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Abstract. We prove the existence of a separatrix for the singular foliation induced by
a rank 2 action of C2 on a 3-dimensional manifold.

1. Introduction

The problem of the existence of separatrizes is a central theme in the local theory of
singular holomorphic foliations. On a neighborhood of a singularity in dimension 2, the
existence of separatrizes was settled in [C-S] completing a classical work of Briot and
Bouquet. Here a separatrix for F is by definition an (germ of) analytic curve passing
through the singularity and invariant under F . However, as we increase the dimension
and consider foliations on manifolds having dimension equal to 3, it becomes necessary
to distinguish between foliations of dimension 1 and foliations of dimension 2 (or of
codimension 1). By using a local coordinate, we can place ourselves on a neighborhood
of the origin in C3. Then, in the case of a 1-dimensional foliation, a separatrix still is
an (germ of) analytic curve passing through the origin and invariant by the foliation.
As to codimension 1 foliations, a separatrix in this context should be understood as a
germ of surface (i.e. 2-dimensional analytic set) passing through the origin and invariant
by the foliation. Unfortunately, the existence of separatrizes is no longer verified for all
foliations as above. In [GM-L] the reader will find examples of 1-dimensional foliations
without separatrizes. For codimension 1 foliations the existence of counterexamples goes
back to Jouanolou [J-1]. By studying the existence of invariant curves for foliations in the
complex projective plane (see for example [LN-S], [L-R]), it can now be shown that these
foliations “almost never” have separatrizes as it will be discussed below. The existence of
separatrizes for codimension 1 foliations was also the object of the remarkable papers [Ca],
[C-C] where is proved in particular that a strictly non-dicritical codimension 1 foliation
on a neighborhood of C3 always possesses a separatrix. As it follows from the preceding
discussion, strictly non-dicritical foliations are, in a specific sense, very “non-generic”.
For completeness, we also mention the work of Sancho de Salas [S] concerning invariant
sets for a vector field having a singularity of high codimension. Similarly Stolovitch has
investigated normal forms for certain families of commuting vector fields having rank at
least 2 and their applications to the existence of invariant sets [St].

In the present paper we consider codimension 1 foliations that are generated by an
action of C2 of rank 2 on a complex manifold of dimension 3. More precisely we shall
work on a neighborhood of the origin in C3. In this local setting, we consider the foliation
spanned by two holomorphic vector fields that commute and are linearly independent at
generic points. The main result of this paper is as follows.
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Main Theorem. Consider holomorphic vector fields X, Y defined on a neighborhood
of the origin of C3. Suppose that they commute and are linearly independent at generic
points so that they span a codimension 1 foliation denoted by D. Then D possesses a
separatrix.

Note that the foliation D can be much more degenerate than the vector fields X, Y
themselves since their k-jets may coincide to an order higher than the first non-trivial
homogeneous component of X, Y . This is a considerable source of difficulty in the proof
of our theorem. Also, if we define D by the differential 1-form induced by the vector
product of X, Y , this form may have a singular set of codimension 1 even though the
singular sets of X, Y are of codimension ≥ 2.

An interesting application of the above theorem concerns the case of a C2-action having
rank 2 on a complex manifold of dimension 3. By a rank 2 action, we simply mean that
its orbits have dimension 2 at generic points. On a neighborhood of a singular point
for this action, the vector fields X, Y can, in addition, be chosen semi-complete. A lot
of information about these vector fields can then be derived from their restriction to
the separatrix of D. In fact, semi-complete vector fields in dimension 2 are very well
understood cf. [G-R] for detailed recent results. A particularly remarkable example of
this situation can be found in [G]. This example was first discovered by Lins-Neto [LN]
in connection with the so-called Painlevé problem, its associated geometry and dynamics
was described in [G]. It consists of choosing X, Y respectively as the vector fields

Z∞ = 2z2(−z1 + z3)
∂

∂z1

+ (3z2
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2)
∂

∂z2

+ 2z3z2
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∂z3
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2 + 2z1z3)
∂
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∂

∂z2

+ 2z3(3z1 − z3)
∂

∂z3

.

These vector fields correspond to an action of C2 on a suitable 3-manifold. The family
spanned by them is such that a generic element has an isolated singularity at the origin.
Yet some elements, such as Z∞, possesses a singular set with codimension 2.

Remark. The fact that the vector fields belonging to the above mentioned family have
order equal to 2 at the origin is not an accident. Indeed, our theorem can be used to
show that vector fields X, Y as above possess a “separatrix of dimension 1”, i.e. that
there exists an analytic curve passing through the origin and invariant by the vector
field. Once the existence of one such curve was established, it follows that the second jet
of a semi-complete vector field at an isolated singularity cannot vanish, cf. [Reb]. The
reader will note that the generic element of the family of vector fields linearly spanned
by X, Y has, indeed, an isolated singularity at the origin. In turn, the existence of the
above mentioned analytic curve follows from combining our Main Theorem with results of
[G-R]. In fact, consider the restriction of, say X, to a separatrix S of D whose existence
in ensured by Main Theorem. Note that we cannot apply Camacho-Sad theorem, [C-S],
to this restriction since S may be singular. Yet it is proved in [G-R] that the existence of
separatrizes remains valid for 2-dimensional singular spaces supporting a semi-complete
vector field. The initial claim then follows from the combination of these results.

To close this Introduction, let us summarize the structure of this paper. To begin with,
let us indicate how to construct numerous examples of codimension 1 foliations on a



SEPARATRIZES FOR C2 ACTIONS ON 3-MANIFOLDS 3

neighborhood of (0, 0, 0) ∈ C3 without separatrizes. Consider a homogeneous polynomial
vector field Z defined on C3 and having an isolated singularity at (0, 0, 0) ∈ C3. Unless Z
is a multiple of the radial vector field R, it induces a 1-dimensional holomorphic foliation
FCP (2) of dimension 1 on CP (2). Conversely every 1-dimensional foliation on CP (2)
is induced by a homogeneous vector field on C3. Next we consider the 2-dimensional
distribution of planes on C3 which is spanned by Z and by R. The Euler relation
(Equation 6) shows that Z, R generates a Lie algebra isomorphic to the Lie algebra of
the affine group. The corresponding distribution is therefore integrable and hence yields
a codimension 1 foliation D. Clearly the punctual blow-up of D does not leave the
exceptional divisor π−1(0) invariant (for details see Lemma 1). In fact, the intersections
of the leaves of D with π−1(0) coincide with the leaves of FCP (2).

The upshot of the preceding construction regarding existence of separatrizes for D is
as follows: if D possesses a smooth separatrix, then this separatrix will intersect π−1(0)
on an algebraic curve which has to be invariant under FCP (2). Nonetheless it is known
that, in a very strong sense, most choices of Z leads to a foliation FCP (2) that does not
leave any proper analytic set invariant (cf. for example [LN-S], [L-R]). Thus this allows
us to obtain many examples of codimension 1 foliations without a smooth separatrix.
We also note that, for these examples, no smooth separatrix can be produced by adding
“higher order terms” to D.

Finally to make sure that most foliations D do not possess singular separatrizes either,
it suffices to choose Z slightly more “generic” so that the singularities of the blow-up of
D are “simple”, cf. below. In fact, with this extra-assumption, it follows easily that D
can admit only smooth separatrizes so that the problem becomes reduced to the above
discussion.

To show that this phenomenon cannot take place in our context, we shall consider
the intersection of our codimension 1 foliation with a given component of the excep-
tional divisor. Unless this component is invariant by the codimension 1 foliation, this
intersection defines a foliation of dimension 1 on it. We shall then prove that all leaves
of the latter foliation are compact1 unless we are in a very particular situation which
is already “linear” in a suitable sense. When considering these “linear” situations, the
existence of a separatrix can directly be established. An example of this would consist
of a couple of vector fields X, Y with X linear and Y equal to the Radial vector field
x∂/∂x + y∂/∂y + z∂/∂z. These two vector fields commute and span a codimension 1
foliation which does not leave the exceptional divisor invariant if blown-up at the ori-
gin. Furthermore the foliation induced on the corresponding exceptional divisor by the
mentioned blown-up foliation coincides with the foliation induced on CP (2) by X. In
particular X can be chosen so that the “generic” leaf is not compact. However, in this
situation the foliation induced by X on CP (2) still has a compact leaf which “directly”
leads to the existence of the desired separatrix. Apart from these so-called “linear sit-
uations”, the fact that the above mentioned leaves are all compact will be obtained by
exploiting the mutual symmetries of X, Y yielded by their commutativity and the fact
that their proper transform should be singular over the whole exceptional divisor.

1a more accurate statement would be that these leaves are properly embedded since the exceptional
divisor itself may be non-compact. In fact, the codimension 1 foliation in question may have a local
curve of singularities that may be used as center for certain blow-ups, cf. below
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A similar example concerning blow-ups over curves that was pointed out to us by D.
Cerveau goes as follows. Consider the pair of vector fields X, Y given by

X = zy
∂

∂y
+ z2 ∂

∂z
and Y = x2 ∂

∂x
+ axy

∂

∂y
.

These two vector fields commute and span a codimension 2 foliation denoted by D.
They also leave the axis {y = z = 0} invariant. Consider the blow-up of D, X, Y

centered over {y = z = 0}. The proper transform D̃ of D does not leave the exceptional
divisor invariant. Furthermore the generic leaf of the foliation induced on the exceptional

divisor by intersecting it with the leaves of D̃ is non-compact. The explanation for this
phenomenon is that the blow-up of X is regular at generic points of the exceptional
divisor. Indeed, X is already regular at generic points of the axis {y = z = 0}. This case
must thus be considered as linear (indeed even regular). As it will be clear in Section 3,
the appropriate notion of order of a vector field relative to a curve is such that the
resulting order for X as above is zero. This is totally coherent with the fact that X is
regular at generic points of this axis. In this context, to be “non-linear” roughly means
that the mentioned order has to be at least 2.

The organization of the paper is as follows. In Section 2 we consider the case of a
single punctual blow-up. The condition for the proper transforms of X, Y to vanish
over the whole exceptional divisor is equivalent to the triviality of their linear parts
at the origin (ie. at the center of the blow-up). Under this condition we prove that,
if the codimension 1 foliation spanned by X, Y does not leave the exceptional divisor
invariant, then all (1-dimensional) leaves induced by it on the exceptional divisor are
compact (Proposition 1). Section 3 is devoted to obtaining an analogue of Proposition 1
for the case of blow-ups centered at a (smooth, irreducible) curve. In particular, this will
require a suitable analogue of the “linear parts” of X,Y which is adapted to the curve
in question. This is going to raise some minor additional difficulties as indicated by the
above example. After introducing the appropriate setting, the main result of Section 3
will be Proposition 2 which is a faithful analogue of Proposition 1.

Since it is hard to imagine a theorem about arbitrarily degenerate singularities being
proved without resorting to a suitable “desingularization” theorem, the fundamental
results of [C-C], [Ca] about reduction of singularities of codimension 1 foliations will play a
role in this paper. They will be brought to bear in Section 4. First we shall prove that the
desired separatrix must exist provided that the 1-dimensional foliations induced on the
dicritical components of the (total) exceptional divisor have only compact leaves. In these
cases, the existence of the separatrix will follow from the combination of the compactness
of the mentioned (1-dimensional) leaves with the fact that the “reduced singularities”
are simple enough to allow for a total understanding of their (local) separatrizes. To
prove our main result, we are then led to discuss the effect of the blow-up procedure
of [C-C], [Ca] on the initial vector fields X, Y . The outcome of this discussion is that,
to a large extent, Propositions 1 and 2 can be applied to guarantee the compactness of
the (1-dimensional) leaves in question. Thus, at this point, we shall have the existence
of the separatrix established except for some “special” cases in which the assumptions
of Propositions 1 and 2 are not fulfilled. Fortunately these remaining cases are simple
enough to be amenable to more direct methods.
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2. On the dicritical character of D, Part I: Blowing-up a point

Consider two commuting holomorphic vector fields, X, Y , defined on (C3, 0). Through-
out this section, the vector fields X, Y are supposed to satisfy the following conditions:

(1) X, Y are linearly independent at generic points.
(2) The linear parts of X, Y at the origin are trivial.

Next we let X =
∑3

i=1 Xi∂/∂xi and Y =
∑3

i=1 Yi∂/∂xi. Because X and Y commute,
they define a codimension 1 singular foliation D which is represented by the holomorphic
1-form

(1) Ω = (X2Y3 −X3Y2)dx + (X3Y1 −X1Y3)dy + (X1Y2 −X2Y1)dz

As usual we can assume that Sing (D) has codimension greater than or equal to 2. In
other words, we can eliminate all non-trivial common factors from the components of the
form Ω considered above.

In this work we shall deal with the codimension 1 foliation D as well as with the folia-
tions FX , FY associated respectively to the vector fields X, Y . Unlike D, the foliations
FX , FY have dimension 1. Nonetheless, their singular sets can also be supposed to have
codimension 2 or greater.

Recall that a separatrix for a foliation of dimension 1 (such as FX , FY ) is a germ
of analytic curve passing through the origin and invariant by the foliation in question.
Note that this definition does not exclude the possibility of having a separatrix entirely
contained in the singular set of the corresponding foliation.

On the other hand, if we have a codimension 1 foliation (such asD), then a separatrix is
a germ of analytic surface passing through the origin and invariant by the corresponding
foliation. We can also say that, in the latter case, a separatrix is given by an irreducible
germ of analytic function f that divides Ω ∧ df . Since the singular set of any foliation
has codimension at least 2, a separatrix for a codimension 1 foliation is always obtained
from a regular leaf that accumulates on the singular set. This contrasts with the case of
dimension 1 foliations.

The proof of the main result in this paper depends on a “topological” theorem for codi-
mension 1 foliations not necessarily spanned by commuting vector fields. This theorem
provides a sufficient condition to guarantee the existence of separatrizes for the foliation
in question. It also shows that the examples of foliations without separatrizes given in
the Introduction have a certain “universal character”. The corresponding statement is
as follows.

Theorem 1. Let D be a codimension 1 foliation defined on a neighborhood of the origin
in C3 and consider a reduction of singularities (cf. Section 4)

D = D0 π1←− D1 π2←− · · · πk←− Dk
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for D. Suppose that the restriction of Dk to every non-invariant component E of the
total exceptional divisor is such that the (1-dimensional) foliation induced on E by this
restriction possesses a non-constant meromorphic first integral. Then D possesses a
separatrix.

Naturally it is implicit in the statement of Theorem 1 the existence of a “reduction of
singularities” as indicated which, in turn, is a fundamental result appearing in [C-C] and
[Ca]. The accurate form of these results will be given in the first paragraph of Section 4
along with the proof of Theorem 1. We point out in particular that the mentioned proof
can be read independently of the material discussed in this section and in Section 3.

Remark 1. We can now provide further details on our strategy to prove the theorem
stated in the Introduction. In fact, to deduce Main Theorem from Theorem 1 we shall
try to prove that, when D is spanned by vector fields X, Y as in the statement of this
theorem then the assumption of Theorem 1 is always verified. Although this is not
strictly true, we shall prove that foliations not satisfying this condition are “very close
to linear foliations” in a sense that will fully be made clear in Section 4. Fortunately
these “almost linear” foliations will turn out to be simple enough to allow for a direct
verification of the existence of separatrizes for them.

The main tool to understand foliations that fail to satisfy the condition of Theorem 1
will be Propositions 1 and 2. In particular, in the case of a single punctual blow-up,
Proposition 1 asserts that the absence of the mentioned meromorphic first integral can
only occur if the proper transforms of X, Y do not vanish identically over the exceptional
divisor. naturally, in this case, the linear parts of X, Y at the origin must be non-trivial.
The analogous case for blow-ups centered over curves will be discussed in Section 3.

In the procedure of reducing the singularities of D as indicated in Theorem 1 two types
of blow-ups are considered, namely those centered at a single point and those centered at

a smooth (irreducible) curve. In either case the proper transform D̃ of D is well-defined
and consists of a singular holomorphic foliation defined on the new (blown-up) manifold.
We also mention that a foliation is said to be dicritical, for a specific blow-up under
consideration, if the proper transform of the foliation does not leave the corresponding
exceptional divisor invariant.

To implement the strategy outlined in Remark 1 our next task is to find conditions
ensuring that, in the dicritical case, the proper transform of D, under a blow-up as
above, induces on the exceptional divisor a foliation admitting a nontrivial meromorphic
first integral. The remainder of this section and all of Section 3 are devoted to this
question. Naturally in the course of this discussion we shall assume that D is spanned by
two commuting vector fields X, Y that are linearly independent at generic points. The
desired conditions are summarized by Propositions 1 and 2. Proposition 1 concerns the
case of punctual blow-ups and will be the main result of this section. Proposition 2 is the
analogue of Proposition 1 for the case of blow-ups centered over a curve. Section 3 will
be entirely devoted to discussing this type of blow-up and to the proof of Proposition 2.

From now on we fix a holomorphic 1-form Ω defining D and having singular set of
codimension at least 2. In particular the singular set Sing (D) of D consists of isolated
points and analytic curves. In the remainder of this section we shall exclusively deal with
the case of punctual blow-ups.
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Suppose then that D is dicritical for the blow-up centered at the origin. We are going
to prove, in particular, that the foliation induced on the resulting exceptional divisor by
the proper transform of D possesses a non-constant meromorphic first integral provided
that D is spanned by vector fields X, Y satisfying conditions 1 and 2 in the beginning of
the section (cf. Proposition 1). In particular observe that condition 2 already gives some
hint on the “linear nature” of foliations failing to satisfy the assumption of Theorem 1
as discussed in Remark 1.

To begin our approach to Main Theorem and, more precisely, to Proposition 1 ,we are
going to give a characterization of foliations whose punctual blow-up does not leave the
exceptional divisor invariant. With this purpose, let us denote by R the Radial vector
field (Euler vector field)

R = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

This vector field will play a major role in the subsequent discussion. Part of this role is
related to dicritical foliations as indicated in the lemma below.

Lemma 1. Suppose that D is a singular codimension 1 foliation whose punctual blow-up

at the origin D̃ does not leave the resulting exceptional divisor E ' CP (2) = π−1(0)
invariant. Then there is a holomorphic vector field Z tangent to D such that the first
non-trivial homogeneous component of Z at the origin is a multiple of the Radial vector
field R.

Proof. Let D be given by the holomorphic 1-form ω = F dx + G dy + H dz whose sin-
gular set has codimension 2 or greater. Denote by ωd the first non-trivial homoge-
neous component of ω at (0, 0, 0). Here d stands for the degree of ωd. Furthermore

set ωd = F ddx + Gddy + Hddz. In standard affine coordinates (x, t, u) for C̃3 in which
π(x, t, u) = (x, tx, ux), the blow-up of ω is represented by

[F (x, tx, ux) + tG(x, tx, ux) + uH(x, tx, ux)] dx + xG(x, tx, ux) dt + xH(x, tx, ux) du .

Since the order of ω at the origin is d, we conclude that D̃, the blow up of D, is given by

(2) [F d(1, t, u) + tGd(1, t, u) + uHd(1, t, u) + xr1] dx + x(Gd(1, t, u) + xr2) dt+

+ x(Hd(1, t, u) + xr3) du = 0 ,

where r1, r2, r3 are holomorphic functions. The condition for E = π−1(0) not to be

invariant by D̃ implies that F d(1, t, u) + tGd(1, t, u) + uHd(1, t, u) = 0 (identically). In

turn this means that the direction (1, 0, 0) is tangent to the foliation D̃d (the blow-up of
the foliation Dd induced by ωd = 0). Equivalently the Radial vector field R is tangent to
the foliation defined by ωd, i.e. we have

(3) xF d + yGd + zHd = 0

To produce the desired vector field we proceed as follows. Recall that in C3 the exterior
product of two vectors (a, b, c), (a′, b′, c′) is defined as (bc′ − cb′, ca′ − ac′, ab′ − ba′).
First we defined a vector field v by letting v(p) = R(p)∧ (F (p), G(p), H(p)). Then we set
Z(p) = v(p)∧(F (p), G(p), H(p)). We claim that the vector field Z satisfies our conditions.
Indeed Z is clearly tangent to the foliation D. To show that the first homogeneous
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component of Z is a multiple of R, first note that Z is given in the coordinates (x, y, z)
by the formula

(4) Z = (zFH+yFG−x(H2+G2) , xFG+zHG−y(F 2+H2) , yHG+xFH−z(G2+F 2))

In particular it is immediate from this formula to check that Z is tangent to D. It also
follows that the order of Z at the origin is at least 2d + 1. The homogeneous component
of degree 2d + 1 is, in turn, given by

(5) (zF dHd + yF dGd − x((Hd)2 + (Gd)2) , xF dGd + zHdGd − y((F d)2 + (Hd)2) ,

yHdGd + xF dHd − z((Gd)2 + (F d)2)).

However this expression can be rewritten as

(xF d + yGd + zHd)(F d, Gd, Hd)− ((F d)2 + (Gd)2 + (Hd)2)(x, y, z) .

In view of Equation 3, we conclude that the component of degree 2d+1 of u at the origin
is given by −((F d)2 + (Gd)2 + (Hd)2)R.

To finish the proof of the lemma it suffices to check that the polynomial (F d)2 +
(Gd)2 + (Hd)2 cannot vanish identically. This is however easy. Let us use the variables
(x, t, u) for the blow-up so that F d(1, t, u) + tGd(1, t, u) + uHd(1, t, u) is identically zero
by assumption. Now suppose for a contradiction that (F d)2 + (Gd)2 + (Hd)2 is also
identically zero. Then we must have (t2 + 1)(Gd)2 + 2tu(Gd)(Hd) + (u2 + 1)(Hd)2 = 0
(identically). Solving this equation for Gd we obtain a contradiction with the fact that
Gd is itself a polynomial in the variables t, u. The lemma is proved. �

Naturally we are going to need an analogue of Lemma 1 in the case where we have a
blow-up centered over a smooth curve. This discussion will be the object of Section 3.
For the time being let us return to our original setting where D is spanned by vector
fields X, Y satisfying conditions 1 and 2.

Consider a homogeneous polynomial vector field Z of degree d ≥ 2. The Euler relation
then provides

(6) [R,Z] = (d− 1)Z .

In particular R and Z do not commute. Furthermore, if Z is not a multiple of R, then
the same holds when R is replaced by a multiple hR. Indeed, we have

(7) [hR, Z] = h[R,Z]− (Z.h) R = (d− 1)hZ −
(

∂h

∂Z

)
R

It is then clear that [hR, Z] 6= 0 provided that R, Z are linearly independent.
Next we have a simple lemma concerning the vanishing of the Lie bracket for a special

type of vector fields.

Lemma 2. Let Z1, Z2 be vector fields defined around (0, 0, 0) ∈ C3. Suppose that the
first non-trivial homogeneous component of Z1 at (0, 0, 0) is a multiple of R. Suppose
also that the linear part of Z2 at the origin is trivial and that [Z1, Z2] = 0. Then Z1, Z2

are linearly dependent at every point.
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Proof. Consider the punctual blow-up Z̃1 (resp. Z̃2) of Z1 (resp. Z2) at the origin. Since
the first non-trivial homogeneous component of Z1 is a multiple of R, we set Zd

1 = hR
where h is a homogeneous polynomial of degree d− 1. Then it follows that the foliation

associated to Z̃1 is transverse to π−1(0) away from the proper transform of {h = 0}.
Thus we can fix local coordinates (x, t, u), π−1(0) ⊂ {x = 0}, around a generic point of

π−1(0) in which the vector field Z̃1 becomes f(x, t, u)∂/∂x. In these coordinates, we set

Z̃2 = Z̃2,1∂/∂x + Z̃2,2∂/∂t + Z̃2,3∂/∂u. The equation [Z̃1, Z̃2] = 0 then yields

∂Z̃2,2

∂x
=

∂Z̃2,3

∂x
= 0 .

Therefore Z̃2,2 and Z̃2,3 do not depend on the variable x. However, since the linear

part of Z2 vanishes identically at the origin, Z̃2 vanishes identically on π−1(0). Thus its

components Z̃2,2, Z̃2,3 must vanish everywhere since they do not depend on x. It follows
that Z1, Z2 are linearly dependent on an open set and therefore they are so everywhere.
The lemma is proved. �

Remark 2. Note that the assumption concerning the vanishing of the linear part of Z2 at

the origin was used only to ensure that the blown-up vector field Z̃2 vanishes identically
on the resulting exceptional divisor. Let us emphasize again that this condition will play
the main role in the course of this section. However, since in this section only punctual
blow-ups are studied, the mentioned condition is equivalent to the triviality of the linear
part of Z2 at the center of the blow-up.

Let us go back to the vector fields X, Y considered in the beginning of the section.
Recall that D stands for the codimension 1 foliation spanned by X, Y . Suppose that
the punctual blow-up of D at the origin gives rise to a foliation that does not leave the
exceptional divisor π−1(0) ' CP (2) invariant. Then, according to Lemma 1, there are
holomorphic functions f, g and h such that

(8) fX + gY = hZ ,

where Z is a holomorphic vector field whose first non-trivial homogeneous component is
a multiple of R. Let ord (fX) (resp. ord (gY ), ord (hZ)) denote the order of the vector
field fX (resp. gY, hZ) at the origin.

Lemma 3. With the above notations we have the following alternative

(1) ord (hZ) > min{ord (fX) , ord (gY )}.
(2) the first homogeneous component of X, XH , (resp. Y, Y H) admits a non-constant

meromorphic first integral.

Proof. Suppose that ord (hZ) = min{ord (fX) , ord (gY )}. All we have to do is to show
that XH possesses a non-constant first integral. Denote respectively by fH , gH , hH the
first non-trivial homogeneous components of f, g, h. Analogously define XH , Y H , ZH .
Without loss of generality, we can assume that ord (fX) ≤ ord (gY ). We claim that,
indeed, we must have ord (fX) = ord (gY ). To check this claim, just note that otherwise
fHXH is a multiple of the radial vector field R as it can be seen by considering the first
non-trivial homogeneous component in Equation (8). This is however impossible since
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it contradicts the generic linear independence of X, Y (cf. Lemma 2). Hence we have
shown that ord (fX) = ord (gY ) as desired.

Therefore, by considering again the first non-trivial homogeneous component in Equa-
tion (8), it follows that

(9) fHXH + gHY H = hHqHR

where, by assumption, none of the two sides vanishes identically. Furthermore qH is also
a homogeneous polynomial.

Because X, Y commute, so do XH , Y H . Thus we have

[XH , Y H ] =

[
XH ,

hHqH

gH
R− fH

gH
XH

]
=

[
XH .

(
hHqH

gH

)]
R− hHqH

gH
[R,XH ]−

[
XH .

(
fH

gH

)]
XH

=

[
XH .

(
hHqH

gH

)]
R−

[
(d− 1)

hHqH

gH
−XH .

(
fH

gH

)]
XH

= 0

where d denotes de degree of XH . In particular[
XH .

(
hHqH

gH

)]
R =

[
(d− 1)

hHqH

gH
−XH .

(
fH

gH

)]
XH

If the expression between brackets on the right hand side (i.e. the expression multiplying
XH) does not vanish identically then XH is a multiple of the Radial vector field. Again
this is impossible in view of Lemma 2. Thus we conclude this expression is always equal
to zero. Then it follows that

XH .

(
hHqH

gH

)
= 0 .

In other words, hHqH/gH is a meromorphic first integral for XH .
It only remains to prove that hHqH/gH is non-constant. To do this note that, if this

function were constant, then we can assume hHqH/gH = 1 without loss of generality.
Hence dividing (9) by gH , it would follows that

fH

gH
XH + Y H = R.

This last equation is however impossible since Y H has degree at least 2 and the expression
fHXH/gH is homogeneous. Therefore hHqH/gH cannot be constant. Since the argument
is symmetric in the vector fields X,Y , the last assertion completes our proof. �

We are now able to prove the main proposition of this section. It summarizes the
preceding results and clarifies the nature of the foliation induced byD over the exceptional
divisor in the dicritical case.

Proposition 1. Let X, Y be two commuting vector fields satisfying Conditions 1 and 2
at the beginning of the section. Denote by D the codimension 1 foliation spanned by

X, Y and suppose that the punctual blow-up D̃ of D at the origin does not leave the
corresponding exceptional divisor π−1(0) invariant. Then one has:
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(1) The foliations F̃X and F̃Y coincide in their restriction to π−1(0), where F̃X (resp.

F̃Y ) stands for the proper transform of FX (resp. FY ) by the blow-up map π in
question.

(2) The restrictions to π−1(0) of F̃X and F̃Y also coincide with the foliation induced

on π−1(0) by D̃.

(3) The restrictions of F̃X , F̃Y to π−1(0) possess a meromorphic first integral. In other

words, the foliation induced by D̃ on π−1(0) defines a pencil on π−1(0) ' CP (2).

Proof. Let XH , Y H denote the first nontrivial homogeneous components of respectively
X, Y at the origin. We know that none of the vector fields is a multiple of the radial
vector field R (Lemma 2). In particular each of them induces a non-trivial foliation on the
exceptional divisor π−1(0) ' CP (2). Let us first check that these two foliations actually
coincide. The condition for these two foliations to coincide is that either the vector fields
XH , Y H are parallel or they span a 2-dimensional plane containing the radial direction
(away from a proper analytic set). If none of these possibilities hold, then a direct
inspection in the 1-form Ω, cf. Equation 1, defining the foliation D and in Equation 3
will contradict the dicritical nature of D. In fact, the coefficients (F, G, H) of Ω are given
by the exterior product between XH , Y H and they cannot satisfy Equation 3 unless one
of the two above possibilities above holds. This shows that the foliations induced by
XH , Y H on the exceptional divisor are the same. Finally it becomes equally clear that

these two foliations coincide also with the foliation induced by D̃ on π−1(0). This proves
the first two conclusions in the above statement.

To complete the proof it suffices to show that XH admits non-constant meromorphic
first integral. Indeed, since XH is not a multiple of the Radial vector field the mentioned
first integral also yields a non-constant first integral for the foliation induced by the
projection of XH on CP (2).

To show the existence of the desired first integral for XH , recall that Lemma 1 ensures
the existence of a holomorphic vector field Z satisfying Equation 8 for suitable holomor-
phic functions f, g, h. Furthermore the first non-trivial homogeneous component of Z
at the origin is a multiple of the Radial vector field R. In turn Lemma 3 allows us to
suppose that ord (hZ) > min{ord (fX) , ord (gY )} (strictly) without loss of generality.
In particular, we must have ord (fX) = ord (gY ) and, in fact,

fHXH + gHY H = 0 .

Alternatively we write

fH

gH
XH + Y H = 0 .

Therefore [
XH ,

fH

gH
XH + Y H

]
= [XH , 0] = 0 .

However, since [XH , Y H ] = 0, the above equation amounts to[
XH .

(
fH

gH

)]
.XH = 0
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so that XH .(fH/gH) must vanish identically. In other words fH/gH is a first integral for
XH . The statement is then proved unless fH/gH is constant. Therefore we just need to
consider this latter possibility. This means that XH and Y H differ by a multiplicative
constant. Set XH = cY H for some c ∈ C∗. Now note that the order of the new vector field
Y ′ = X−cY must be strictly larger than the order of X. Besides Y ′ is not constant equal
to zero since X, Y are linearly independent at generic points. In fact, Y ′ is itself linearly
independent with X at generic points. Furthermore the vector fields X, Y ′ still commute
and they span the same foliation D as the initial pair X, Y . Therefore we can repeat the
argument using X, Y ′ instead of X, Y . By construction the first non-trivial homogeneous
component of Y ′ cannot differ from XH by a multiplicative constant. Therefore XH must
admit a non-constant meromorphic first integral. The proposition is proved. �

3. On the dicritical character of D, Part II: Blowing-up a curve

The next step towards the proof of Theorem 1 consists of obtaining an analogue of
Proposition 1 for the case of blow-ups centered over smooth (irreducible) curves contained
in Sing (D). Indeed this section is entirely devoted to discussing the effect of blowing up
a smooth curve contained in the singular set of D.

Consider a point p belonging to a smooth curve contained in Sing (D). On a neighbor-
hood of p, there are local coordinates (x, y, z) in which the curve in question coincides
with the z-axis, i.e. it is given by {x = y = 0}. For the blow-up centered at {x = y = 0},
we can introduce affine coordinates (x, t, z) and (u, y, z) such that the resulting blow-up
map πz is given by πz(x, t, z) = (x, tx, z) (resp. πz(u, y, z) = (uy, y, z)). In the context of
blow-ups along a fixed curve, the expression “a generic point of {x = y = 0}” is a syn-
onymous of “except for a finite set of points”. If the neighborhood of (0, 0, 0) ∈ C3 can be
reduced without affecting the generality of the discussion then “a generic point” becomes
an expression equivalent to “for every point in {x = y = 0} with possible exception of
the origin”. Finally let Rz denote the vector field defined by

Rz = x
∂

∂x
+ y

∂

∂y
.

In the case of punctual blow-ups, the first non-trivial homogeneous component of X, Y
played the main role in establishing the existence of a non constant meromorphic first
integral for the foliation induced over CP(2) under appropriate conditions. We shall be-
gin this section by introducing an analogue of these “homogeneous components” which
are suitable to deal with the blow-up over the curve {x = y = 0}. In particular, the cor-
responding “homogeneous” vector fields will satisfy the same properties as those verified
by the first components of X, Y in the case of punctual blow-up. Most notably, they will
still commute and they will also encode the information determining the dicritical/non-
dicritical nature of D.

To motivate the definition, note that the first non-trivial homogeneous component of
X can be recovered as

lim
λ→0

1

λd−1
Γ∗λX

where Γ∗λX denotes the pull-back of X by the homothety Γλ : (x, y, z) 7→ (λx, λy, λz)
and d stands for the degree of the first non-trivial homogeneous component of X. In the
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present case we shall consider an adapted notion of homothety, namely the one obtained
through the family of automorphisms given by

Λλ : (x, y, z) 7→ (λx, λy, z).

In this case, the pull-back of X by Λλ becomes

Λ∗
λX =

1

λ

[
X1(λx, λy, z)

∂

∂x
+ X2(λx, λy, z)

∂

∂y

]
+ X3(λx, λy, z)

∂

∂z

Denote by k (resp. l) the maximal power of λ that divides X1(λx, λy, z)∂/∂x +
X2(λx, λy, z)∂/∂y (resp. X3(λx, λy, z)∂/∂z). It corresponds to the degree of the first
non-trivial homogeneous components relative to the variables x, y in each expression.
Then

Λ∗
λX = λk−1

[
(Xk

1 (x, y, z) + λX̄1,λ(x, y, z))
∂

∂x
+ (Xk

2 (x, y, z) + λX̄2,λ(x, y, z))
∂

∂y

]
+

+ λl(X l
3(x, y, z) + λX̄3,λ(x, y, z))

∂

∂z

where Xj
i stands for the homogeneous component of degree j, of Xi, relative to the

variables x, y. Since the powers of λ in the different components do not coincide, three
cases must be considered according to the possibilities l > k − 1, l = k − 1 or l < k − 1.
The expression for the limit vector field X̄ will change accordingly. Naturally, when it
comes to blow-ups along a smooth curve, the vector field X̄ is going to represent the
desired analogue of the “first non-trivial homogeneous component” as considered in the
preceding section.

a) Suppose l > k − 1. In this case we consider the vector fields

Xλ =
1

λk−1
Λ∗

λX .

and the limit
X̄ = lim

λ→0
Xλ.

Clearly X̄ is the “first non-trivial homogeneous component in the variables x, y”
and it has the form

X̄ = Xk
1 (x, y, z)

∂

∂x
+ Xk

2 (x, y, z)
∂

∂y
.

b) If l = k − 1 we still consider the vector field Xλ = Λ∗
λX/λk−1 and define X̄ as

above. A similar argument shows that X̄ has the form

X̄ = Xk
1 (x, y, z)

∂

∂x
+ Xk

2 (x, y, z)
∂

∂y
+ Xk−1

3 (x, y, z)
∂

∂z

c) Finally, if l < k − 1 we let

Xλ =
1

λl
Λ∗

λX

and consider X̄ = limλ→0 Xλ which, in this case, is a “vertical” vector field

X̄ = X l
3(x, y, z)

∂

∂z
.
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As mentioned, the vector field X̄ represents the analogue of the first non-trivial homo-
geneous component of X under the adapted homothety Λλ. Given a vector field X as
above, throughout this section the first non-trivial homogeneous component of X in the
variables x, y is, by definition, the vector field X̄ constructed above. Naturally the order
of X on the variables x, y will be the degree w.r.t. the variables x, y (or simply degree
when no misunderstanding is possible) of X̄. In turn the degree w.r.t. the variables x, y
is by definition the minimum between k and l + 1. Finally note that X̄ may also be
viewed as a homogeneous polynomial vector field in the variables x, y with coefficients
in C[z] (except that the degree of the third component may differ from the degree of the
other two cf. below).

The vector field Ȳ is analogously defined. The commutativity of X̄ and Ȳ follows
easily from the commutativity between X and Y . In fact, Λ∗

λX commutes with Λ∗
λY for

every λ. The same being true when these two vector fields are multiplied by arbitrary
constants. Hence, by taking a suitable limit, we conclude that the vector fields X̄ and Ȳ
must commute as well.

A similar notion of “first non-trivial homogeneous component” is also natural for a
codimension 1 foliation given by a holomorphic 1-form Fdx+Gdy+Hdz. Again this “first
non-trivial homogeneous component in the variables x, y” is obtained as an appropriate
limit of pull-backs of ω by the automorphisms Λλ : (x, y, z) 7→ (λx, λy, z). Details are left
to the reader. We point out, however, that the resulting component can equally well be
seen as a polynomial 1-form in the variables x, y with coefficients in C[z]. Nonetheless the
case analogous to the case “b)” (where l = k−1) of vector fields in which this “first non-
trivial homogeneous component in the variables x, y” may have non-trivial components
in all the coordinates dx, dy, dz is now associated to the possibility l = k + 1.

Consider now the codimension 1 foliation D spanned by X, Y . The following lemma
will play, in the context of blow-ups over curves, a role analogous to the role played by
Lemma 1 in the preceding section.

Lemma 4. Suppose that D is singular over {x = y = 0} and denote by D̃ the cor-
responding blown-up foliation. Suppose also that D is dicritical, i.e. that the resulting

exceptional divisor is not invariant by D̃. Then there exists a holomorphic vector field Z
tangent to D and satisfying the following conditions:

• Z is singular over {x = y = 0}.
• The first non-trivial homogeneous component Z̄ of Z, in the sense adapted to blow-

ups over curves, is a multiple of Rz having the form Pz(x, y)Rz where Pz stands
for a homogeneous polynomial in the variables x, y with coefficients in C[z].

Proof. To prove the statement let us consider a holomorphic 1-form ω = Fdx+Gdy+Hdz
defining D and having singular set of codimension at least 2. Denote by ω̄ the first non-
trivial homogeneous component of ω relative to the variables x, y (i.e. the first non-trivial
homogeneous component adapted to the blow-up centered at the curve {x = y = 0}). The

behavior of the foliation defined by ω̄ determines the behavior of D̃ over the exceptional
divisor. In particular the former foliation is dicritical if and only if D is so.
Claim. The vector field Rz is tangent to the leaves of the foliation defined by ω̄.
Proof of the claim. As already seen, there are three possibilities for the 1-form ω̄, namely
it has only a component dz, it has only components dx, dy and, finally, it has all the three
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components dx, dy, dz. Recalling the existence of affine coordinates (x, t, z) for the blow-
up of C3 over {x = y = 0} in which the blow-up map πz becomes πz(x, t, z) = (x, tx, z),
the blow-up π∗z(ω̄) of ω̄ is respectively given by hd,z(1, t)dz, [fd,z(1, t) + tgd,z(1, t)]dx +
xgd,z(1, t)dt or

(10) π∗z(ω̄) = [fd,z(1, t) + tgd,z(1, t)]dx + xgd,z(1, t)dt + xhd,z(1, t)dz ,

up to a multiplicative factor. Here we note that fd,z(x, t), gd,z(x, t) (resp. hd,z(x, t)) are
homogeneous polynomials of degree d (resp. d− 1) in the variables x, t with coefficients
in C[z]. In addition, the last case happens when the order (previously denoted by l) of
H with respect to the variables x, y exceeds by one unit the order (previously denoted by
k) of the form Fdx + Gdy, w.r.t. the variables x, y. The claim is equivalent to showing
that the constant vector field (1, 0, 0) is tangent to the leaves of π∗z(ω̄). The proof of this
will rely on the fact that the exceptional divisor is not invariant by the foliation defined
by π∗z(ω̄). As already noted the fact that the exceptional divisor is not invariant by π∗z(ω̄)

is indeed equivalent to our assumption that it is not invariant by D̃. Now, to prove that
the leaves of π∗z(ω̄) are all tangent to the vector (1, 0, 0), we shall go through the three
possibilities for π∗z(ω̄). When π∗z(ω̄) has the form hd,z(1, t)dz the statement is obvious and
needs no further comment. If π∗z(ω̄) = [fd,z(1, t) + tgd,z(1, t)]dx + xgd,z(1, t)dt, then the
condition of being dicritical implies that fd,z(1, t)+tgd,z(1, t) must vanish identically. It is
easy to deduce from this that (1, 0, 0) is tangent to the leaves of π∗z(ω̄). Finally in the third
case, corresponding to Equation 10, all that has to be checked is that fd,z(1, t)+tgd,z(1, t)
vanishes identically. This is however obvious, otherwise the exceptional divisor (locally
given by {x = 0}) would be invariant by π∗z(ω̄), hence contradicting the fact that D is
dicritical. The claim is proved. �

To complete the proof of the lemma, we still need to construct the vector field Z. This
however goes as in Lemma 1. Let v(p) be given by the exterior product Rz ∧ (F, G, H)
and set Z(p) = v(p) ∧ (F, G, H). Clearly Z is tangent to the leaves of D. Besides a
straightforward calculation shows that its first non-trivial component is a multiple of Rz.
The lemma is proved. �

Next let FX be the foliation associated to X. We assume that the axis {x = y = 0} is
invariant by X, that is to say, either it is contained in the singular set of X or it constitutes
a separatrix for X. Let k and l be as defined above (in connection with the first non-
trivial homogeneous component in the variables x, y, X̄, of X). A direct inspection in
the formulas related to the preceding possibilities a), b) and c) for the nature of X̄ makes
it clear that the proper transform of FX under πz leaves the exceptional divisor invariant
unless l ≥ k and the vector field X1(λx, λy, z)∂/∂x + X2(λx, λy, z)∂/∂y is a multiple of
Rz. In other words, the foliation is dicritical if and only if X̄ is a multiple of Rz at points
in {x = y = 0}, i.e. if and only if X̄ has the form Pz(x, y)(x∂/∂x + y∂/∂y) for some
homogeneous polynomial Pz in the variables x, y with coefficients in C[z].

Next we state:

Lemma 5. Suppose that Z1, Z2 are two commuting vector fields defined on (C3, 0). Sup-
pose that the first non-trivial homogeneous component of Z1 in the variables x, y at points
in {x = y = 0} has the form Pz(x, y)(x∂/∂x + y∂/∂y) for a homogeneous polynomial P
in the variables x, y with coefficients in C[z]. Suppose also that the order of Z2 relative
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to the variables x, y at points in {x = y = 0} is at least 2. Then Z1, Z2 are linearly
dependent everywhere.

Proof. Keeping the preceding notations, consider the blow-up map πz. The proper trans-

forms Z̃1, Z̃2 of Z1, Z2 under πz are holomorphic on a neighborhood of the corresponding

exceptional divisor π−1
z (0). Besides the foliation associated to Z̃1 is transverse to π−1

z (0).
Thus, on a neighborhood of a generic point of π−1

z (0), we can introduce coordinates
(x, t, u) such that:

(1) The foliation associated to Z̃1 is given by ∂/∂x.

(2) {x = 0} ⊂ π−1
z (0) is contained in the set of zeros of Z̃2.

It then follows that Z̃1 is given in these coordinates by f∂/∂x for some holomorphic
function f . The rest of the proof goes exactly as in the proof of Lemma 2. More precisely,

the condition on the vanishing of the Lie bracket of Z̃1, Z̃2 ensures that the components

of Z̃2 in the coordinates t, z do not depend on the variable x. Since Z̃2 equals zero over
the exceptional divisor, locally given by {x = 0}, it follows that these components must

be zero everywhere. In other words, Z̃1, Z̃2 must be parallel on an open set and hence
everywhere. �

Clearly the assumption on the order of Z2 cannot be removed by the above statement
in view of the example given in the Introduction. Here it might be a good point to remind
the reader that the order of the vector field X = zy ∂

∂y
+ z2 ∂

∂z
in the variables y, z over

the axis {y = z = 0} equals indeed zero. Similarly the blow-up of X over {y = z = 0}
yields a holomorphic vector field which does not vanish at generic points of the resulting
exceptional divisor.

Remark 3. We note that the assumptions concerning the order of Z2 and the first
non-trivial homogeneous component of Z1 in the variables x, y were used only in the
items 1 and 2 in the above proof. The assumption on Z1 translates into the fact that the
blow-up of the foliation FX associated to X is transverse to the exceptional divisor at
generic points. As to vector field Z2, the role played by the condition that its order w.r.t.
the variables x, y (that was itself defined as the minimum between k and l + 1 above)
has to be at least 2 is totally encoded into the fact that the blow-up of Z2 must vanish
over the whole exceptional divisor. In other words, the assumptions in Lemma 5 can
be replaced by the conditions above which appear more explicitly in its proof (whereas
these conditions may seem more technical at first sight).

Before arriving to the desired analogue of Proposition 1, we are going to need the
corresponding analogue of Lemma 3.

Again we go back to the vector fields X, Y that span the codimension 1 foliation D.
However now we suppose that {x = y = 0} is contained in Sing (D) and that the blow-up
of D along {x = y = 0} does not leave the exceptional divisor invariant. Then, according
to Lemma 4, there are holomorphic functions f, g and h such that

(11) fX + gY = hZ ,

where Z is a holomorphic vector field whose first non-trivial homogeneous component Z̄
in the variables x, y at points in {x = y = 0} is a multiple of Rz. Let ord (fX) (resp.
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ord (gY ), ord (hZ)) denote the order of the vector field fX (resp. gY, hZ) in the variables
x, y at a generic point in {x = y = 0}.

Lemma 6. With the above notations, we have the following alternative:

(1) ord (hZ) > min{ord (fX) , ord (gY )} .
(2) the first homogeneous component in the variables x, y, X̄, of X admits a non-

constant meromorphic first integral.

Proof. Suppose for a contradiction that the above estimate does not hold. For fX, gY
and hZ we are going to consider their first homogeneous components in the variables
x, y. Denote by X̄, Ȳ the respective non-trivial homogeneous components of X, Y and
by f̄ , ḡ, h̄ the homogeneous components of f, g, h (all these homogeneous components
are to be understood as relative to the variables x, y). With these notations, one has:

(12) f̄ X̄ + ḡȲ = h̄q̄Rz ,

where q̄ is a homogeneous polynomial in the variables x, y with coefficients in C[z]. Since
X, Y commute, it follows that X̄, Ȳ commute as well. Therefore

[X̄, Ȳ ] =

[
X̄,

h̄q̄

ḡ
Rz −

f̄

ḡ
X̄

]
=

[
X̄.

(
h̄q̄

ḡ

)]
Rz −

h̄q̄

ḡ
[Rz, X̄]−

[
X̄.

(
f̄

ḡ

)]
X̄

= 0 .

The commutator [Rz, X̄] is given by

[Rz, X̄] = (x
∂X̄1

∂x
+ y

∂X̄1

∂y
−X1)

∂

∂x
+ (x

∂X̄2

∂x
+ y

∂X̄2

∂y
−X2)

∂

∂y
+ (x

∂X̄3

∂x
+ y

∂X̄3

∂y
)

∂

∂z
.

As previously seen, the components X̄1, X̄2 are homogeneous of degree k in the variables
x, y while X̄3 is homogeneous of degree k−1, if not identically zero. In fact, the remaining
case in which X̄ has only a component in the direction of ∂/∂z obviously admits a non-
constant first integral so that it can be excluded. Therefore

x
∂X̄i

∂x
+ y

∂X̄i

∂y
= kXi

for i = 1, 2, while

x
∂X̄3

∂x
+ y

∂X̄3

∂y
= (k − 1)X3

unless X̄3 is identically zero. In all cases, the equation [Rz, X̄] = (k − 1)X̄ holds. Com-
bined to the above equations, it follows that[

X̄.

(
h̄q̄

ḡ

)]
Rz =

[
(k − 1)

h̄q̄

ḡ
+ X̄.

(
f̄

ḡ

)]
X̄.

If the expression multiplying X̄ on the right-hand side does not vanish identically, then
X̄ is a multiple of Rz. This is however impossible since it would imply that X and Y
are linearly dependent at every point by virtue of Lemma 5. Therefore the mentioned

expression is constant equal to zero and hence X̄.
(

h̄q̄
ḡ

)
is identically zero as well. This
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implies that h̄q̄/ḡ is a meromorphic first integral for X̄. The same argument of Lemma
3 proves that this first integral is not constant everywhere. �

Thanks to the preceding lemmas, the desired analogue of Proposition 1 can finally be
stated.

Proposition 2. Let X, Y be two commuting vector fields that are linearly independent at
generic points. Denote by D the codimension 1 foliation spanned by X, Y . The foliation
D is supposed to be singular over the axis {x = y = 0} and dicritical w.r.t. the blow-
up centered at this axis. Finally, we suppose in addition that the order of X, Y in the
variables x, y at points in {x = y = 0} is at least equal to 2. Then one has:

(1) The foliations F̃X and F̃Y coincide in their restriction to the exceptional divisor

π−1
z (0), where F̃X (resp. F̃Y ) stands for the proper transform of FX (resp. FY )

by the blow-up map πz in question.

(2) The restrictions to π−1
z (0) F̃X and F̃Y also coincide with the foliation induced on

π−1
z (0) by D̃.

(3) The restrictions of F̃X , F̃Y to π−1
z (0) possess a non-constant meromorphic first

integral.

Proof. All the material was prepared so that the proof of Proposition 1 applies word-
by-word in the present setting. It suffices to replace “first homogeneous component”
(at a point) by “first homogeneous components in the variables x, y” (over the curve
{x = y = 0}). �

4. Existence of separatrizes

In this last section we are going to prove first Theorem 1 and then the Main Theorem
already stated in the Introduction. We begin by noticing that, among codimension 1
foliation on (C3, 0), those having a separatrix are relatively rare in the sense that “al-
most all homogeneous polynomial vector field in three variables” yields a codimension 1
foliation without separatrix by means of the construction explained in the Introduction.
Not surprisingly the proof of our main theorems relies heavily on the fact that the cor-
responding foliations are spanned by two commuting vector fields, i.e. by two vector
fields generating an Abelian Lie algebra. The examples presented in the Introduction
also show that our results do not generalize to the case of vector fields generating a Lie
algebra isomorphic to the Lie algebra of the affine group without further conditions.

Since a main ingredient in our proof of existence of separatrizes concerns the reduction
of singularities for codimension 1 foliations on C3, let us begin the discussion with a brief
review of the results in [C-C], [Ca].

4.1. Reduction of singularities of codimension 1 foliations and proof of Theo-
rem 1. Recall that Cano and Cerveau have proved a theorem of reduction of singular-
ities for codimension 1 foliations on (C3, 0) that are strictly non-dicritical [C-C]. More
recently, Cano obtained a general reduction theorem for singularities of codimension 1
foliations on (C3, 0) [Ca]. The latter theorem asserts the existence of a finite sequence of
blowing-up maps along with proper transforms of D,

(13) D = D0 π1←− D1 π2←− · · · πk←− Dk
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such that:

(1) The center of each blow-up map is invariant by the corresponding proper trans-
form of D and has normal crossings with the corresponding exceptional divisor.

(2) Dk has only simple singularities.

First note that the foliation D is said to be strictly non-dicritical if, in the above
procedure, all the irreducible components of the total exceptional divisor are invariant
by Dk. This implies that, for any sequence of blow-ups verifying condition 1 above, the
resulting foliation leaves the exceptional divisor fully invariant.

The notion of simple singularities for a codimension 1 foliation defined on a complex
3-manifold was introduced in [C-C]. For the convenience of the reader, we briefly recall
the possible models below referring to [C-C], [Ca] for further information.

Models of Type A: in this case, the foliation is locally given by a pair of commuting
vector fields Z1, Z2, having the general form: Z1 = ∂/∂z, Z2 = x∂/∂x + a(x, y)∂/∂y,
a(0, 0) = 0.

In this case, we can in addition assume that the eigenvalues of linear part of Z2 at
the origin are such that their quotient is not positive rational. The restriction of Z2

to the invariant plane {z = 0} is then a simple singularity in the usual sense of vector
fields in dimension 2. In particular, if this singularity is not a saddle-node (i.e. if both
eigenvalues are different from zero), then the vector field obtained as restriction of Z2

to {z = 0} has exactly 2 separatrizes. Considering the special form of the vector field
Z1, it becomes obvious that these separatrizes give rise to codimension 1 separatrizes for
the corresponding foliation. Actually the foliation spanned by Z1, Z2 is nothing but the
cylinder over the foliation induced by Z2 on the plane {z = 0}.
Models of Type B: Here there are still locally defined commuting vector fields Z1, Z2

spanning the foliation and given by Z1 = x∂/∂x + a(x, y, z)∂/∂z and Z2 = y∂/∂y +
b(x, y, z)∂/∂z, with a(0, 0, 0) = b(0, 0, 0) = 0.

In the present case, we can assume that the eigenvalues of both Z1, Z2 possess a
quotient lying in the complement of Q+.

Remark 4. Consider a singularity of Type B for a foliation Dk at a point p belonging
to a dicritical component E of the total exceptional divisor. It is shown in [C-C] that
the above coordinates (x, y, z) can be chosen so that, in addition, E locally coincides
with one of the coordinate planes. Since the planes {x = 0} and {y = 0} are clearly
invariant by Z1, Z2, we conclude that E must locally be given by {z = 0}. This means
in particular that a or b is not divisible by z.

In this context, a standard argument involving 2-dimensional saddle-node singularities
shows that the cylinders lying over the coordinates axes {y = z = 0} and {x = z = 0}
define the two separatrizes of Dk at p. Note that this statement is not totally obvious
as we shall explain. Fix for example the axis {y = z = 0} and consider the saddle-node
singularity on the plane {y = 0} which is given by the vector field x∂/∂x+a(x, 0, z)∂/∂z.
The above statement then requires to know that, for these 2-dimensional saddle-node,
the saturated of a small section transverse to the strong invariant manifold contains a
neighborhood of the origin modulo taking its union with of a possible weak invariant
manifold for the the singularity in question. In fact this condition ensures that the
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cylinder over the strong invariant manifold “is not pinched at the origin, i.e. it approaches
0 keeping a uniformly positive “vertical distance.

Having explained what is meant by “simple singularities” in condition 2, we need to say
a few additional words about the nature of the centers of the above mentioned blow-ups.
In particular, we would like to emphasize that it may be necessary to blow-up points
lying away from the singular set of the foliation in question. The centers of a blow-up
map that are not contained in the singular set of the corresponding foliation are however
special. Namely, according to Condition 1 they are invariant by the foliations. In other
words, the part of this center lying away from the singular set of the mentioned foliations
is still contained in a single leaf of this foliation. This fact has an important consequence
that will be used in our proofs. To explain it, let us suppose that πj is a blow-up whose
center in not fully contained in the singular set of Dj−1. Clearly the center of πj must
be a (irreducible smooth) curve Cj−1 and not a single point. This center also intersects
non-trivially the singular set of Dj−1 (otherwise this blow-up is not necessary). This
intersection however consists of finitely many points {q1, . . . , qr}. Since Dj−1 is regular
on Cj−1 \ {q1, . . . , qr} we have:

Lemma 7. With the preceding notations, the proper transform of Dj−1 is non-dicritical
with respect to the new divisor π−1

j (Cj−1). Furthermore all the singularities of Dj lying

over π−1
j (Cj−1 \ {q1, . . . , qr}) are simple and, in fact, strictly non-dicritical.

Proof. Note that there are coordinates (x, y, z) on a neighborhood of a generic point of
Cj−1 verifying two conditions: first Dj−1 is locally given by dy = 0. Second Cj−1 coincides
with {x = y = 0} (here we implicitly use the fact that Cj−1 is contained in a single leaf
of Dj−1). The foliation Dj−1 is therefore a cylinder over the foliation dy = 0 induced on
the plane {z = 0}. The latter foliation is clearly non-dicritical and its blow-up possesses
a unique (2-dimensional) singularity over the exceptional divisor which has eigenvalues
1,−1. Clearly the blow-up of Dj−1 is simply the cylinder over the mentioned foliation.
The statement follows at once. �

The contents of Lemma 7 can be summarized as follows: dicritical components of
the total exceptional divisor Π−1(0) arise only from the blow-ups centered at singular
points of the corresponding foliations. In slightly more accurate terms, we first note
that the “collapsing” of a dicritical divisor leads to a center contained in the singular set
of the correspondent foliation. Next suppose that the resulting center is still contained
in another component of the exceptional divisor. Then the collapsing of the mentioned
component still leads to a center fully contained in the singular set of the blow-down
foliation. Besides this procedure continues by induction. The following corollary is
exactly what will be needed later in this section.

Corollary 1. Suppose that Z is a holomorphic vector field tangent to D = D0. Sup-
pose also that π−1

j (Cj−1) is a dicritical component appearing in (13). Then the proper

transform of Z over the component π−1
j (Cj−1) is obtained from Z by a finite number of

blow-ups all of them centered at the singular sets of the corresponding proper transforms
of D. �
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To close this review on reduction of singularities let us make a remark concerning the
compactness of the exceptional divisor arising from proceeding the reduction of singulari-
ties of D = D0. In general this divisor is not compact due to the fact that the singularities
of D = D0 need not be isolated. In particular, in the local context of a neighborhood of
the origin in C3, the exceptional divisor arising from blowing-up a curve of singularities
of D = D0 is already not compact. In turn, this non-compact component may lead to
further non-compact components and this constitutes the source for the lack of com-
pactness for the mentioned exceptional divisor. Yet observe that the preimage Π−1(0)
of the origin under the total blow-up map Π is necessarily compact and constituted by
components that have dimension either 1 or 2 depending on whether the center of the
corresponding blow-up was a point or a curve.

Proof of Theorem 1. Since it was proved in [C-C] that a strictly non-dicritical foliation
has a separatrix, we can assume that the total exceptional divisor appearing in (13) is
not fully invariant by Dk. Hence we can consider an irreducible component E of this
divisor which is transverse to the leaves of Dk at generic points. Next we denote by Dk

|E
the 1-dimensional foliation induced on E by intersecting E with the transverse leaves
of Dk. Recall that Dk

|E is supposed to have a non constant meromorphic integral. If
the component E is compact, it then follows that all the leaves L|E of this foliation are
compact. When E is not compact, these leaves are still properly embedded and this will
be enough for our purposes (recall that the preimage of the origin by the total blow-up
map Π is always compact).
Case 1. Suppose that the generic leaf of Dk

|E does not intersect the singular set of Dk.
Note first that this case cannot take place if E is isomorphic to the projective plane.

Indeed a compact curve contained in CP (2) cannot be a regular leaf of a foliation since
the latter condition would imply the vanishing of the self-intersection of this curve. This
situation however may be produced when E comes from blowing-up a center not reduced
to a single point.

Suppose that E is compact. Pick one such leaf L|E. Note that L|E is naturally contained
in a leaf L of Dk which is not contained in the total exceptional divisor provided that L|E
is “sufficiently generic”. Now, since L|E is compact, L defines a germ of 2-dimensional
analytic set containing L|E. This analytic set does not intersect singularities of Dk, in
particular E is the only irreducible component of the exceptional divisor that meets L
non-trivially. In other words, the analytic set defined by L is “complete” in the sense
that its intersection with a closed tubular neighborhood of the total exceptional divisor
yields a closed analytic set fully invariant by Dk. This means that, away from the total
exceptional divisor itself, this analytic set actually coincides with a leaf of Dk on the
fixed closed tubular neighborhood of the total exceptional divisor. Since the blow-up
projection is proper and analytic, the image of L must induce a separatrix for D as
desired.

Suppose now that E is not compact. Note that the intersection of E with Π−1(0) is
still a compact curve. If the curve is not contained in the singular set of Dk, then the
statement results at once provided that this curve is not invariant by Dk. In fact, it
suffices to consider a generic point q of this curve where it is transverse to the foliation.
If q is sufficiently generic, the local leaf of Dk through q does not (locally) intersect
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any other component of the exceptional divisor. In particular, as in the preceding case,
this local leaf is complete on a neighborhood of Π−1(0). Its projections yields then a
separatrix for D at the origin.

Finally suppose that the curve in invariant by Dk. Naturally the curve is allowed to
contain singularities of Dk and it may even be entirely constituted by singularities of Dk.
Claim. All these singularities possess at least one convergent separatrix which is not
contained in E.

Before proving the claim, let us deduce the proof of Theorem 1 in this Case 1. This goes
as follows. Because the curve in question, i.e. E∩Π−1(0) is compact it follows that these
separatrizes can be continued over this curve until they “close-up” forming a germ of
analytic surface. Unless this germ is contained in Π−1(0), its projection gives the desired
separatrix. On the other hand, if the mentioned germ is contained in a component of
Π−1(0), then this component is obviously invariant (and hence nondicritical). This allows
us to continue the discussion over the component of Π−1(0) in question. In other words,
either we find another dicritical component or we shall be able to prove the existence of
separatrix with the help of the argument in [C-C].

To finish the discussion of Case 1 let us provide the proof of the above claim.
Proof of the claim. Since these singularities are simple, they possess at least one separatrix
which is not contained in E. At this point however this separatrix may be merely formal.
Nonetheless in this case, the foliation is locally described by a pair of vector fields, one of
them being regular and the other one representing a (2-dimensional saddle-node). In fact
these singularities must be of Type A. Indeed, since E is dicritical, in the case of having
singularities of Type B, E would locally be given by {z = 0} in the sense of Remark 4.
However in this case the separatrizes transverse to E are automatically convergent. Thus
if the transverse separatrix is only formal the singularity is of Type A as claimed. Now,
as it is shown in [C-C], the mentioned formal separatrix comes from a formal separatrix
(weak invariant manifold) for a 2-dimensional “saddle-node”. In particular, if one of
these separatrizes is actually convergent , then they all must be convergent.

Suppose first that E ∩ Π−1(0) contains only finitely many singularities. Since E is
dicritical, at a generic point of this curve there must pass an actual leaf of Dk. The
above mentioned regular vector field then shows that all the, in principle, formal (weak
manifolds) of the saddle-node singularities must thus be convergent. The claim then
follows from the same argument employed above.

Finally suppose that E ∩ Π−1(0) is entirely constituted by singularities of Dk. Again
the local structure of the foliation is given by a regular vector field (of which E ∩Π−1(0)
is “an orbit”) together with a (2-dimensional) saddle-node in the variables “transverse”
to E ∩ Π−1(0). Since the separatrix transverse to E should be formal, it follows that
the actual separatrix (strong invariant manifold) of the saddle-node in question must be
contained in E. However, in this case, E is invariant by both local vector fields and
thus it is a leaf of Dk. the claim follows since this contradicts the assumption that E is
dicritical. �
Case 2. Suppose that the generic leaf of Dk

|E intersects Sing (Dk) and let P be an irre-

ducible component of Sing (Dk) ∩ E that intersects the generic leaf of Dk
|E.

We have to check that the effect of these singularities does not prevent us from employ-
ing once again the previous argument. This means the following. Suppose that L|E is a
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generic leaf of Dk
|E passing through P. Locally around P, this leaf is an analytic curve

contained in the 2-plane induced by E. We need to show that the actual leaf of Dk which
intersects E along the mentioned curve, defines a germ of analytic surface around P. In
slightly vague words, we have to check that the leaf of Dk passes through P keeping a
positive “vertical” distance of P itself.

Let p be a point in P and let Lp|E be a leaf of Dk
|E through p. Note that there may

exist more than a single leaf passing through p. For our purposes, it suffices to consider
a chosen (irreducible branch of) separatrix which happen to be part of a (global) generic
leaf of Dk

|E.

Under the assumptions of normal crossing between the foliation Dk and the corre-
sponding divisor, there are coordinates x, y, z, in a neighborhood of p, satisfying the
following conditions:

(1) The corresponding irreducible (dicritical) component of the exceptional divisor is
given by {z = 0}.

(2) F̃ is spanned by a pair of commuting vector fields Z1, Z2 which are either as
in Type A (i.e. Z1 = ∂/∂z, Z2 = x∂/∂x + a(x, y)∂/∂y, a(0, 0) = 0) or as in
Type B (i.e. Z1 = x∂/∂x + a(x, y, z)∂/∂z and Z2 = y∂/∂y + b(x, y, z)∂/∂z, with
a(0, 0, 0) = b(0, 0, 0) = 0).

As to the singularities of Type A and Type B, we note that the coordinates (x, y, z) were
already chosen so that {z = 0} corresponds to the dicritical component E. In the case of
a singularity of type A, we conclude in particular that ∂/∂z is tangent to the foliation Dk.
Hence the mentioned leaf of Dk passes through P keeping a positive “vertical” distance
of P itself. When the singularity is of Type B, this vertical distance also exists as already
discussed in Remark 4.

Finally the dicritical foliation Dk
|E is locally described by the pair of commuting vector

fields Z1, Z2. Assume first that E is compact. Then the combination of its compactness
with with the positive vertical “distance” allows us to apply once again the argument
used in Case 1. The adaptations needed for the case in which E is not compact are clear
and totally analogous to the discussion already carried out in Case 1. Basically they
amount to discussing the case in which the curve E ∩Π−1(0) is singular and invariant by
the foliation. The theorem is proved. �

4.2. Proof of Main Theorem. Let us begin this paragraph by further detailing the
structure of our proof. The general idea is to reduce as much as possible this theorem
to the statement of Theorem 1. Suppose that a reduction of the singularities of D as
in (13) is fixed. To establish Main Theorem, it would suffice to check that the foliations
induced by Dk on the dicritical components of the total exceptional divisor possess a
nontrivial first integral. In turn, Propositions 1 and 2 can be used with this purpose
modulo checking that the proper transform of X, Y vanish identically over the mentioned
components of the exceptional divisor. Thus it is natural to investigate the structure of
the proper transforms of these vector fields during the reduction procedure (13) for the
singularities of D. Here it should be emphasized that we shall be dealing with the vector
fields X, Y rather than with their associated foliations FX , FY . Indeed, the proper
transforms of FX , FY are always 1-dimensional holomorphic foliations with singular sets
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of codimension at least 2. However, as to the vector fields X, Y , at least in principle
their proper transforms may have poles as well as singular sets of codimension 1. The
discussion of the proper transforms of X, Y is thus going to be carried out in the sequel.

The first simplifications in the discussion of the proper transforms of X, Y comes
from Corollary 1. Namely, since we are interested only in dicritical components for the
codimension 1 foliation, we can assume that all the blow-ups performed are centered at
the singular set of the codimension 1 foliations in question (i.e. the initial D and its
proper transforms). Precisely, suppose that we have a dicritical component Es appearing
at the blow-up πs of center Cs−1. For i = 1, . . . , s denote by Ci−1 the center of the blow-
up πi. Then we can suppose without loss of generality that, for every i ∈ {1, . . . , s}, Ci−1

is contained in the singular set of Di−1 (D = D0). This condition will always be assumed
in what follows.

Next we observe that the singular set of Di−1 is clearly invariant under the corre-

sponding proper transforms X̃ i−1, Ỹ i−1 of X, Y since these vector fields form an Abelian

algebra (X̃0 = X, Ỹ 0 = Y ). Closely related to this observation, we have a very well-
known and simple lemma.

Lemma 8. Let Z be a holomorphic vector field and denote by Z̃ the proper transform of

Z with respect to a blow-up π of center C. If C is invariant by Z, then Z̃ is holomorphic
as well.

Proof. C being invariant by Z, the local flow generated by Z naturally acts on the tangent

bundle of C. It then follows that Z̃ is holomorphic. �

Denote by Sing (Di−1) the singular set of Di−1. Recall that the center Ci−1 of the
blow-up πi is either a single point or a smooth (irreducible) curve.

Lemma 9. Without loss of generality we can assume that the center Ci−1 is invariant

by X̃ i−1, Ỹ i−1.

Proof. Recall that Ci−1 ⊆ Sing (Di−1) and that Ci−1 is either a single point or a smooth

irreducible curve. Since Sing (Di−1) is invariant by X̃ i−1, Ỹ i−1, it follows that the only

possibility for Ci−1 to fail to be invariant by X̃ i−1, Ỹ i−1 occurs when Ci−1 is reduced to

a single point p with, say, X̃ i−1(p) 6= 0. Note that this case implies that p belongs to an

analytic curve contained in Sing (Di−1) which is globally invariant by X̃ i−1, Ỹ i−1.

To treat the above case, we note that the foliation F i−1
X associated to X̃ i−1 is regular

at p since X̃ i−1(p) 6= 0. In particular, we can fix a neighborhood U of p in which
F i−1

X possesses two independent holomorphic first integrals. More precisely, we can fix
coordinates (u, v, w) on U where the leaves of F i−1

X are given by v = cte1 and w = cte2.
In the reduction procedure (13) of D consider the divisors lying above p ie., consider

the sub-procedure consisting of reducing p as singularity of Di−1. Denote by Πp the
resolution map associated to this sub-procedure. All we need to check is that all dicritical
divisors belonging to Π−1

p (p) are such that the foliations induced on them by Dk possess a

meromorphic first integral. This goes as follows. Because the foliation F i−1
X is regular at

p, its proper transform Π∗
pF i−1

X by Πp is a foliation leaving the whole exceptional divisor

Π−1
p (p) invariant. Besides, if E is a component of Π−1

p (p), then the foliation induced on
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E by Π∗
pF i−1

X possesses a non-trivial meromorphic first integral obtained by means of

the two initial first integrals of F i−1
X on U . Finally, if in addition E is not invariant by

Dk, then the intersection Dk
|E of Dk with E clearly coincides with the restriction to E of

Π∗
pF i−1

X . Hence the existence of the desired first integral for Dk
|E follows immediately. �

The preceding proof also yields the following:

Corollary 2. If πi is a punctual blow-up belonging to the procedure (13), then we can
assume without loss of generality that its center Ci−1 is a singular point for both foliations

F i−1
X , F i−1

Y associated respectively to the vector fields X̃ i−1, Ỹ i−1. �

Suppose now that Ci−1 ⊆ Sing (Di−1) is a smooth curve. As already observed, Ci−1 is
clearly invariant under the corresponding proper transforms of X, Y . Our next lemma
shows that it is sufficient to keep track of those centers Ci−1 that are invariant under
F i−1

X , F i−1
Y .

Lemma 10. Suppose that the center Ci−1 consists of a smooth curve. Then without loss
of generality we can assume that Ci−1 is invariant by F i−1

X , F i−1
Y .

Proof. Let us suppose that Ci−1 is not invariant by F i−1
X . On a neighborhood of a generic

point of Ci−1 we can introduce coordinates (x, y, z) in which F i−1
X is induced by the vector

field ∂/∂x. Furthermore, in these coordinates, Ci−1 coincides with the axis {x = y = 0}.
Obviously we have two (local) independent first integral σy, σz for F i−1

X given respectively
by the natural projections in the coordinates y and z. The argument is now similar to
the one employed in Lemma 9 concerning punctual blow-ups. There is only one slightly
difference with respect to the case of punctual blow-ups that lies in the fact that the
proper transform of the above mentioned local first integrals by the blow-up map πi are
not defined on a neighborhood of the exceptional divisor π−1

i (Ci−1). Therefore it is not
immediate that the restriction to π−1

i (Ci−1) of the foliation F i
X = (πi)

∗F i−1
X admits a non-

trivial first integral. To show that this is, in fact, the case we proceed as follows. Consider
the open domain of definition U of the first integrals σy, σz. Fix also a sufficiently narrow
tubular neighborhood U of the total exceptional divisor. Finally note that the leaves of
F i−1

X , given by σy = cte1 and σz = cte2, have the following property: whenever they leave
the neighborhood U they must intersect the boundary of the tubular neighborhood U . In
other words, these leaves induce closed leaves for F i

X on (π−1
i (Ci−1)) ∩ (π−1

i (U)). Hence
F i

X restricted to π−1
i (Ci−1) has infinitely many compact leaves. According, for example,

to a theorem due to Jouanolou [J-2] this foliation must have only compact leaves and
hence a non-trivial first integral. It is now easy to continue the argument to encompass
the case of further blow-ups as it was carried out in Lemma 9. �

Before starting the proof of Main Theorem, let us summarize the contents of the
preceding lemmas. Recall that our aim is to reduce as far as possible the proof of the Main
Theorem to the statement of Theorem 1. Consider again the resolution procedure (13).
To conclude the existence of the separatrix, it would be sufficient to show that the foliation
induced by Dk on each dicritical component of the total exceptional divisor possesses only
compact leaves. Equivalently each of these restrictions admit a non-trivial first integral.

Consider the center Ci−1 of the blow-up πi. Let ΠCi−1
denote the total blow-up map

associated to the (sub)-procedure of (13) accounting for the resolution of the singularities
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of Di−1 (which is itself spanned by F i−1
X , F i−1

Y ). The preceding lemmata then says that,
unless Ci−1 is invariant by both (1-dimensional) foliations F i−1

X , F i−1
Y , the restriction of

Dk to every dicritical component of ΠCi−1
possesses only compact leaves. Therefore we

only need to keep track of those sequence of blow-ups starting from D = D0 having
centers invariant under the corresponding proper transforms of FX ,FY . In other words,
to abridge notations we can assume without loss of generality that in the reduction
procedure (13), the center Ci−1 of πi is invariant by F i−1

X , F i−1
Y for every i. In particular

Ci−1 is contained in the singular set of Di−1. In what follows this condition will be
assumed without further comments.

In particular we obtain the following useful lemma.

Lemma 11. Suppose that Ci−1 is contained in a codimension 1 component of the zero-set
of X i−1 (resp. Y i−1). Then the proper transform Xk of X vanishes identically over the
whole of the divisor Π−1

Ci−1
(Ci−1).

Proof. In view of the above assumption and of Lemma 8, we know that X i is a holomor-
phic vector field. Next, by an induction argument , we see that it suffices to check that
X i must vanish identically on π−1

i (Ci−1). Because Ci−1 is contained in a codimension 1
component of the zero-set of X i−1, on a neighborhood of each point of Ci−1 we can write
X i−1 in the form

X i−1 = f i−1Zi−1

where f i−1 is a holomorphic function that equals zero on Ci−1. Besides Zi−1 is a holomor-
phic vector field having singular set of codimension at least 2. In other words, Zi−1 gen-
erates the foliation F i−1

X . Therefore Ci−1 is invariant under Zi−1 so that the proper trans-
form π∗i Z

i−1 of Zi−1 under πi is holomorphic. Finally we have X i = (f i−1 ◦ πi).π
∗
i Z

i−1.
Since f i−1 ◦ πi is clearly equal to zero on π−1

i (Ci−1) the statement follows at once. �

Let us close this paper with the proof of the central result stated in the Introduction.

Proof of Main Theorem. Let us begin with the reduction procedure (13). We want
to understand those dicritical components of the total exceptional divisor on which the
foliation induced by Dk may have non-compact leaves. Recall also that in the reduc-
tion procedure (13), all the centers Ci−1 are invariant by the (1-dimensional) foliations
F i−1

X , F i−1
Y .

Consider a center Ci−1 along with the associated blow-up map πi. Denote by Π−1
Ci−1

(Ci−1)

the total exceptional divisor associated to the sub-procedure of (13) lying over Ci−1.
Consider also the vector fields X i, Y i and suppose that they equal zero on all of the com-
ponent π−1

i (Ci−1) ⊆ Π−1
Ci−1

(Ci−1). It then follows from Lemma 11 that Xk, Y k vanish on

the whole divisor Π−1
Ci−1

(Ci−1). Therefore Proposition 1 and Proposition 2 can be used to

guarantee that the foliation induced by Dk on each dicritical component of Π−1
Ci−1

(Ci−1)
has only compact leaves.

The combination of the preceding with Theorem 1 essentially reduces the proof of Main
Theorem to the discussion of the reduction procedures starting with a blow-up (denoted
by π1) such that the proper transforms of the initial vector fields X,Y are regular over
the resulting exceptional divisor (at generic points). Denote by C0 the center of π1 and
set X1 = π∗1X, Y 1 = π∗1Y . If X1 (resp. Y 1) is regular at generic points of π−1

1 (C0) then,
since the center C0 is invariant under the foliations FX , FY , one of the following holds:
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(1) If C0 consists of a single point (identified with the origin (0, 0, 0)), then C0 must
be a singular point of FX , FY . Furthermore the first jet of X or Y at (0, 0, 0)
must be non-trivial.

(2) If C0 consists of a smooth curve, then the order of X or Y “in the variables x, y”
belongs to {0, 1}. In addition, if FX (resp. FY ) is not singular over the whole C0,
then C0 must be an invariant curve for this foliation.

In the sequel we shall only consider the case of punctual blow-ups. The adaptations
needed for the case of blow-ups centered over curves are by now straightforward and
hence left to the reader. According to Lemma 1, there are holomorphic functions f, g
and h such that

(14) fX + gY = hZ ,

where Z is a holomorphic vector field whose first non-trivial homogeneous component is
a multiple of R. The main point of the proof of Proposition 1 is the estimate

ord (hZ) > min{ord (fX) , ord (gY )}
proved in Lemma 3. In turn, the proof of Lemma 3 is based on Lemma 2. However
Lemma 2 needs to be adapted to the new context. To do this, note that this lemma can
be rewritten as follows:

Lemma 12. Let Z1, Z2 be vector fields defined about (0, 0, 0) ∈ C3. Suppose that the
linear part of Z1 at (0, 0, 0) is a multiple of R. Suppose, in addition, that [Z1, Z2] = 0.
Then Z1 and Z2 can simultaneously be linearized.

Proof of Lemma 12. Since the linear part of Z1 is a multiple of the Radial vector field, in
particular it is not trivial, there exists coordinates in which X = R. The assumption on
the commutativity of Z1, Z2 together with the Euler relation (6) implies that the terms
of order greater than or equal to 2 of Z2 must vanish. Hence Z2 is linear. This finishes
the proof of Lemma 12. �

In Sections 2 and 3, the fact that the foliation induced by the blow-up of D over the
dicritical exceptional divisor E must have only compact leaves was established with the
help of the (strict) estimate

(15) ord (hZ) > min{ord (fX) , ord (gY )} .

We note that, whenever this estimate holds, then the same proofs given in Propositions 1
and 2 guarantee the existence of a first integral for the foliation induced on a dicritical
component of the (total) exceptional divisor. However this first integral needs no longer
to exist if we have equality between both sides of 15. Fortunately the existence of
a separatrix will directly be established in these special cases. We shall separate the
discussion into two parts.

Case 1. Suppose that ord (fX) 6= ord (gY ).
Note that in the preceding sections we have initially proved the equation ord (fX) =

ord (gY ) (cf. Lemma 3). This equation however no longer needs to hold in the present
case.

Suppose first that ord (fX) < ord (gY ). Therefore the first non-trivial homogeneous
component of fX is a multiple of the Radial vector field. Since the linear part of X at
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the origin is not trivial, it follows that X = R in suitable coordinates. Now Lemma 12
ensures that Y is linear in the same coordinates so that the existence of the separatrix
easily follows.

Suppose now that ord (fX) > ord (gY ). Then the first non-trivial homogeneous com-
ponent of gY is a multiple of the Radial vector field R. If the linear part of Y at the origin
is non-trivial, then X, Y are simultaneously linearizable as above. Hence we assume that
J1(Y )(0, 0, 0) = 0. To handle this case we shall prove the following:

Claim: Denoting by D̃ the (punctual) blow-up of D at the origin, the 1-dimensional

foliation D̃|E induced on E = π−1(0) by the intersection of E with the leaves of D̃ has
only compact leaves.

Proof of the Claim. Since the linear part X1 of X at the origin is not trivial, the foliation

D̃|E coincides with the foliation induced on E by the blow-up of X1. It should be pointed
out that X1 cannot be radial since otherwise Y is linearizable what contradicts the fact
that J1(Y )(0, 0, 0) = 0. Therefore X1 actually induces a foliation on E. Hence it suffices
to show that X1 admits a non-constant holomorphic first integral. To do this, we proceed
as follows. Recall that the first homogeneous component of Y is a multiple of the Radial
vector field R. Since J1(Y )(0, 0, 0) = 0, this component must then have the form hR
where h is a homogeneous polynomial of positive degree on the variables x, y, z. Besides
X1 clearly must commute with hR so that

0 = [hR, X1] = h[R,X1] + (X1.h)R .

Since [R,X1] = 0, it follows that X1.h = 0, i.e. h is a non constant first integral for X1.
The claim is proved. �

We can now move on to the second case.

Case 2. Suppose that ord (fX) = ord (gY ).
Here the discussion will further be divided into 3 possibilities.

a) J1(Y )(0, 0, 0) = 0 - In this case we must have ord(f) ≥ 1, since the linear part
of X at the origin is not trivial. Recalling that XH , Y H commute, the same
calculations of Lemma 3 applied to Equation (14) lead to

0 = [XH , Y H ] =

[
XH .

(
hHqH

gH

)]
R +

[
XH .

(
fH

gH

)]
XH

since the degree of XH is now equal to 1. In particular[
XH .

(
hHqH

gH

)]
R = −

[
XH .

(
fH

gH

)]
XH .

Suppose first that the expression multiplying XH does not vanish identically.
Then XH is a multiple of the Radial vector field and, since the degree of XH

is 1, it is a constant multiple of the Radial vector field. Therefore X, Y must
simultaneously be linearizable (cf. Lemma 12).

Suppose now that the expression multiplying XH vanishes identically. So

XH .
(

hHqH

gH

)
must vanish as well. In this case both hHqH/gH and fH/gH are

meromorphic first integrals for XH (whose blow-ups induce meromorphic first

integrals for the restriction of F̃X to the exceptional divisor). It only remains to
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prove that at least one of these first integrals is not constant. For this we note
that if hHqH/gH is constant, then we can arrange to have it equal to 1. Thus it
would follow

fH

gH
XH + Y H = R .

The above equation clearly contradicts the assumption that the linear part of Y
is trivial at the origin.

b) J1(X)(0, 0, 0) and J1(Y )(0, 0, 0) are non-trivial and linearly dependent every-
where - If J1(X)(0, 0, 0) and J1(Y )(0, 0, 0) are a multiple of R, then X and Y are
also linearly dependent everywhere. Indeed, there are coordinates in which Y = R
and the commutativity assumption implies that X is linear as well. Since the lin-
ear part of X is a multiple of R the claim follows. The resulting contradiction
then shows that this possibility cannot occur.

Assume now that their linear parts coincide but that they are not a multiple of
R. The fact that the first homogeneous component of Z is a multiple of R implies
that the first homogeneous components of fX and gY must cancel each other in
fX + gY . The inequality ord (hZ) > min{ord (fX) , ord (gY )} is then obvious.

c) J1(X)(0, 0, 0) and J1(Y )(0, 0, 0) are linearly independent and R belongs to the
space generated by them - In this case the codimension 1 foliation D spanned by
X, Y can also be viewed as the foliation spanned by X and by a vector field Z
whose linear part at the origin is a constant multiple of R. From this it follows

that all the singularities of D̃ over E are simple, i.e. they are of type A or of type
B, cf. above or [C-C], [Ca]. In particular the reduction procedure consists of a
single blow-up.

On the other hand, note that the foliation D̃|E induced on E = π−1(0) by the

blow-up D̃ of D coincides with the foliation induced on E by the blow-up of X.
This foliation possesses therefore a compact leaf since the linear part of X at the
origin is not trivial (and it is not a multiple of R). Combining the existence of this

compact leaf with the fact that the singularities of D̃ are all simple, the method
already employed in the proof of Theorem 1 yields immediately the existence of
a separatrix for D in the present case.

The remainder of the proof of the theorem is now totally straightforward and left to
the reader. �

Motivated by the classical situation of vector fields in dimension 2, it is natural to
ask whether there must exist infinitely many separatrizes for a foliation having dicritical
components. Simple linear examples involving the Radial vector field R and another
linear vector field X shows that this is not true in general.

Suppose however that we are in the context of Theorem 1, i.e. we begin with “suffi-
ciently non-linear” vector fields X, Y so as to be able to ensure that the condition of the
theorem in question is satisfied. Then a careful reading of the proof of Theorem 1 makes
it clear that infinitely many separatrizes must always exist except in a specific case that
will be detailed below. Resuming the setting of Theorem 1, it is the fact that Π−1(0) may
consist of components having also dimension 1 that prevents us from concluding the exis-
tence of infinitely many separatrizes projecting over the origin. Indeed, if for example, E
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is a (necessarily compact) 2-dimensional component of Π−1(0) that happens to be dicriti-
cal, then the reader will easily verify the existence of infinitely many separatrizes for D at
the origin. The situation in which we may not have these infinitely many separatrizes is
precisely the one portrayed in Case 1 appearing in the proof of the theorem in question.
Precisely it happens when the intersection of Π−1(0) with a dicritical component E is
reduced to a curve that is invariant by the restriction of Dk to E. Indeed, this curve
should be contained in the singular set of Dk. Here the existence of a separatrix for D
may be obtained from the argument in [C-C] if there is no other dicritical component.
In some sense this situation means that, although the exceptional divisor may contain
dicritical components, its intersection with Π−1(0) is “essentially non-dicritical”.

An interesting remark concerning the case where this situation actually takes place,
so that in particular the separatrizes for D at the origin are obtained with the help of
the method used in [C-C], is as follows: the separatrizes obtained through [C-C] do not
pass through a “generic” point of a singular curve of D (note that this curve has to
exist otherwise Π−1(0) will contain only 2-dimensional components). In particular, these
“generic” singular points of D will themselves have separatrizes due to the preceding
result even though X, Y have non-trivial linear parts at these latter singularities. With
little extra effort, one can show the existence of infinitely many (germs of) surfaces
invariant by D and passing through “generic singular points of D. Naturally, in the
above situation, the origin is not “generic among the singularities of D.
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(1978), 239-245.
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