgue almost every x € M. We need to control the rate of approxi-
mation of most orbits to the singular set. We say that f has slow recurrence
to the singular set § if for every ¢ > 0 there exists § > 0 such that

lim sup %Snzp(a;) < —c¢ where ¢(x)=log HDf(x)_1|

n—-4o0o

1
limsup = SpAs(z) <e with Ags(z) = |logds(z,8)| (6)
n—oo N
for Lebesgue almost every x € M, where for any given § > 0 we define the
smooth d-truncated distance from x € M to 8 by

ds(z,8) = &5 (d(a;, S)) cd(x,8)+1—¢&5 (d(:z:,S))
where &5 : R — [0, 1] is a standard C*° auxiliary function satisfying
&(x) =11if |x| < 9§ and &(x) = 0 if |z| > 20.

Observe that Ay is non-negative and continuous away from 8 and identically
zero 20-away from 8.

These notions where presented in [6] for higher dimensional maps ab-
stracted from similar notions from one-dimensional maps [18] and previous
work on maps with singularities [25], and in [6, 1] the following result on
existence of finitely many physical measures was obtained.

Theorem 1.1. Let f : M — M be a C? local diffeomorphism outside a non-
flat singular set 8. Assume that f is non-uniformly expanding with slow re-
currence to 8. Then there are finitely many physical (or Sinai-Ruelle-Bowen )

measures i, - - ., b whose basins cover the manifold Lebesgue almost every-
where, that is B(u1) U---U B(ug) = M, Leb— mod 0.

We say that f is a reqular map if f, Leb < Leb, that is, if E C M is such
that Leb(E) = 0, then Leb (f~(E)) = 0. We denote by My the family of
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all invariant probability measures with respect to f, by MJ% the family of all
ergodic f-invariant probability measures, and define

B(z,n,e) = {ye M:d(fi(a:),fi(y)) <6,i:O,...,n—1}

the (n,e)-dynamical ball around = € M. Large deviation statements are
usually related to entropies: for any finite Borel measure m on M we define

h (f)(2) = lim lim sup —% logm(B(:r, n,s))

e—0 pooo
and for v € My
hin(f,v) = v — esssup hp(f).

Theorem A. Let f : M — M be a reqular C'7 local diffeomorphism
outside a non-flat singular set S, for some a € (0,1). Assume that f
18 mon-uniformly expanding with slow recurrence to 8. Then writing J =
log | det Df|, given ¢ € R and a continuous function ¢ : M — R

(1) of htop(f) < 00, then

hmmf — log Leb <{m eM: — ngp( ) > c})

n—-4oo

> sup{h,,(f) — hreb(f,v) 1 v € Me,/gody > c} ;
(2) if 8=0 (f is a local diffeomorphism) then

1 1
hmsup log Leb ({:13 eEM: — ngo( ) >c}

n—-+oo N

§sup{h,,(f)—/Jdu:uer,/godVZC}.

(3) in general for any given n > 0 there exists €,5 > 0 such that

hmsup log Leb ({m eM: — ngp( ) > c and lSnA(;(a:) < 5})

n—+oo N
<7]—|—sup{ /Jdu VEMf,/gody>candA5€L1( )}

We say that a measure v € My is an equilibrium state for f with respect
to J (or just an equilibrium state in what follows) if

ho(f) = v(J) = /de.

As the above statement shows, equilibrium states are involved in the de-
termination of the asymptotic rates of deviation. Given €, > 0 we write
E = E.s for the family of all equilibrium states p of f with respect to
J such that u(As) < e and, given a continuous ¢ : M — R, we define
E(p) = {v(¢) : v € E}.

From Theorem A we are able to deduce that the supremum above is
strictly negative for non-uniformly expanding maps with slow recurrence to
the singular set.
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Theorem B. Let f: M — M be a local diffeomorphism outside a non-flat
singular set 8 which is non-uniformly expanding and has slow recurrence to
S. For w > 0 and a continuous function ¢ : M — R there exists ,0 > 0
arbitrarily close to O such that, writing

A, ={zeM: %SnA(;(:r) <o)
and
Bn:{xEM:inf{‘%Sngo(:n)—n(cp)‘:nEE}>w} (7)
we get

lim sup 1 log Leb (4, N B,) < 0. (8)
n—+oo M
Clearly if 8 = §) (f is a local diffeomorphism) then A,, = M and we obtain
an asymptotic large deviation rate for the sets B,,. Otherwise to get a similar
upper bound for Leb(B,,) we need an extra assumption on the decay of the
measure of the tail sets M \ A,,.

Corollary C. In the setting of Theorem B with 8 # 0, if f also satisfies
1
lim sup - log Leb(M \ A,) <0 9)

n—oo
then we have also 1
lim sup — log Leb(B,,) < 0.
n—oo N
Remark 1.2. Observe that if y is a f-ergodic absolutely continuous proba-
bility measure, then the slow recurrence condition (6) is the same as saying
that log d(z, 8) is p-integrable.

Note that for any C? endomorphism f (i.e. the singular set 8 of f co-
incides with the critical set C of f) we have |logd(z,C)| > As(z) and, as
shown in [27], the function logd(x, Q) is p-integrable for every f-invariant
probability measure. However we need to deal with families of invariant
probability measures for which log d(x, C) is uniformly integrable so that the
proofs of Theorems A and B can be carried out with our arguments. This
is why we need the sets A, in the previous statements. To the best of our
knowledge no such general integrability result for logd(x,8) exists with re-
spect to invariant probability measures for maps with non-flat singularities.

1.2. Partially hyperbolic diffeomorphisms. Let now f: M — M be a
C? diffeomorphism. We say that a compact f-invariant set A is an attracting
set if it admits a trapping region, that is, an open neighborhood U C A such
that f(U) C U and A = N,>0f™(U). Note that we may have A = U = M
(where M is connected).

As shown in [46], for every attracting set A and every physical probability

measure v supported in A, given § > 0 and a continuous ¢ : U — R we have

1 1
liminf—logLeb{‘ESngo— /god,u‘ > 6} >

n—oo n
/gody—/godu‘ 25}.

sup{h,,(f) - /E+dy (v € M,
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Here ¥ denotes the sum of the positive Lyapunov exponents at a given
point of M. Recall that Ruelle’s Inequality h,(f) < [ X7 du is true of every
C1-diffeomorphism [40].

An attracting set A is partially hyperbolic (see e.g. [35, 15]) if there exists
a continuous splitting ¥ & F' of the tangent bundle of M over A along two
complementary vector subbundles satisfying

o Df-invariance: Df(E;) = Ey ) and Df(Fy) = Fyy) for all z € A;
e domination: there exists n > 1 such that

n n . 1
IDF™ | Eoll - |(Df" | Fo)7H < 5 forall @€ A;

e [ is uniformly contracting: there is n > 1 such that ||Df™ | E,|| < %
for all x € A.

In this setting we denote by J the Jacobian along the centre-unstable
direction J(z) = |det Df | F,| and by E the family of all equilibrium states
with respect to J, i.e. the set of all f-invariant probability measures v such
that h,(f) = v(J).

We will assume further that the F' direction only has positive Lyapunov
exponents in the following sense, introduced in [6]. We say that a partially
hyperbolic attractor with trapping region U is non-uniformly expanding if
there exists ¢ > 0 such that

n—1

1
lim sup - Zlog |(Df | Ffj(x))_lH < —c

for Lebesgue almost every point z € U. In [6] the following was obtained.

Theorem 1.3. Let A be a partially hyperbolic non-uniformly expanding at-
tracting set for a C? diffeomorphism f with trapping region U. Then there
are finitely many equilibrium states which are physical measures supported
in A, and whose basins cover U except for a subset of zero Lebesgue measure.

We are able to obtain an upper bound entirely analogous to item 2 of The-
orem A replacing M by the points in the trapping region U of a partially
hyperbolic non-uniformly expanding attracting set A for a C? diffeomor-
phism. Then for the same kind of attracting sets we obtain an upper bound
for the subset corresponding to (7).

Theorem D. Let f : M — M be a C? diffeomorphism exhibiting a partially
hyperbolic non-uniformly expanding attracting set A with isolating neighbor-
hood U D A. Given w > 0 and a continuous ¢ : U — R, define

B, = {:13 eU: inf{%Sngp(a:) —n(p)| :n € E} >w}.
Then

1
lim sup — log Leb(B,,) < 0.

n—oo TN
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1.3. Escape rates. Using the estimates obtained above and the observation
that for any compact subset K and a given € > 0 we can find an open set
W D K and a continuous function ¢ : M — R such that

o Leb(W\ K) < ¢;

e 0<yp<l,p|K=landp|(M\W)=0,
we see that for n > 1

{xeK:f(:n)eK,...,f”_l(a:)EK}C{:JJGM:% ngo(:r)Zl} (10)

and so we get the following (recall the definition of A,, in the statement of
Theorem B).

Corollary E. Let f: M — M be a local diffeomorphism outside a non-flat
singular set & which is non-uniformly expanding and has slow recurrence to
8. Let K be a compact subset such that p(K) < 1 for all p in the weak*-
closure E of E. Then for a pair ,6 > 0 close to 0

limsupllogLeb({mEKﬂAn:fj(a:)6K,jzl,...,n—1}> < 0.

n—+oo N

Moreover if limsup,, ., = logLeb(M \ A4,,) < 0 then

1
lim sup — log Leb ( (ze€K fx) €K, .. f" (z) € K}) <.
n—+oo N
In the setting of a partially hyperbolic non-uniformly expanding attract-
ing set we get, using the same reazoning as above

Corollary F. Let f : M — M be a diffeomorphism and A a partially hy-
perbolic non-uniformly expanding attracting set with isolating neighborhood
U. Let K C U be a compact subset such that u(K) < 1 for all u in the
weak*-closure E of E. Then

Jim sup ~ log Leb ( (zeK fx) €K, .. f" (z) € K}) <.
n—+oo N

Remark 1.4. All the arguments use in fact that f is C'!' and that its deriv-

ative D f is a-Hoélder continuous with respect to the fixed Riemannian norm

on M, so that all we need is f to be a C'T® local diffeomorphism outside

the singular set, for some « € (0,1).

Remark 1.5. Recently Pinheiro [36] has extended the statement of The-
orem 1.1 replacing the limsup in condition (5) by liminf, keeping the same
conclusions involving the existence of finitely many physical measures and of
a positive density of hyperbolic times Lebesgue almost everywhere. Hence
our statements are automatically valid in this more general setting.

1.4. Organization of the paper. We start by presenting some non-trivial
classes of maps to which our results are applicable, in Section 2. In Section 3
we present preliminary technical results to be used in the following sections.
Theorem A is then proved in Subsection 4.1 for local diffeomorphisms, in
Subsection 4.2 for partially hyperbolic non-uniformly expanding diffeomor-
phisms and in Subsection 4.3 for maps with singularities or criticalities. In
Section 5 we deduce Theorem B from Theorem A, first for local diffeomor-
phisms and for the partially hyperbolic case in Subsection 5.1, and then with
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singularities or criticalities in Subsection 5.2, together with an extension of
Ruelle’s Inequality to maps with non-flat singularities in Subsection 5.3.

2. EXAMPLES OF APPLICATION

Here we show that there are many examples of maps in the conditions of
Theorem B, Corollary C or Theorem D.

2.1. Quadratic maps and infinite-modal maps. In [8] the following
C*° family of maps of I = [—1,1] with infinitely many critical points was
considered:

)+ for z € (0,¢]
fu(z) = { F(z2) _Z for z € [—66,0)

where f: I — [ is an expanding extension of

: 2y | az®sin(Blog(1/z))) itz>0
frlredd ==L, f(2) —{ P sm(Slos(L/l])  if 2 < 0.

to I (ie. |f'| > 1on I\ [-€¢]), witha >0,0<a< 1,6 >0 and
e > 0. It was shown that there exists a positive Lebesgue measure subset P
of parameters in (—¢,¢) such that for u € P the map f, is non-uniformly
expanding and has slow recurrence to the non-flat infinte and denumerable
singular set. Moreover for the same parameters de decay rate of the tail set
is exponential, i.e. (9) is true and hence f, for u € P is in the setting of
Corollaries C and E.

Analogous results hold for the quadratic family Q,(z) = a — 22 (and also
for general C? unimodal families), so that Corollaries C and E apply to
quadratic maps for a positive Lebesgue measure subset of parameters.

2.2. Piecewise smooth one-dimensional expanding maps. Let f :
I — I be a map admitting a sequence 8§ = {a,,n > 1} C I = [-1,1]
such that for every connected component G of I\ 8 we have that f | G is
C' diffeomorphism with its image. Assume that § is a non-flat singular set
for f and that f admits a absolutely continuous ergodic invariant probabil-
ity measure p with positive Lyapunov exponent and such that log d(z, 8) is
p-integrable and supp g = I. Then f is in the setting of Theorem B.

Examples of this kind of maps are the Gauss map [44], and transitive
piecewise one dimensional maps satisfying the conditions in [41] (see also
[44]), that is there exists x > 0 such that for every connected component G
of I'\ 8§ we also have

1 1 1
varg — < K-sup — and sup — < K.
/] a Il EG: a Il

More concrete examples are Lorenz-like maps [26, 44] (even with criticalities
[28]) and the maps introduced by Rovella [38, 30].

A proof of the exponential decay of the tail set for this class of maps is
not available in the literature to the best of our knowledge but can be done
as an application of the technique of exclusion of parameters introduced in
[10] (the details will appear in forthcoming work), so that Corollaries C and
E also hold for this type of maps.
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2.3. Non-uniformly expanding local diffeomorphisms. Consider a lo-
cal diffeomorphism f : M — M, so that § = (), which satisfies

o [((Df)~ <1and

e Ki={x e M:|Df(x)"!] =1} is finite.
Then by the results in [9] we have that such f has a finite set E of equilibrium
states for ¢. Hence in this case Theorem B holds for every continuous
function ¢ : M — R.

2.4. Viana maps. The following family of endomorphisms of the cylinder
was introduced by Viana in [43]. Let ag € (1,2) be such that the critical
point z = 0 is pre-periodic for the quadratic map Q(z) = ag — x2. Let
S!' =R/Z and b : S — R be a Morse function, for instance b(s) = sin(2ms).
For fixed small o > 0, consider

A~

f: SIxR — St xR
(s,2) = (g(s),q(s,2))

where g is the uniformly expanding map of the circle defined by g(s) =d- s
(mod Z) for some d > 16, and (s, ) = a(s) —x? with a(s) = ag+ab(s). For
o > 0 small enough there exists an interval I C (—2,2) such that f(S" x I)
is contained in the interior of S! x I. Hence any map f sufficiently C° close
to f has S' x I as a forward invariant region. We consider from here on
these maps f close to f restricted to St x I.

In [43, 2, 3] a C3 neighborhood U of f was studied and it was proved
that every f € U is non-uniformly expanding and has slow recurrence to the
non-flat critical set €. Hence every f € U is in the setting of Theorem B.
Results in [7, 21] show that the tail set decays at least sub-exponentially
fast, which is not enough to ensure that Corollaries C and E are true for the
maps in U. It is conjectured that the tail set indeed decays exponentially
fast and with a uniform rate for all maps in U.

2.5. Partially hyperbolic non-uniformly expanding diffeomorphisms.
We sketch the construction of a robust class of partially hyperbolic non-
uniformly expanding diffeomorphisms, taking U equal to M, following [6].
This construction is closely related to the C'! open classes of transitive non-
Anosov diffeomorphisms presented in [16, Section 6], as well as other robust
examples from [29].

Start with a linear Anosov diffeomorphism f on the d-dimensional torus
M =T¢ d> 2. Write TM = E & F the corresponding hyperbolic decom-
position of the tangent bundle. Let V' be a small closed domain in M for
which there exist unit open cubes K° and K' in R? such that V C m(K°)
and f(V) C w(K?'), where 7 : R — T is the canonical projection. Let now
f be a diffeomorphism on T¢ such that

(A) f admits invariant cone fields Cr and Cp, with small width a > 0

and containing, respectively, the stable bundle E' and the unstable
bundle F of f;

(B) f is partially hyperbolic and volume expanding along the center-

unstable direction: there is o1 > 1 so that

|det(Df | T,Dr)| > 01 and ||Df | TuDg| < op*
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for any z € M and any disks Dp, Dg tangent to Cr, Cg, respec-
tively (see Subsection 3.2 for more on invariant cone fields and disks
tangent to cone fields in this setting).

(C) fis Cl-close to f in the complement of V', so that there exists oy < 1
satisfying

I(Df | T,Dp) || <oz and |Df|T,Dp| < o

for any x € (M \ V) and any disks D, Dp tangent to Cp, Cg,
respectively. Moreover f(V) is also contained in the projection of a
unit open cube.

(D) there exist some small 0y > 0 satisfying

I(Df | ToDr) | < 1+ 6
for any z € V and any disk Dg tangent to Cp.

If f is a torus diffeomorphism satisfying (A), (B), (D), and coinciding
with f outside V, then any map f in a C' neighborhood of f satisfies
all the previous conditions. Results in [6, Appendix] show in particular
that for any f satisfying (A)—(D) there exist ¢, > 0 such that f is partially
hyperbolic and non-uniformly expanding along its center-unstable direction,

as defined in Subsection 1.2. Hence on a small C2 neighborhood U of f every
diffeomorphism f € U satisfies all the conditions of Theorem D.

3. HYPERBOLIC TIMES

The main technical tool used in the study of non-uniformly expanding
maps is the notion of hyperbolic times, introduced in [37, 2]. We say that n
is a (o, 0, b)-hyperbolic time of f for a point z if the following two conditions
hold with 0 < o < 1 and b,d >0

n—1
[T 1Df(F@) 7" <o and ds(fF(2).8) =™ (11)
j=n—k
forall k=0,...,n—1.
We now outline the properties of these special times. For detailed proofs

see [6, Proposition 2.8] and [3, Proposition 2.6, Corollary 2.7, Proposition
5.2].

Proposition 3.1. There are constants C1,6, > 0 depending on (o,0,b) and
f only such that, if n is (o,0,b)-hyperbolic time of f for x, then there are
hyperbolic pre-balls Vi () which are neighborhoods of f**(z), k=1,...,n,
such that
(1) f¥ | Vi(x) maps Vi(z) diffeomorphically to the ball of radius &
around f™(x);
(2) for every 1 <k <mn and y,z € Vi(x)

d(f"F ), £77F(2)) < o2 d(F (), £(2));
(3) fory,z € Vi(x)
1 |detDf=Fk(y

1. (
C1 = |det D fr=F(z

I,
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The following ensures existence of infinitely many hiperbolic times for
Lebesgue almost every point for non-uniformly expanding maps with slow
recurrence to the singular set. A complete proof can be found in [6, Section
5].

Theorem 3.2. Let f : M — M be a C'** local diffeomorphism away from
a non-flat singular set 8, for some a € (0, 1), non-uniformly expanding and
with slow recurrence to 8. Then there are o € (0,1), 0,b > 0 and there exists
0 = 6(0,9,b) > 0 such that Leb-a.e. © € M has infinitely many (o, 9,b)-
hyperbolic times. Moreover if we write 0 < n1 < no < no < ... for the
hyperbolic times of x then their asymptotic frequency satisfies

>1: <
lim inf #{k > 1:ng < N}
N—o0 N

3.1. Coverings by hyperbolic pre-balls.

>0 for Leb-a.e. x € M.

Lemma 3.3. Let BC M, 0 >0 andg: M — M be a local diffeomorphisms
outside a non-flat exceptional set 8 such that g has density > 0 of hyperbolic
times for every x € B. Then, given any probability measure v on B and any
m > 1, there exists n > m such that

0
v({z € B :n is a hyperbolic time of g for z}) > 3

This is [33, Lemma 4.4] easily adapted to our setting. For completion we
include its very short proof. This lemma shows that we can translate the
density of hyperbolic times into the Lebesgue measure of the set of points
which have a specific (large) hyperbolic time.

Proof. Let H be the set of pairs (z,n) € B x N for which n is a hyperbolic
time of g for x. For each k > 1, let #j be the normalized counting measure
on {m+1,m+2,...,m+ k}. Our assumption implies that for any given
x € B we have for big enough k£ > 1

41 (H N ({2} x N)) > 26.

Given any probability measure v on B, fix k£ > 1 large enough so that the
above holds for C' C B with v(C) > 1/2. By Fubini’s Theorem

0
(v x #¢)(H) > 6 and thus v(H N (B x {n})) > 3
for some m < n < m + k. This proves the lemma. O

Let f be a regular map in the setting of the Main Theorem with positive
density of (o, d)-hyperbolic times for Lebesgue almost everywhere. Let € =
{B(x;,61/8),i = 1,...,1} be a finite open cover of M by d;/8-balls. From
this we define a finite partition P of M as follows. We start by setting
Py = B(x1,01/8) as the first element of the partition. Then, assuming that
Py, ..., Py are already defined we set P11 = B(2k41,01/8)\ (PLU---U Py)
for k =1,...,1 — 1. Note that if P, # () then P, has non-empty interior,
diameter smaller than §; /4 and the boundary 0P is a (finite) union of pieces
of boundaries of balls in a Riemannian manifold, thus has zero Lebesgue
measure. We define P by the elements P, constructed above which are
non-empty.
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Note that since f is regular the boundary of g(P) still has zero Lebesgue
measure for every atom P € P and every inverse branch g of f™, for any
n > 1.

Let us choose one interior point in each atom P € P and form the set Cg
of representatives of the atoms of P. Let dy = min{d(w,dP),w € Cp} > 0
where 0P = UpepdP is the boundary of P.

Lemma 3.4. Let (pn)n>1 be a family of Borel probability measures on M
and | some weak® accumulation point of the sequence (uy). Then given
0 < € < dg there exists a partition P. with the same number of atoms of
P, whose atoms have non-empty interior, diameter smaller than §1/2 and
whose boundaries have zero Lebesgue measure, such that

(1) w(0P:) =0 and pp(0P:) =0 for alln > 1;

(2) each P € P, contains one, and only one, element of Cop;

(3) given & > 0 there is € > 0 small enough such that for each P € P,
there is Q € P such that Leb(PAQ) < e < 0 - Leb(Q).

Proof. Let us take 0 < v < min{e, 61/8} such that for all i =1,...,1

31 31 €
Leb <B(a:z, L)\ B, )> <$ (12)
and also for all n > 1

(0B (i, % +7)) =0 = (0B(xi, 5 o). (13)

Such value of v exists since the set of values of v > 0 such that some of
the expressions in (13) is positive for some i € {1,...,l} and some n > 1 is
denumerable. Thus we may take v > 0 satisfying (13) arbitrarily close to
zero, and so inequality (12) can also be obtained.

We consider now the finite open cover &, = {B(z;,01/8+7),i =1,...,1}
of M and construct the partition P, induced by €, by the same procedure as
before. Since v < € < dy we obtain d(w,dB(z;,61/8 +7)) > dy — v > 0 for
allt=1,...,0 and every w € Cp. This shows that each w € €y is contained
in some atom P,, of P,. Moreover there cannot be distinct wq, w2 € € such
that wy € P,,, because this would mean that for some ¢ € {1,...,l} we
have we € B(x;,01/8), w1 & B(x;,01/8) and wy,wy € B(x;,01/8+7), which
contradicts the choice of v < dj.

Let us consider {P,,w € Cy}. There might be other (finitely many)
atoms P in P, and, if so, we join them to some adjacent atom P, (meaning
PN P, # () obtaining a new atom PU P,,. In this way we obtain a partition
P. with as many atoms as the elements of Cy and satisfying items (1) and
(2) of the statement of the lemma.

Clearly for any w € @€y the corresponding atoms P, € P. and Q,, € P
satisfy

Leb (Py/AQu) ZLeb< mz,é— )><z§:s

and diam(P,) < 2(6;1/8 + ) < 01/2. Since P is a finite partition with
Leb(0P) = 0 we have ¢ = min{Leb(P) : P € P} > 0 and so given ¢ > 0 and
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taking e < min{¢-d,dp} we get
Leb (PyAQy) < e=1-=<1-6 <5 Leb(Qu).
L
The proof is complete. OJ

Having this we can now obtain the following flexible covering lemma with
hyperbolic pre-balls which will enable us to approximate the Lebesgue mea-
sure of a given set through the measure of families of hyperbolic pre-balls.

Lemma 3.5. Let a measurable set E C M, m > 1 and € > 0 be given. Let
0 > 0 be a lower bound for the densitity of hyperbolic times for Lebesgue
almost every point. Then there are integers m < nq < --- < ny for k =
k(e) > 1 and famili@s E; of subsets of M, 1 =1,...,k such that
(1) E4U---UE& is a finite pairwise disjoint family of subsets of M
(2) n; is a (0/2,5/2)- hyperbolzc time for every point in P, for every
element P€ &;,i=1,...,k;
(3) every P € &; is the pre-image of some element Q € P under an
inverse branch of f"i, 1 =1,... k;
(4) there is an open set Uy D E containing the elements of E4U---U &
with Leb(Uy \ E) < ¢;

(5) Leb (EAU; &) < (1-§)" <=

The proof follows [33, Lemma 8.2] closely. We write €, the set of pairs
(z,m;) where f"(z2) = w € Cpand z € Pforall Pe & andi=1,...,k
(such z exist by item (3) of Lemma 3.5).

Remark 3.6. Note that k£ depends on € only and not on the set E.

Proof. By the non-uniformly expanding assumption on f we know that there
exists 6 > 0 such that Lebesgue almost every point has density > 6 of
hyperbolic times of f.

Let Uy be an open set and K a compact set such that K; C F C U; and
Leb(U; \ K1) < ¢ and Leb(K7) > (1/2)Leb(U;). Using Lemma 3.3 with
B = K; and v = Leb /Leb(K7) we can find ny > m such that e™“™ <
d(Ky, M\ U;) and the subset L; of points of Kj for which ny is a hyperbolic
time satisfies Leb(L1) > gLeb(Kl) > gLeb(E).

Given z € Ly let g : B(f"(x),01) — Vp,(x) be the inverse branch of
f™ | Vi, (), recall that n; is a hyperbolic time for  and see Proposition 3.1.
By the choice of P there exists a unique P € P such that f™'(x) € P. Let
us consider g(P) and let €; be the family of all such sets obtained as g(P)
which intersect Li, where g is an inverse branch of f™ corresponding to a
hyperbolic time and P is an element of P.

Note that the elements of £; are pairwise disjoint because P is a parti-
tion. Moreover by the properties of hyperbolic times (Proposition 3.1) the
diameter of P € &; is smaller than e “"!. Hence the union E; of all the
elements of €7 is contained in Uy and by construction

0
Leb(E1 N E) > Leb(Ly) > 1 Leb(E).

Now consider the open set Uy = U \ E7 and set Ky C E '\ E; a compact
set such that Leb(K3) > (1/2) Leb(E \ E). Observe that Leb(E; \ E1) = 0
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since P has zero Lebesgue measure and this property is preserved under
backward iteration by the regularity assumption on f. Reasoning as before,
we can find ng > n such that e™"2 < d(Kq, M \Us) and a set Ly C Ko such
that Leb(Lg) > (g) Leb(K3) and ngy is a hyperbolic time for every x € L.
Let €5 be the family of elements g(P) which intersect Ly, where P € P and
g is an inverse branch of f™! corresponding to a hyperbolic time.

Again &5 is a pairwise disjoint family of sets whose diameters are smaller
than "2, Thus their union Fs is contained in Us. Hence £; U €4 is also a

pairwise disjoint family and, in addition
0 0
Leb (E> N (E\ E1)) > Leb(Ls) > 3 Leb(K3) > 1 Leb(E \ Ey).

Repeating this procedure we obtain families €;,7 = 1,...,k of elements of
P, which are pairwise disjoint and contained in U;, and

Leb (Em N (E\(ElumuEz-))) > ZLeb (E\(B1U---UE;)) (14)

foralli=1,...,k -1, for some k > 1, where E; = UE;. Hence
k
Leb(UEZ-\E) < Leb(Uy \ E) < ¢
i=1

and (14) ensures that

k k
Leb (E \ szlE) < <1 . Z) Leb(E).

Therefore we can find k > 1 such that Leb (EA UY_; &;) <, as stated. O

Remark 3.7. Note that the construction proving Lemma 3.5 gives a fi-
nite sequence of hyperbolic times, open sets Uj,...,U; and closed sets
Ei,...,E). Having these we can find small enough § > & > 0, replace P in
the proof of Lemma 3.5 by any partition P. obtained as in Lemma 3.4 (by
slightly modifying P), and use the same inverse branches to obtain families
&/ of pre-balls such that

Leb ((U &)A(U 8;)> <Y O3 Leb(&;) < C1oLeb (U ei) <16

where C) is the volume distortion constant (see Proposition 3.1). Hence
after the modification of the initial partition we get

Leb (EA( J€]) <e+C10 < (14 C1)d

since ¢ < §. Moreover the set C,, is unaffected since Cy is fixed and the
inverse branches are kept.

3.2. The partially hyperbolic setting. Here we state the main results
needed to obtain an extension of the covering Lemma 3.5 to the setting of
partially hyperbolic non-uniformly expanding attracting sets. As we indicate
along the way, the proofs of most of them can be found in [6].
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3.2.1. Stable/Unstable cone fields. Let A be a partially hyperbolic and non-
uniformly expanding attracting set for a C? diffeomorphism f : M — M
with a trapping region U C M. The existence of the dominated splitting
E & F of TAM ensures the existence of a continuous extension E @& F of
E @ F to a neighborhood of A, which we assume without loss to be U, and
of the following cone fields:

stable cones: E¢ = {(u,v) € EN(ai) @ F(x) ol < a-ull}s
unstable cones: F2 = {(u,v) € E(z) ® F(z) : ||ul]| <b-||v||};
for all z € U and a,b € (0,1), which are D f-invariant in the following sense
(see e.g. [15, Appendix C])
o if z, f~1(x) € U, then Df1(E2) C E}?l

o if 7, f(z) € U, then Df(F}) C Fy,;

for some A € (0,1). Continuity enables us to unambiguously denote dp =
dim(E) and dr = dim(F), so that d = dg + dp = dim(M), and domination
guarantees that the angles between the E and F directions are bounded
from below away from zero at every point.

()’

3.2.2. Hyperbolic times. In this setting, given ¢ > 1 we say that n is a
o-hyperbolic time for x € U if
n
II I@f1Fue) I <o®  foralll <k<n.
j=n—k+1

Remark 3.8. This definition of hyperbolic time is entirely analogous to the
one given in the local diffeomorphisms setting except that we restrict the
derivatives to the F-direction. Hence the statement and proof of Lemma 3.3
carry over without change.

3.2.3. E-disks and F-disks. Let us fix the unit balls of dimensions dg, dp
Br ={w e R¥” : |w||y <1} and Bp = {w e R¥ : ||jw|, <1}

where || -||2 is the standard Euclidean norm on the corresponding Euclidean
space. We say that a C'*® embedding A : By — M (respectively A : By —
M) is a E-disk (resp. F-disk) if the image of DA(w) is contained in ERA ()
for all w € Bg (resp. DA(w)(R%) C Fl’A(w) for every w € Bp), where
a € (0,1) if fixed.

3.2.4. Curvature of E- and F-disks at hyperbolic times. Let ro > 0 be an
injectivity radius of the exponential map on M, that is exp, : B(z,r9) —
M is a diffeomorphism onto its image G(x,70) = exp, (B(z,70)), where
B(z,r9) = {v € TxM : ||v|| < ro} is the rg-neighborhood of 0 in T, M.
By the continuity of the splitting £ @& F' and the cone fields we can choose
0 < r < min{ro, d;/4} such that for every « € A the subspace F, is contained
in all the images of the cone field E¢ under the exponential map exp, and
analogously for the complementary direction, that is for every y € G(z,r)NA
we have

E,. C D(expgl)(Eg) and F, C D(expgl)(lﬁ‘g). (15)
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This ensures that every F-disk (respectively every E-disk) A is such that its
image on B(z,r) given by exp; ' (ANG(z,r)) is transversal to the direction
of E, (resp. Fy).

The “curvature” of F- and F-disks can be determined by the notion of
Hoélder variation of the tangent bundle as follows.

We write A also for the image of the respective embedding for every FE-
or F-disk. Hence if A is a E-disk and y = A(w) for some w € B, then the
tangent space of A at y is the graph of a linear map A, (y) : T,A — F(x)
for w € A™Y(V,) (here T,A = DA(x)(R?)). The same happens locally for
a F-disk exchanging the roles of the bundles £ and F' above.

The domination condition on the splitting E & F' ensures the existence of
¢ € (0,1) such that for some n > 1 and all x € A

n n — 3
IDF™ | Eell - I(DF™ | Fa) M < 3
Given C > 0 we say that the tangent bundle of A is (C,()-Hélder if

|A.(y)|| < Cdista(x,y)¢ forall yeGz,r)NA and zeU, (16)

where dista (z,y) is the distance along A defined by the length of the shortest
smooth curve from z to y inside A calculated with respect to the Riemannian

norm || - || induced on T'M.
For a E- or F-disk A C U we define

k(A) =inf{C > 0:TA is (C,()-Holder}. (17)

The proof of the following result can be found in [6, Subsection 2.1]. The
basic ingredients are the cone invariance and dominated decomposition prop-
erties for f.

Proposition 3.9. There is Cy > 0 such that given a F-disk A C U

(1) there exists ny € N such that k(f"(A)) < Cy for alln > ny;
(2) if K(A) < Co then k(f"(A)) < Cy for alln > 0;
(3) in particular, if A is as in the previous item, then

In: f(A) >z log|det(Df | To(f*(A))]

is (L1, C)-Holder continuous with L1 > 0 depending only on Cy and
f, for everyn > 1.

3.2.5. Distortion bounds. The following uniform backward contraction and
distortion bounds are proved in [6, Lemma 2.7, Proposition 2.8].

Proposition 3.10. There exist C3,61 > 0 depending only on f,o such that,
giwven any F-disk A CU, x € A, and n > 1 a o-hyperbolic time for x,

(1) dist pui () (" (), 7H(2)) < 072 dist gy ("), £7(2)), for all
y € A with dist(f™(z), f"(y)) < d1;
(2) if K(A) < Cy then
1 _ [det Df" | T,A|
Cs ~ |det Df™ | T, A|

for every y € A such that dist(f™(y), f™"(z)) < 01.

< (3
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3.2.6. The initial partition and the covering lemma. Now we consider the
following rectangle

R(z,s) = {(u,v) € ToM : |u|| < s, ||v]| < s, u € E,,ve F,}

where s is chosen so that R(x,s) C By(r) for all € A. This defines an open
cover {exp,, (R(m, s))}xe A of A which admits a finite subcover denoted by
{R1 = R(z1,5),..., Ry = R(zp,s)}. This finite cover will define the initial
partition P given as before by

fP:{Rl,M\Rl}\/"-\/{Rh,M\Rh}.

We may assume without loss that Leb(0P) = 0 by slightly changing the
initial cover. We choose an interior point in each element of P which together
define the set Cj.

Now we adapt the covering Lemma 3.5 to the setting of partially hyper-
bolic non-uniformly expanding attracting sets as follows.

Lemma 3.11. Let a measurable set E C U, m > 1 and € > 0 be given.
Let 0 > 0 be a lower bound for the densitity of hyperbolic times for Lebesgue
almost every point on U. Then there are integers m < nq < --- < ny for
k=k(e) > 1, and families &; of subsets of M, i =1,... &k such that
(1) E4U -+ U &g is a finite family of subsets of M and each &; is a
pairwise disjoint family;
(2) n; is a (0/2,5/2)- hyperbolzc time for every point in P, for every
element P€ &;,i=1,...,k;
(3) every P € &; is the pre-image of some element Q € P under f~",
i=1,...,k;

(4) Leb (B\U; &) < (1- )" <=

Proof. Let E C U, ¢ > 0 and m > 1 be given. Set v = Leb /Leb(FE) and
apply Lemma 3.3 with B = F to obtain ny > m and Li C FE such that n;
is a hyperbolic time for every point z € L1 and Leb(L1) > § Leb(E).

Given z € Ly let P, be the unique element of the partition f~™P which
contains z (recall that f is a diffeomorphism). Define £&; = {P, : = € L;}.
Then &; is a finite pairwise disjoint family of preimages of elements of P
corresponding to a hyperbolic time nq. If E; is the union of the elements of
&1, then

0
Leb(E1 N E) > Leb(Ly) > 3 Leb(E).

Now consider By = E\ E;. If Leb(FEy) < ¢ then we are done, since then
Leb(E \ E1) < € because Leb(0€1) = 0 as f is regular map. Otherwise use
again Lemma 3.3 to find ny > ny and Ly C Eg such that ns is a hyperbolic
time for all points of Ly and Leb(Lg) > gLeb(Eg).

Let €5 be the family of all elements of the partition f~"2P which intersect
Eg. Then &5 is a pairwise disjoint family and the union Fs of its elements
satisfies

Leb (B2 N (E\ E1)) > Leb(Ls) > g Leb(Fsy) > Z Leb(E \ Ey).
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Repeating this procedure we get families €;,7 = 1,. .., k of elements of f~"P
with m < n; < --- < ny satisfying the inequality (14). These families satisfy
items (1)-(3) by construction and item (4) follows by (14) as in the proof of
Lemma 3.5. This concludes the proof. ]

Observe that we may apply Lemma 3.4 to P to ensure that, for a given
denumerable family of f-invariant probability measures, there is a partition
P, arbitrarily close to P, with the same number of elements, such that the
measure of the boundary of the elements of P, is zero with respect to all
measures of the family. Moreover as in the previous subsection, we write
Cr, the set of pairs (z,n;) where f"(2) =w € €y and z € P for all P € &;
and i = 1,...,k. In addition, we can build the new partition P, in such a
way that the sets C,, are unchanged.

3.3. The volume of dynamical balls. Here we show that the volume of
dynamical balls on hyperbolic times is well controlled by S,,.J, either in the
local diffeomorphism case with or without singularities, or in the partially
hyperbolic case.

3.3.1. The local diffeomorphism case with singularities. Note that by the
properties of bounded distortion of volumes during hyperbolic times (item
3 of Proposition 3.1) we can write, if n is a hyperbolic time of f for z € M

k dz
Leb (B(f*(z),n —k,61)) = /B(f’v(z),n—k,al) [det Dy (7))
Leb (B(f™(z),61))
= et DfnR(z)]
then recalling that J = log | det D f| we get
Leb (B(f*(z),n — k,81)) < Cre~ S+ @) Leb (B(f*(z), 61)
< Oy Sn-rd (15(@)

Observe that by Proposition 3.1 if n is a hyperbolic time of f for x we get
due to uniform backward contraction

Sp_iwJ(fE(x)) = log | det Df”_k(a:)| > (n—k)-dim(M)logo/2 > 0
which will be used several times in what follows.

3.3.2. The partially hyperbolic case with non-uniform expansion. In the par-
tially hyperbolic and non-uniformly expanding setting we recall the con-
struction of the cover Rq,..., Ry and the initial partition P from Subsec-
tion 3.2. Observe that if we take dy to be the Lebesgue number of the
covering Ry, ..., Ry, (see e.g. [32]), then for all 0 < § < dp we have for all
x € U and n > 1 a hyperbolic time for x

B(z,n,6) C f7"P(z),

where f~"P(z) denotes de element of f~"P which contains z. To find an
upper bound for the volume of this dynamical ball it is enough to estimate
the volume of f~"P(z) when n is a hyperbolic time for z.

Let P € P be such that f~"™(P) has a positive Lebesgue measure subset
P of points for which n is a hyperbolic time and choose h such that Ry, D P.
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Let Q € P be such that Q = Q N P has positive Lebesgue measure and
choose [ such that R; D Q.

We consider the projection of P = exp;ll(]B) on E;, parallel to Fy,. Its
diameter will be bounded a constant which is a function of f and s only,
since the number of different R; is finite. Projecting Q on the complemen-
tary direction Fj, parallel to £, we may use the backward contraction and
bounded area distortion for hyperbolic times along F-disks to estimate the
area along F-disks and integrate to deduce a volume estimate.

Indeed, observe that since the F direction is uniformly contracted by
Df, if we fix a point 9 € @, the corresponding point z, = f"(zg) €
PN f™(Q) and a E-disk v which crosses Ry, then the connected component
4 of f~"(y) N R; containing x is a E-disk which also crosses R;. Moreover
distances along 7 are uniformly expanded by f~!. Thus every point wq € 4
is such that wy, = f*(wg) and x3, = f¥(x0) satisfy

C’% > C's > dist(wo, xo) > CA™F dist(wy, z1), (18)

for some constant C' > 0 depending on f only. Hence if we take s small
enough then we can ensure that wy is close enough to x for k = 1,...,n
so that n is also an hyperbolic time for all wg € 4. Thus we can consider
F-disks 3, through the points ¢ of () paralell to I, which are transversal to
4. Then the images f"(/3,) will be F-disks crossing R; which together cover
Pn f™(Q), see Figure 1.

FIGURE 1. The diameter of the elements of &, through the
use of F-disks and images of F-disks on a hyperbolic time.

The preimages f~"(PN f*(Q)N f™(B,)) then form a cover of Q and these
predisks are F-disks whose diameter is smaller than e =",

Using Tonelli’s Theorem, the Change of Variables Formula and the bounded
area distortion along hyperbolic times in the partially hyperbolic setting
given by Proposition 3.10, together with the bounded curvature of the im-
ages of F-disks given by Proposition 3.9, we arrive at

Leb (Q) = / m(Q N B,) dq

Y

< / Cse= S D (£2(Q) N F™(By)) da,
bl
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where m denotes the dp-dimensional Lebesgue measure induced by Leb on
F-disks. But by (18) we see that every ¢ € 4 N Q satisfies for Kk =0,...,n

o
d(f*(a), () < CAF
Hence because J is at least C1T% for some o € (0,1) with Hélder constant

C > 0 (in fact we can take a = 1 if f is C?) the usual bounded distortion
argument provides a constant Cy > 0 such that
n—1

[det Df* | Fy| _ 2, [ det Df(/(g)
[ der D B2l ~ 2 [ae D (fi(e)

n—1

§'| <Y ca(fi(g), fi(@)” < Co.
5=0

Thus |S,,J(q) — Spd (z)] < Cp and by the above integration estimates we get

Leb (Q) < / CseD e Om (f(Q) N f*(5y)) dg < C'e (),
gl

where C” is bounded by the dp-dimensional area Ag of 4 (which is a function

of s < 01/4) times a uniform bound A for the dp-dimensional area of f™(/3,)

(which is a function of the curvature bound Cy and of ¢1) multiplied by the

bounded distortion constants, that is C’ < C5e“0 A Ap.

This shows that we have the same kind of estimate for the volume of a
dynamical ball as in the local diffeomorphism case, except for a different
distortion constant and the fact that the Jacobian is calculated along the F'
direction.

4. HYPERBOLIC TIMES AND LARGE DEVIATIONS

The statements of the main theorems and corollaries are consequences of
the following more abstract result.

Theorem 4.1. Let f : M — M be a local diffeomorphism outside a non-flat
singular set 8 admitting o € (0,1) and b,6 > 0 such that Lebesque almost
every point has positive density of (o,d,b)-hyperbolic times. Then given
¢ € R and a continuous function ¢ : M — R items (1)-(3) of Theorem A
hold.

Clearly Theorem A follows from Theorem 3.2 together with Theorem 4.1.
Moreover item (1) in the statement of Theorem A is just item (1) of [46,
Theorem 1] so it will not be proved here.

4.1. Upper bound for large deviations. Here we prove the upper bound
in item 2 of Theorem 4.1.

Let ¢ : M — R be a fixed continuous function. Consider for n > 1 and
some fixed €,9,¢ > 0

A, = A,(d,e) = {ac : %SnAg(:r) < 6} and B,, = {ac : % np(x) > c} )

Since we want to bound a limit superior from above, we can assume without
loss that Leb(A, N B;,) > 0 in what follows. We fix a partition P of M as
in Subsection 3.1 (whose diameter is smaller than §;/4) and use Lemma 3.5
with m =n, E C Uy C A, N B, such that U; is open and

1
Leb (B, NA4,)\ E) < o Leb(B, N A,),
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which can be done since S, is continuous and S, A is upper-semicontinuous.
Then we can find a family U,, = £;U- - -UE, of hyperbolic pre-balls contained
in U; satisfying

k
Leb (EA| JU,) < <1—-§> < g;Iﬁb(AnrmBn)

Note that Leb ((4, N By,) \ Un) < Leb ((A, N By) \ E) + Leb(E \ Uy) <
1Teb(A4, N B,) and so

Leb@4nrmBn)<:—1LII£b(un) (19)
—

Observe also that for any element P € &; there exists x € M and a hyper-
bolic time h; of f for x such that P C B(x, h;,d1), by construction, where
1=1,...,kpand n < hy < --- < hg,. Let C, be the set of all such pairs
(z, h;), one for each element of U,, and to simplify the notation we write h,,
for hy,,.

Following the arguments in the proof of [46, Thm.1(2)] we consider the
measure

! Z e 5@ 5. where Z, = Z e 517 (@)

Opn = —
™ (z,1)€C, (z,1)eCp

Note that by definition each element of the partition \/h" L 71 contains

at most the first coordinate of one element of C,,. Thus using [45, Lemma
9.9] we have

hn—1

an( \/ [ ZfP /Sl(x x)dop(z) = log Z e~ 51 @)

(z,l)ECH

where we write [(z ) for the unique integer [ such that (z,l) € €,. Since
Si(z)—nd (f"(x)) > 0 (see Subsection 3.3) and I(x) > n we get

hn—1

Un( \/ I~ ZT /S Jdo, > log Z e 517 (@), (20)

(z,1)eCn

Setting p, = % S o floy, and p a weak* accumulation point of p,, we may
modify the initial partition P according to Lemma 3.4 and Remark 3.7 so
that its diameter is smaller than ¢1/2 and p(0P) = 0 without loss, keeping
C,, unchanged. As in [45, pag. 220] from the above we can deduce that for
every g > 1

limsup 1ogZ < —hmsupH (\/ f_“.P) —I—hInsup/—Jd,un (21)

n—-+o00 qd n—+oo n—-+o00

/J@<h )—/J@ (22)

if f is a local diffeomorphism, ensuring that p is f-invariant and that J is
a continuous function (in this case § = () and Aj plays no role, we may
take Ay = 0 and A, = M). Observe that since the points in €, are con-
tained in B,, and pu, is a linear convex combination of measures of the form
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% Z?z_ol 5fi(x)> we get for alln > 1

n—1 n—1

1 1 e 1 .

/soun == on(pofl)=— e 517 ) o(f7(x))

n 4 Zin n 4

j=0 (z,1)eECn j=0
1 _ S
>c- Z E e SI@) — ¢ (23)
(z,1)€Cn

and hence [ ¢pdp > ¢ also because ¢ is a continuous function.
Note that from (19) and by Subsection 3.3 we get for some constant C' > 0

n n
Leb(B,) < —— Leb(U [ E Leb (| B(x
€ ( n)_ n 1 € ( n)_ n 1( e € ( ( 7l761))

n S J(x Cn
— Y Ce SZJU:n_lZn. (24)
(z,l)ECH

IN

n
Therefore we have shown that there exists p1 € My such that [ ¢ du > ¢ and

1 1

lim sup — log Leb(B,,) < limsup —log Z,, < h,,(f) — /Jd,u,
n—+4oo N n—-+o00

which completes the proof of item 2 in the statement of Theorem 4.1 and

Theorem A.

4.2. Upper bound for partially hyperbolic diffeomorphisms. Here
we show that a bound similar to the one in item 2 of Theorem A also holds
in the case of a partially hyperbolic non-uniformly expanding attracting set.

Let f: M — M be a diffeomorphism satisfying the conditions of Theo-
rem D, let ¢ : M — R be a continuous function, fix a real number ¢ and
set J =log|det Df | F|. Observe that since we have Lemma 3.11 we may
argue exactly as in the previous subsection to arrive at an inequality just
like (20).

Again as in the previous subsection we consider pu,, = % Yoo flo, and
a weak™ accumulation point of u,. We also modify the partition P in such
a way that the boundaries of each atom have zero measure with respect to
all measures p and pn,n > 1.

The inequality (20) enables us to obtain inequalities (21) and (22) exactly
as before. Together with the volume estimates obtained in Subsection 3.3.2
we can then arrive also at inequality (24) just by using a different distortion
constant and replacing the Jacobian of f by the Jacobian of f along the F
direction. Hence we obtain the upper bound given by item 2 of Theorem A
also in the setting of partially hyperbolic non-uniformly expanding attract-
ing sets. This will be very useful to deduce Theorem D in Subsection 5.1.

4.3. Upper bound with singular/critical set. To obtain an analogous
result to (22) in the limit with a transformation f with non-flat singularities,
thus proving item 3 from Theorem A and Theorem 4.1, we need some extra
work. Note that the same argumens lead us to (21) as before and, since the
points in €, are contained in A,, N B, by the same calculations (23) above
we also get [ Agsdpu, < e for every n > 1.

Lemma 4.2. The singular set & has null p-measure.
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Proof. Arguing by contradiction, assume that ;(8) > 0. Then there exists
a > 0 such that M(B(S,n)) > a for all n > 0. Let 7 > 0 be chosen so that
w(@B(8,m)) = 0 and inf g5 ) As > 4e/a.

On the one hand, since p is a weak® limit point of u,, there exists ng
such that for n > ng we have p,(B(8,7n)) > a/2. On the other hand, since
As > 0 we get by the choice of n

4e
;un(B(S,n)) < pin(As - XBs)) < tn(As) <,
where xp(s) is the characteristic function of B(8,7), from which we de-

duce that p,(B(8,1)) < a/4. This contradiction shows that ;(8) = 0 and
concludes the proof. O

Lemma 4.3. The functions As,J and v are p-integrable.

Proof. Let us define the sequence of functions

koif |z > k
k_ >

A5 =& o As Wheregk(aj)—{ v if o] <k k>1.
For k > ko with ko > |log(6/2)| and fixing n > 0, since A¥ is continuous

and Ag > A§ there is an integer ng such that for all n > ng we have
P(AS) < pn(AF) + 1 < pn(As) + 1 < e +1.
Since this holds for all k£ > ko and Ag(z) — oo when z — §, we have proved
Asdp < oo.
M\S

Thus we get As € L' () since p(8) = 0 by Lemma 4.2.

For the other functions, note that by conditions (S2) and (S3) on the
singular set 8§ we see that there exists a constant { > 3 such that on a small
neighborhood V of § we have

| log | Df(x) ||| + |log | det Df (x)~!|| < ¢|logd(x, 8)| (25)
and since f is a local diffeomorphism on M \ 8, the p-integrability of Ajs
implies that of ¢y and J. This concludes the proof of the lemma. O

Lemma 4.4. The measure y is f-invariant.

Proof. Since by Lemma 4.2 14(8) = 0 we can find a sequence 7, — 0 of posi-
tive numbers such that p(8B(8,n,)) =0 for all n > 1 and p(B(8,1,)) — 0
when n — oo.

Let us fix n > 0 and a continuous function h : M — R. Take ng such that

/L(B(S,?]n)) -sup |h| < g
for all n > ng and fix n; > ng such that
1
S (B(8,m)) < i (B(S,mn)) < 21(B(S,1n))

for all n > ny. Then if f is any continuous extension of f | M \ B(8,n,) to
M (which always exists by Tietze Extension Theorem, see e.g. [32]) we get

[ e £ = 1o fldin < sup il o (B(S. ) <1 (26)



LARGE DEVIATIONS FOR N.U.E. MAPS 25

for all n > n;. Also note that (26) holds with p in the place of p,. Since

h o f is continuous there exists no > nq such that

/hofdun—/hofdu

Hence for n > ny we get

| [ o Faun— [ 1o Fdu| <lutho £)— utho DI+ lnlho F) = oo )
+ [pn(ho f) = pn(ho f)] < 3n.

Since h was an arbitrary continuous function and 7 was any positive number,

we have shown that f,u, — f.u in the weak* topology when n — oo. This

is exactly what is needed to show that u is f-invariant:

<n for every n > no.

122 fro, — o
Fotn =t fopin = lim (=37 oy + 27220~ tim g, =
n n n = n n

concluding the proof. O

Now we consider J a continuous extension of Jy M\B(8,p) to M with the
same range (this is Tietze’s Extension Theorem) for 0 < p < ¢ and write

lim sup ,un(_J) = lim Sup[ﬂn((_J + j)XB(S,p)) + Nn(_j)]

n—oo

< 2lim sup pn (CAs) + p(—J) < 2¢e — u(J)

n—oo

since J is continuous and | — J + j|XB(s,p) < 2lJ|xBs,s) < 2¢As by (25).

Taking p — 0 we get u(J) — u(J) because J € L'(u) and together with
(21) we arrive at

1

limsup —log Z,, < h,(f,P) — /Jd,u + 2(e
n—+oo N

for some p € My with pu(p) > ¢ and As € L'(u), which is enough to prove

item (3) of Theorem 4.1 and Theorem A.

5. STRICTLY NEGATIVE UPPER BOUND

Here we prove Theorem B and Theorem D. For a C'' endomorphism f it is
known [40] that the following inequality (also known as Ruelle’s inequality)
holds for every f-invariant probability measure p

m(f) < [ Stan (27)

where X7 denotes the sum of the positive Lyapunov exponents at p-a.e.
point. In Subsection 5.3 we present a proof of this inequality in the setting
of maps which are local diffeomorphisms away from a non-flat singular set 8
with zero Lebesgue measure, for invariant probability measures p such that
logd(x,8) is p-integrable.

We note that in [25] a similar result was proved under more general geo-
metric assumptions but stricter analytic hypothesis, mostly due to the fact
that in [25] the authors considered M to be a compact metric space admit-
ting a finite dimensional manifold V' as an open dense subset and 8§ = M\ V,
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which demands technical conditions on how the Riemannian metric on V
and f behave (including the first and second derivatives on local charts)
near 8 for the proof to work. Our conditions are similar except that we only
need the transformation f to be C'! but assume that log d(x, 8) is integrable,
which is natural in our setting.

5.1. The local diffeomorphism and partially hyperbolic case. From
Ruelle’s Inequality (27) and from Subsection 3.3 it follows that we get a
non-positive upper bound in item (2) of Theorem A since f J du equals the
sum of the Lyapunov exponents of p [34]. Moreover let u € E be given.

Then we have
[ran=nin) < [srdus [san

Hence if p € My is not in E then the inequality (27) is strict.
To prove Theorem B we fix a continuous ¢ : M — R and replace B,, in
Subsection 4.1 with

an{xeM:inf{\%SnsO(:r)—n(@)\ :nEE}>w} (28)

for some w > 0. Then B, is an open subset of M and we can assume without
loss that Leb(A, N B,) > 0 in what follows, for otherwise the limit superior
in (8) is smaller than any given real number and there is nothing to prove.
Hence arguing as in Subsection 4.1 we obtain a measure v € M satisfying
inf {|v(¢) —n(p)| : n € E} > w, the bound of item (3) of Theorem A and
As € LY(v) with v(As) <e.

If f is a local diffeomorphism, i.e. 8§ = (), then we can use the bound given
by item (2) of Theorem A and it is enough to show that h,(f) — v(J) is
strictly negative. But we cannot have h, (f)—v(J) = 0 since by construction
v is not in E, thus h,(f) — v(J) < 0, completing the proof of Theorem B in
the case of a local diffeomorphism.

For a partially hyperbolic non-uniformly expanding attracting set we ob-
tain a negative upper bound following the same reazoning as above since we
can use the same bound from item (2) of Theorem A, as shown in Subsec-
tion 4.2, and we can also apply Ruelle’s Inquality. This completes the proof
of Theorem D.

5.2. The case with singular/critical set. In the case 8§ # () we now show
that the upper bound in item (3) of Theorem A must be strictly negative
for some values of 7,¢,0 > 0 and for some v € M. For that we argue
by contradiction and take decreasing sequences €,,d, — 0 such that the
corresponding measures v, obtained according to the proof of Theorem A
with B, as in (28) and

1
AR —dr e M:=8,As5, <eji=1,...,k}
n

in the place of A, for each k > 1, satisfy

vp € My, As, € L' (1) and vy (Ag,) < g fori=1,...,k;
limsup,, o = logLeb(AY N B,) < hy, (f,P) — [ J dvy, + 2(ey;
by, (f,P) — [ J dvg + 2(ex, > 0; and

inf {|vk(p) —n(p)| :n €E} > w;
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where P is a partition obtained using Lemma 3.4 with the sequence py = v
and p some weak® accumulation point of the vy.
Thus on the one hand we have for any fixed N > 1

7—1
hu (£,9) = inf H,,k <\/ £ ZfP) (\/ f"fP)

and since p(9P) =0 we get

limsup h, (f,7) < + Lu (\/ f"fP)

k—oo

But N > 1 was arbitrarily fixed, so

1
limsup hy, (f,P) < inf — <\/ f pr) = hu(f,P).
k—o0

On the other hand, choosing J; to be a continuous extension of Jx p(ss,) to
M with the same range, ¢ > 1, we have

lim sup vy (—J) = limsup(vg, ((=J + Ji)xp(se,)) + ve(—Ji)]

k—o00 k—o00
< 2limsup v (CAs;) + p(—Ji) < 2¢g; — (i)
k—o0

since J; is continuous and | — J + Ji|xpss,) < 21J/[xBss) < 2¢As by
definition of A, and by (25). Similar arguments to the ones proving Lem-
mas 4.2, 4.3 and 4.4 show that J, v, As are u-integrable and that u is f-
invariant. Because ¢ > 1 can be arbitrarily chosen above and both ¢; — 0
and u(J;) — wu(J), we conclude that limsupy_, . vx(—J) < —u(J). Hence
we deduce
0< liinSUP (b, (f, P) + v (—T) + 2Cex) < hy(f,P) — p(J) < hy(f) — p(J)

— 0
and also that inf {|u(p) — n(¢)| : » € E} > w > 0 by construction. By
Ruelle’s Inequality we also get h,(f)—u(J) < 0, which yields a contradition
since this means p € E. This contradiction shows that for some k£ > 1

huk(f, ‘.P) — /Jdljk +2(er <0

which proves Theorem B, except for the Ruelle Inequality for maps with
non-flat singularities, which is the content of the next subsection.

5.3. Ruelle’s Inequality for maps with non-flat singularities.

Theorem 5.1. Let f : M\ 8 — M be a C* local diffeomorphism away from
a non-flat singular set & and p a f-invariant probability measure such that
|log d(x,8)| is p-integrable. Then

half) < / St dp,

where X1 denotes the sum of the positive Lyapunov exponents at a reqular
point, counting multiplicities.
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Observe that the u-integrability of | log d(x, 8)| implies the u-integrability
of log™ ||Df||, where logt x = max{0,log 2}, and thus the Lyapunov expo-
nents of f are well defined p-almost everywhere by Oseledec’s Theorem [34].
The proof we present here follows Mané [29, Chap. IV] closely.

We start by taking the M as a compact submanifold of RV with the
usual Euclidean norm and induced Riemannian structure, and considering
Wy an open normal tubular neighborhood of M in RY, that is, there exists
O : Wy — W, (z,u) — x+u a (C) diffeomorphism from a neighborhood
Wy of the zero section of the normal bundle TML of M to W. Let also
m: W — M be the associated projection: 7(w) is the closest point to w in
M for w € W, so that the line through the pair of points w, 7w(w) is normal
to M at w(w), see e.g. [23] or [22]. Now we define for p € (0,1)

FO:WO\(TSM)—)Wm (a:,u)»—>(f(;v),pu)
and also
F:WN\®(TsM) =W, wr (®oFyod 1) (w).
Then clearly F is a local diffeomorphism outside ®(TsM), F(W) C W and
M = ﬂnzan(W).
For each n > 1 consider the partition of RY into dyadic cubes

N
a; a;+1 .
?”:{H[Q_;L’ Z2n ):aieZ,z:l,...,N}.

=1

Up to a slight translation of the partitions P,, we can assume that the
probability measure p on M satisfies (M NOP) = 0, where 0P = Up,>10P,U
8. For x € M \ 0P we define

vp(z) = vl (2) = #{P € P, : F(Pp(2)) NP # O}

and

v(z) = vl (z) = hq?_i%p Up ()

where P, (x) denotes the atom of the partition P, containing x.
Lemma 5.2. Let Q = [-1,1]Y and x € M \ 0P. Then

v(x) < suRp #{P € Py : (z+ Dg(z)Q) NP # 0}
z€R™

Proof. For x € M \ 0P and n > 1 define ¢,(y) = = + y/n on RV and
W, = o, Y(W). Let F, : W,, — F,,(W,,) C W, be such that
Fr

w, — W,
©on | 1 on
w oW

commutes. We have F(w) = F(z) + DF(z)(w — x) 4+ pz(w) where p, :
W\ ®(TsM) — RN is C! and limy,_. ||pz(w)||/|[w — 2| = 0, where || - || is
the Euclidean norm on RY. Then we write F},(y) = DF(z)(y)+q¢%(y)+on ()
where

(@) =n-F(z)—z and qi(y) =n-pz(y/n+ ). (29)

Note that for x € M \ 9P we have ¢ — 0 uniformly on compacta. Indeed
if ||ly|| < r for some r > 0 there is, for each given § > 0, a ng € N such
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that |ly/n|| < 0,Yn > ng and then, by definition of p,, for all € > 0 there

is n; € N so that Vn > ny, ||pz(y/n + x)|| < €]ly/n|| which is the same as

In - pz(y/n+x)|| <er,or ||gk(y)|| < er for all sufficient large n.
Commutativity of the diagram implies

F(@u(@) NP # 8 & Fulpn (Pa(2)) N p (P) £ 0.

But ¢, }(P) is an element of P; translated by some vector yo € RY. More-
over ¢, 1(P,(z)) C Q and so v, (x) < #{P € Py : F,(Q) N (P +yo) # 0}.
Because a,, depends on = only

() < #{P €91 (1 DFWIEQ) + Q) + anlw) - ) 1P 20}

< sup #{P € Py : (DF(2)Q + ¢ (Q) +2) NP # 0} (30)

2€RN

Since ¢- — 0 on compact subsets we get

limsup v, (z) < sup # {P e P (DF(x)Q + z) NP# @}

n—oo ZGRN

concluding the proof of the lemma. O

For the arguments which use the convergence properties of the sequence
log v,, we need the following result.

Lemma 5.3. There exists a p-integrable function g such that 0 < logv, <g
for p-almost every point in M and for alln > 1.

Proof. Fix n > 1 and consider x € M \ 9P. On the one hand since P,, is a
partition we must have v,(x) > 1. On the other hand, by the bound (30)
since the size of the edge of the cubes of P is 1/2 in RY we get
N
on(w) < (2(diam DF (2)(Q) + diam ¢5(Q)) ) (31)
diam DF(z)(Q) < 2V'N - | DF(z)||
< 2VNmax{||Df (@] |DF | (LM} (32)

Note that for z far away from 8 we always get bounded expressions above
since F' is a local diffeomorphism outside of ®(7T'sM). To bound diam ¢*(Q)
we use (29) and consider two cases.

First assume that d(z,8) > 2/n and take y € Q. Then for some 6 € [0, 1]

4 (y) = n-pa(y/n+2) =n- (F(z +y/n) - F(x) - DF(z)(y/n))
= DF(z+0-y/n)(y) — DF(z)(y)
so we get by condition (S1) on §
lgi; (W)l < VN - (IDF(@)|| + [[DF(z + 6 - y/n)])
< B\/N(d(x, $)™ + (d(x,8) — 1/n)_6)
< BVN -d(z,8)77 - (1+2°) (33)

since 1 — 1/(nd(z,8)) > 1/2 and | DF | (T, M)*| < p <1 < d(z,8)7" for
x close to 8, because 5 > 0.



30 V. ARAUJO AND M. J. PACIFICO

Now assume that d(z,§) < 2/n. Then we bound as follows
lgn @)l <n-1F(z+y/n) = Fz)| + [[DF()]| - |yl
<n-diam W + BVN -d(z,8) " (34)

Hence putting (31), (32), (33) and (34) together we see that there exists a
constant C' > 0 such that

Nlog (C’d(w, 8)~#) if d(z,8) > 2/n,
< z
log vn(x) < { Nlog (Cd(z,8)™" 4 2n - diam W) if d(z,8) < 2/n.

But d(z,8)7? > 0 and we may assume without loss that 2n - diam W > 2,
S0

log (C’d(x, 8)~" + 2n - diam W) <log (C’d(x, S)_ﬁ) + log (2n - diam W)

and if d(z,8) < 2/n we also get

logd(z,8)7? = —Blogd(x,8) > —Blog(2/n) = Blog(n/2)

= Blog (2n - diam W) — Blog(4diam W) or
log (2n - diam W) < log(4 diam W) — log d(z, 8)
Hence in all cases we arrive at
log v, (z) < Nlog (Cd(:v, 8)F + D)

for some positive constants C' and D. This concludes the proof. O

Lemma 5.4. The following bound on the entropy holds
hu(f, P N M) = hy, (F | M, P, N M) < / log vl dp.
M

Proof. This is [29, Lemma 12.2] without change. O
Corollary 5.5. h,(f) =h,(F | M) < [,,log v dp.
Proof. Since \/, 5, (Pn N M) is the Borel o-algebra y mod 0 we get

ha(F | M) = lim Ay, (F | M,P, N M) < limsup /M log vX dp.

n—oo

By Lemma 5.3 we can use the Dominated Convergence Theorem to obtain

limsup/ log vf du S/ lim sup log vf du :/ log v dp
M M M

n—~o0 n—~o0

since log is monotonous increasing. This concludes the proof. O

In what follows write v™(z) = v (2) for the analogous to v’ (z) with F"
in the place of F'.

Lemma 5.6. We have

hu(f) = hu(F | M) < /limsupllogv”(a:) du(z).

n—oo N
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Proof. Using [45, Thm. 4.13] and Corollary 5.5 we get for all n > 1
1 mn 1 n
ha(F | M) = —h(F™ | M) < / ~log " (2) du(z). (35)

Consider the sequence g, (r) = n~!logv™(z) and observe that by Lemma 5.2
and by (32)

1
gn(z) < —log (2 diam(DF”(m)Q))N
n
N
_|_ J—
n
Again by (32) and by definition of F' since x € M we get log||DF(z)| <
log® |Df(x)||. Hence by the f-invariance of y and the Sub-additive Ergodic
Theorem [45, Thm. 10.1], the sequence G (z) tends to a finite limit G(x)

for p-a.e. x when n — oo.
Now by (36) and by Fatou’s Lemma [45, Thm. 0.9]

< Mlog(2V W) + - log | DF" (x| = Cn(e). (36)

/liéli)ioréf(Gn —gn)dp < linrr_l)ior.}f/(Gn — gn) dp. (37)

On the one hand since lim,, o, Gy () exists p-a.e.
[ mint(G — g di = [ (G~ timsup g,) d (38)
and, on the other hand, since lim,, .o [ Gy (z)dp exists p-a.e. we also get
linnl)iol.}f/(G" —gn)du = /Gdu — lim sup/gn du. (39)

Altogether (37), (38) and (39) imply

limsup/%logvn(w) du(z) < /limsup%logvn(w) dpu(z)

n—oo n—oo

which together with (35) conclude the proof of the Lemma. O

To finish we need to relate limsup,,_, . % log v™(x) with the sum of the
positive Lyapunov exponents at x. This is done just as in [29, Chap. IV,

Sec. 12] where it is proved that

1
lim sup — log v"(z) < X7 (z)
n—oo N

for p-almost all x € M. This together with Lemma 5.6 implies Ruelle’s
Inequality. The proof of Theorem 5.1 is complete.
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