IDEMPOTENT SUBMODULES
CHRISTIAN LOMP

ABSTRACT. Bican, Jambor, Kepka and Nemec defined a product on the lat-
tice of submodules of a module, making any module into a partially ordered
groupoid. Submodules that are idempotent with respect to this product be-
have similar as idempotent ideals in rings. In particular jansian torsion theories
can be described through idempotent submodules. Moreover so-called coclosed
submodules, which are essentially closed elements in the dual lattice of sub-
modules of a module, turn out to be idempotent in 7w-projective modules. The
relation of strongly copolyform modules and the regularity of their endomor-
phism ring is discussed.

1. INTRODUCTION

1.1. Let M be a left R-module and S := Endg (M). We denote by L£L(M) the
lattice of R-submodules of M. There exists a binary operation on £(M) making
it a partially ordered groupoid: Set:

N*L:= NHomp (M, L) => {(N)f | f: M — L}

for all N, L € £(M). This product has been defined in [2] and had been studied
by the author in [5].

Call a submodule N of M idempotent if N x N = N. This definition gener-
alises of course the definition of idempotent (left) ideals of rings.

1.2. Idempotent submodules N of M are obviously M-generated, since N =
NHom (M,N) C Tr (M,N) C N. On the other hand if N is an M-generated
submodule such that Hom (M, N) is an idempotent left ideal of End (M), then
N is idempotent.

1.3. Let k be a commutative ring and A a (not necessarily associative) k-algebra.
Denote by M(A) the multiplication algebra of A. Then the idempotent M (A)-
submodules of A are precisely the idempotent ideals which are generated (as
A-module) by central elements. We show this in more generality: Let B be a
subalgebra of Endy (A) that contains M(A). Let I be a B-stable ideal, then
Homp (A, I) is k-isomorphic to an ideal I® of the centre of A via f +— (1)f. The
elements of I” are called B-invariant elements.
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Theorem. The idempotent B-submodules of A are precisely the idempotent ideals
of A which are generated as left A-module by B-invariant elements.

Proof. Let I be an idempotent B-stable ideal of A. Hence I = IHomp (A, ) =
IT% C I? shows that I is idempotent and generated by the B-invariant elements
of IB. On the other hand assume I is idempotent and generated by some B-
invariant elements, i.e. I = AX where X C I®. Thus I = I? = AXAX =
AX? C IX C IIB C I shows that I is idempotent as B-module. O

1.4. Let A be a k-algebra and A° = A ® A its envoloping algebra. Then
setting B = A® we have that the B-submodules of A are precisely the two-
sided ideals of A. Moreover the idempotent B-submodules I of A are precisely
the idempotent ideals which are generated by central elements as A-module,
ie. I? =1 = A(Z(A)N1I). Note that Z(A) NI are the ” B-invariants” of
1.3 in this case. Following [8] one says that A is an ideal-algebra if it is a self-
generator as A°-module. In other words, if any ideal of A is generated by central
elements. Examples of ideal-algebras are Azumaya algebras. Hence idempotent
Af-submodules of an ideal-algebra A are precisely the idempotent ideals of A.
Furthermore any A°-submodule of A is idempotent if and only if A is an ideal-
algebra and every ideal of A is idempotent.

1.5. Assume that A is a commutative G-graded algebra where G is a semigroup.
Then each element g € G acts on A as projection on the component A, and defines
a k-linear endomorphism 7,. Let B denote the subalgebra of End;, (A) generated
by M(A) and the elements 7,. Note that B-submodules of A are the G-graded
ideals of A and the B-invariant elements of A are precisely the homogeneous
elements. Hence a G-graded ideal [ is idempotent as B-submodule if and only if
it is an idempotent ideal which is generated by homogeneous elements.

1.6. There exists a bijective correspondence between idempotent ideals of R and
jansian torsion theories in R-Mod. We will see that a similar correspondence is
true for jansian torsion theories in o[M]. A class 7 of modules in o[M] is called

jansian if it is closed under factor modules, extensions and direct products in
o[ M].

Proposition. Let 7 be a hereditary jansian torsion theory in o[M]. Then for
any self-generator N € a[M] : L;(N) := /L)RIWN7) s an idempotent submodule
of N.

Proof. Let L = L.(N) and A = Hom (N, L). By hypothesis N/L € 7. Consider
0 —— LW — NW —  (N/L)N —— 0

o e |

0 —— [ —» [ —— L/I* ——0
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where ® : N&) — [ is the evaluation map ((ns)ser)® = > sealny)f. Hence
® can be extended to a map (N/L)* — L/L% Note that all these maps are
surjective since N is a self-generator. Thus L/L? € 7 and as N/L € 7 it follows
N/L* € 7. Hence L C L? C L showing that L is idempotent.

O

1.7. Let L C G and X be modules in o[M]. Set L ¢ X := LHom (G, X).

Theorem. Let G be a projective generator of o[M]. Then there exists a bijective
correspondence between

e Hereditary jansian torsion theories in o[M] and
e idempotent fully invariant submodules L of G.

Mapping a jansian torsion theory T to the submodule L, := Rej (G, 7T) and
mapping an idempotent (fully invariant) submodule L of G to the class

1, :={X € 0[M] | L ¢ X =0} = Gen (G/L).

Proof. We saw that L := L, = L. (G) = Rej(G,7) is idempotent. Since
Gen (G/L) C 7, we have L C Rej (G,Gen (G/L)). As G is self-projective we
get L = Rej (G, Gen (G/L)), i.e. L is fully invariant.

Let L be an idempotent submodule of L with Rej (G,Gen (G/L)) = L. Let
1 = {X € o[M] | L *¢ X = 0}. Obviously 7, C Gen (G/L). We have to show
that 7 is a hereditary jansian torsion theory. First of all it is clear that 7 is
closed under submodules, since L xg Y C L xg X for Y C X, and closed under
direct products.

To show that 77, is closed under extensions assume that X and Z are members
of 77, in the following short exact sequence:

0 X y 2. 7 0

Let f: G — Y be any homomorphism. Then (L)fp = 0 as L xg Z = 0. Hence
L xcY C X. But since L is idempotent L = L x5 L and we have

L*GYI(L*GL)*GYQL*G<L*GY)gL*GXIO,

ie. Y €T1p.
Let X € 71, and let Y be a factor module of X, then we have a surjective map

Hom (G, X) — Hom (G,Y)

and hence L X =0= LY =0. Thus Y € 71.

Now let 7 be a hereditary jansian torsion theory in o[M] and consider 77, =
{X | L *¢ X = 0}. Note that since G is a generator, G/L, is a generator for
7. As G/L, € 7 we have 7 = Gen(G/L,). Since Rej (G,G/L,) = L, it follows
L, ¢ G/L, = 0, ie. 7 C 7. On the other hand if L, *¢ X = 0 then any
homomorphism G — X factors through G/L,, i.e. X is G/L.-generated. Thus
T=TL,-
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Let L be an idempotent submodule of G with Rej (G,G/L) = L. Hence
L+¢(G/L)=0,ie. G/L € 1r. Thus L., := Rej (G, 7) € L. On the other hand
L,;, *¢ (G/L) = Rej (G, 7)Hom (G,G/L) =0,ie. L=Rej(G,G/L)C L,,. O

1.8. A k-algebra A is called Azumaya if it is a projective generator in A°-Mod.
The last theorem establishes a correspondence of hereditary jansian torsion the-
ories in A°~-Mod and idempotent A°-submodules of A. As mentioned before, the
idempotent A°-submodules of A are precisely the idempotent two-sided ideals of
A in case of an Azumaya algebra. Thus there exists a correspondence between
hereditary jansian torsion theories in A°-Mod and A-Mod.

2. COCLOSED SUBMODULES ARE IDEMPOTENT

A closed submodule N of a module M has no proper essential extension in M.
We say that an inclusion N C L of submodules of M is cosmall if L/N < M/N.
Golan introduced the following notion in [4]: A submodule N of an R-module M
is said to be coclosed in M if N has no proper submodule K such that K C N is
cosmall in M.

Thus N is coclosed in M if and only if, for any submodule K properly contained
in IV, there is a submodule L of M such that L+ N = M but L + K # M.
Consequently every direct summand is a coclosed submodule.

Cosemisimple modules can be characterized by coclosed submodules:

Proposition ([3, 3.8]). Every submodule of a module M is coclosed in M if and
only if M is cosemisimple.

2.1. Recall that a module M is called m-projective if for any submodules K, L. C
M with M = K + L we have End (M) = Hom (M, K) + Hom (M, L) ([7]).

Proposition ([3, 4.16]). Let M be a m-projective module. Then N? < N is
cosmall for N C M, i.e. N/N* < M/N?.

This immediately implies the
Corollary. Any coclosed submodule of a m-projective module is idempotent.

Hence any left ideal of a ring, which is coclosed as submodule, is idempotent.

2.2. Note that if N is coclosed in M then for any submodule L C N we have:
L <« M <& L < N. Since N/K is coclosed in M/K we conclude [3, 3.9]:

Lemma. Let N be a coclosed submodule of M. For any K C L C N we have:
L/IK<M/K< L/K < N/K.

In particular Rad (N/K) = Rad(M/K)NN/K holds and if Rad(M/K) < M/K
then Rad (N/K) < N/K.
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2.3. Recall that a module M is coatomic if every non-zero factor module of M
contains a maximal submodule or equivalently if every proper submodule of M
is contained in a maximal one.

Lemma. A module M is coatomic if and only if Rad (M/N) < M/N for all
N C M.

Proof. Let M be coatomic and N C M. Assume Rad (M/N) + L/N = M/N.
Note that Rad(M/L) O (Rad(M)+L)/L = M/L. Hence M /L = 0 by hypothesis
and M = L. On the contrary if N € M and Rad (M/N) < M/N, then
Rad (M/N) # M/N and there exists a maximal submodule in M/N. O

2.4. With the last two Lemmas we can conclude.
Corollary. Any coclosed submodule of a coatomic module is coatomic.

Hence for any ring R, a left ideal I of R is coclosed implies that I is idempotent
and a left coatomic module. For left duo rings, i.e. every left ideal is a two-sided
ideal this necessary condition is already sufficient for I to be coclosed.

2.5. The next theorem characterises coclosed ideals in left duo rings.

Theorem. Let R be a left duo ring and I an ideal of R. Then I is coclosed as a
left ideal in R if and only if I is idempotent and a left coatomic module.

Proof. We just need to prove the necessity. Assume I = I? and [ is a coatomic
module. Let K C [ and choose a maximal submodule N/K of I/K. Then
P = Ann(I/N) is a maximal ideal of R. Suppose N + P = R, then

I=RI=NI+PICN
yields a contradiction. Hence N C P. Suppose I C P, then
I=PCPICNCI

leads also to a contradiction. Thus I + P = R and hence I/K + P/K = R/K
with P/K # R/K, i.e. K C I is not cosmall in R. Hence [ is coclosed. O

2.6. Over a commutative noetherian ring the sets of coclosed ideals, idempotent
ideals and direct summands coincide. Note that in any commutative von Neu-
mann regular ring which is not semisimple, there are coclosed ideals which are
not direct summands (take for example a direct product of fields for the ring).

3. IDEMPOTENTS AND COPOLYFORM MODULES

Non-singular modules and polyform modules have their dualisations which we
are going to recall here. A module M is called copolyform if Hom (M, N/L) =0
for all small submodules N <« M and L C N. The rings R that are copolyform
as modules over themselves are precisely the semiprimitve rings, i.e. Jac(R) = 0.

A module M is called non-small if it has no small factor module M /N, i.e.
M/N is not small in any left R-module. It is not difficult to see that non-small
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modules are copolyform, but the converse is not true. The non-small rings R are
precisely the left V-rings.

In between those two classes of modules one has those modules whose factor
modules are copolyform. Call a module M strongly copolyform if every factor
module of M is copolyform. This notion had been introduced by Vanaja and
Talebi in [6].

3.1. A ring is called left fully idempotent if every left ideal is idempotent. The
next theorem characterises the endomorphism ring of projective strongly copoly-
form modules as left fully idempotent ones.

Theorem ([3, 9.25]). Let P be finitely generated self-projective module and S =
End (P). If P is strongly copolyform then S is left fully idempotent.

We include the proof for the reader’s sake.

Proof. Consider a nonzero f € S. Since P is finitely generated and self-projective
Hom (P, Pf) = Sf and PfHom (P, Pf) = PfSf. As P is m-projective, PfSf is
a cosmall submodule of Pf in P by 2.1. Now P is strongly copolyform implies
that Hom (P, Pf/PfSf) =0 and hence Pf = PfSf. Thus

Sf =Hom (P, Pf) = Hom (P, PfSf) = Hom (P, P(Sf)?) = (Sf)?,

where the last equality follows since P is finitely generated and self-projective.
Hence cyclic left ideals of S are idempotent and this implies that every left ideal
is idempotent. O

3.2. It now follows that a ring R which is strongly copolyform as a left R-module
must be left fully idempotent. Hence any ring R with Jac (R) = 0 which is not
left fully idempotent gives an example of a module which is copolyform but not
strongly copolyform.

3.3. Call a module M fully idempotent if all submodules of M are idempotent.
As mentioned in 1.4 a ring R is a fully idempotent R°-module if and only if it is
an ideal-algebra and all ideals are idempotent. In the next theorem we examine
when strongly copolyform m-projective modules are fully idempotent.

Theorem. A w-projective strongly copolyform module M is a self-generator if
and only if M is fully idempotent. Moreover in this case Rad (M/N) = 0 for all
fully invariant submodules N of M.

Proof. Suppose that N is a submodule of a self-generator M which is strongly
copolyform and 7-projective. By 2.1 N/N? < M/N?. Take any f € Hom(M, N),
then
(N?)f = NHom (M, N)f € NHom (M, N) = N
Hence f lifts to f : M/N? — N/N?. By hypothesis f = 0, i.e. Im (f) C N2
Since N is M-generated, N = MHom (M, N) = N? is idempotent.
The contrary is clear, since any idempotent submodule is M-generated.
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If N is a fully invariant submodule of M and C/N < M/N, then since N is
fully invariant, any f : M — C can be lifted to some f : M/N — C/N. Since

M is strongly copolyform, f = 0, i.e. Im (f) € N. As M is a self-generator,
C=N. O

3.4. From [8, 30.10] it follows that a ring R has the property Rad (R/I) = 0
for all ideals I if and only if R is a cosemisimple R®-module. Thus any ring R
which is strongly copolyform as left R-module is left fully idempotent (by 3.2)
and cosemisimple as R°-module (by 3.3). For rings which are finitely generated
over their centre we have the following:

Theorem. Let R be a ring which is finitely generated as a module over its centre
Z(A). Then R is left strongly copolyform if and only if it is von Neumann reqular.

Proof. Let R be left strongly copolyform. As shown before, R is cosemisimple
as R¢-module. Since R is finitely generated as Z(R)-module, also R¢ is finitely
generated as Z(R)-module and [8, 30.12] applies which says that Z(R) is von
Neumann regular, R is biregular (i.e. any principal ideal is generated by a central
idempotent) and an Azumaya algebra. By [1, Theorem 2] R is von Neumann
regular. O

We are left with the three following questions:

Question 1: Are left strongly copolyform ring V-rings ?

Question 2: Are left strongly copolyform ring biregular ?
Question 3: Is the centre of a left strongly copolyform ring regular?
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