
IDEMPOTENT SUBMODULES

CHRISTIAN LOMP

Abstract. Bican, Jambor, Kepka and Nemec defined a product on the lat-
tice of submodules of a module, making any module into a partially ordered
groupoid. Submodules that are idempotent with respect to this product be-
have similar as idempotent ideals in rings. In particular jansian torsion theories
can be described through idempotent submodules. Moreover so-called coclosed
submodules, which are essentially closed elements in the dual lattice of sub-
modules of a module, turn out to be idempotent in π-projective modules. The
relation of strongly copolyform modules and the regularity of their endomor-
phism ring is discussed.

1. Introduction

1.1. Let M be a left R-module and S := EndR (M). We denote by L(M) the
lattice of R-submodules of M . There exists a binary operation on L(M) making
it a partially ordered groupoid: Set:

N ? L := NHomR (M, L) =
∑

{(N)f | f : M → L}

for all N, L ∈ L(M). This product has been defined in [2] and had been studied
by the author in [5].

Call a submodule N of M idempotent if N ? N = N . This definition gener-
alises of course the definition of idempotent (left) ideals of rings.

1.2. Idempotent submodules N of M are obviously M -generated, since N =
NHom (M, N) ⊆ Tr (M, N) ⊆ N . On the other hand if N is an M -generated
submodule such that Hom (M, N) is an idempotent left ideal of End (M), then
N is idempotent.

1.3. Let k be a commutative ring and A a (not necessarily associative) k-algebra.
Denote by M(A) the multiplication algebra of A. Then the idempotent M(A)-
submodules of A are precisely the idempotent ideals which are generated (as
A-module) by central elements. We show this in more generality: Let B be a
subalgebra of Endk (A) that contains M(A). Let I be a B-stable ideal, then
HomB (A, I) is k-isomorphic to an ideal IB of the centre of A via f 7→ (1)f . The
elements of IB are called B-invariant elements.
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Theorem. The idempotent B-submodules of A are precisely the idempotent ideals
of A which are generated as left A-module by B-invariant elements.

Proof. Let I be an idempotent B-stable ideal of A. Hence I = IHomB (A, I) =
IIB ⊆ I2 shows that I is idempotent and generated by the B-invariant elements
of IB. On the other hand assume I is idempotent and generated by some B-
invariant elements, i.e. I = AX where X ⊆ IB. Thus I = I2 = AXAX =
AX2 ⊆ IX ⊆ IIB ⊆ I shows that I is idempotent as B-module. �

1.4. Let A be a k-algebra and Ae = A ⊗ Aop its envoloping algebra. Then
setting B = Ae we have that the B-submodules of A are precisely the two-
sided ideals of A. Moreover the idempotent B-submodules I of A are precisely
the idempotent ideals which are generated by central elements as A-module,
i.e. I2 = I = A(Z(A) ∩ I). Note that Z(A) ∩ I are the ”B-invariants” of
1.3 in this case. Following [8] one says that A is an ideal-algebra if it is a self-
generator as Ae-module. In other words, if any ideal of A is generated by central
elements. Examples of ideal-algebras are Azumaya algebras. Hence idempotent
Ae-submodules of an ideal-algebra A are precisely the idempotent ideals of A.
Furthermore any Ae-submodule of A is idempotent if and only if A is an ideal-
algebra and every ideal of A is idempotent.

1.5. Assume that A is a commutative G-graded algebra where G is a semigroup.
Then each element g ∈ G acts on A as projection on the component Ag and defines
a k-linear endomorphism πg. Let B denote the subalgebra of Endk (A) generated
by M(A) and the elements πg. Note that B-submodules of A are the G-graded
ideals of A and the B-invariant elements of A are precisely the homogeneous
elements. Hence a G-graded ideal I is idempotent as B-submodule if and only if
it is an idempotent ideal which is generated by homogeneous elements.

1.6. There exists a bijective correspondence between idempotent ideals of R and
jansian torsion theories in R-Mod. We will see that a similar correspondence is
true for jansian torsion theories in σ[M ]. A class τ of modules in σ[M ] is called
jansian if it is closed under factor modules, extensions and direct products in
σ[M ].

Proposition. Let τ be a hereditary jansian torsion theory in σ[M ]. Then for
any self-generator N ∈ σ[M ] : Lτ (N) := /L)Rej (N,τ) is an idempotent submodule
of N .

Proof. Let L = Lτ (N) and Λ = Hom (N, L). By hypothesis N/L ∈ τ . Consider

0 −−−→ L(Λ) −−−→ N (Λ) −−−→ (N/L)(Λ) −−−→ 0

Φ

y Φ

y y
0 −−−→ L2 −−−→ L −−−→ L/L2 −−−→ 0
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where Φ : N (Λ) → L is the evaluation map ((nf )f∈Λ)Φ =
∑

f∈Λ(nf )f . Hence

Φ can be extended to a map (N/L)Λ → L/L2. Note that all these maps are
surjective since N is a self-generator. Thus L/L2 ∈ τ and as N/L ∈ τ it follows
N/L2 ∈ τ . Hence L ⊆ L2 ⊆ L showing that L is idempotent.

�

1.7. Let L ⊆ G and X be modules in σ[M ]. Set L ∗G X := LHom (G, X).

Theorem. Let G be a projective generator of σ[M ]. Then there exists a bijective
correspondence between

• Hereditary jansian torsion theories in σ[M ] and
• idempotent fully invariant submodules L of G.

Mapping a jansian torsion theory τ to the submodule Lτ := Rej (G, τ) and
mapping an idempotent (fully invariant) submodule L of G to the class

τL := {X ∈ σ[M ] | L ∗G X = 0} = Gen (G/L).

Proof. We saw that L := Lτ = Lτ (G) = Rej (G, τ) is idempotent. Since
Gen (G/L) ⊆ τ , we have L ⊆ Rej (G, Gen (G/L)). As G is self-projective we
get L = Rej (G, Gen (G/L)), i.e. L is fully invariant.

Let L be an idempotent submodule of L with Rej (G, Gen (G/L)) = L. Let
τL := {X ∈ σ[M ] | L ∗G X = 0}. Obviously τL ⊆ Gen (G/L). We have to show
that τL is a hereditary jansian torsion theory. First of all it is clear that τL is
closed under submodules, since L ∗G Y ⊆ L ∗G X for Y ⊆ X, and closed under
direct products.

To show that τL is closed under extensions assume that X and Z are members
of τL in the following short exact sequence:

0 −−−→ X −−−→ Y
p−−−→ Z −−−→ 0

Let f : G → Y be any homomorphism. Then (L)fp = 0 as L ∗G Z = 0. Hence
L ∗G Y ⊆ X. But since L is idempotent L = L ∗G L and we have

L ∗G Y = (L ∗G L) ∗G Y ⊆ L ∗G (L ∗G Y ) ⊆ L ∗G X = 0,

i.e. Y ∈ τL.
Let X ∈ τL and let Y be a factor module of X, then we have a surjective map

Hom (G, X) → Hom (G, Y )

and hence L ∗G X = 0 ⇒ L ∗G Y = 0. Thus Y ∈ τL.
Now let τ be a hereditary jansian torsion theory in σ[M ] and consider τLτ =

{X | Lτ ∗G X = 0}. Note that since G is a generator, G/Lτ is a generator for
τ . As G/Lτ ∈ τ we have τ = Gen(G/Lτ ). Since Rej (G, G/Lτ ) = Lτ it follows
Lτ ∗G G/Lτ = 0, i.e. τ ⊆ τLτ . On the other hand if Lτ ∗G X = 0 then any
homomorphism G → X factors through G/Lτ , i.e. X is G/Lτ -generated. Thus
τ = τLτ .
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Let L be an idempotent submodule of G with Rej (G, G/L) = L. Hence
L ∗G (G/L) = 0, i.e. G/L ∈ τL. Thus LτL

:= Rej (G, τL) ⊆ L. On the other hand
LτL

∗G (G/L) = Rej (G, τL)Hom (G, G/L) = 0, i.e. L = Rej (G, G/L) ⊆ LτL
. �

1.8. A k-algebra A is called Azumaya if it is a projective generator in Ae-Mod.
The last theorem establishes a correspondence of hereditary jansian torsion the-
ories in Ae-Mod and idempotent Ae-submodules of A. As mentioned before, the
idempotent Ae-submodules of A are precisely the idempotent two-sided ideals of
A in case of an Azumaya algebra. Thus there exists a correspondence between
hereditary jansian torsion theories in Ae-Mod and A-Mod.

2. Coclosed submodules are idempotent

A closed submodule N of a module M has no proper essential extension in M .
We say that an inclusion N ⊆ L of submodules of M is cosmall if L/N � M/N .
Golan introduced the following notion in [4]: A submodule N of an R-module M
is said to be coclosed in M if N has no proper submodule K such that K ⊆ N is
cosmall in M .

Thus N is coclosed in M if and only if, for any submodule K properly contained
in N , there is a submodule L of M such that L + N = M but L + K 6= M.
Consequently every direct summand is a coclosed submodule.

Cosemisimple modules can be characterized by coclosed submodules:

Proposition ([3, 3.8]). Every submodule of a module M is coclosed in M if and
only if M is cosemisimple.

2.1. Recall that a module M is called π-projective if for any submodules K, L ⊆
M with M = K + L we have End (M) = Hom (M, K) + Hom (M, L) ([7]).

Proposition ([3, 4.16]). Let M be a π-projective module. Then N2 � N is
cosmall for N ⊆ M , i.e. N/N2 � M/N2.

This immediately implies the

Corollary. Any coclosed submodule of a π-projective module is idempotent.

Hence any left ideal of a ring, which is coclosed as submodule, is idempotent.

2.2. Note that if N is coclosed in M then for any submodule L ⊆ N we have:
L � M ⇔ L � N . Since N/K is coclosed in M/K we conclude [3, 3.9]:

Lemma. Let N be a coclosed submodule of M . For any K ⊂ L ⊂ N we have:

L/K � M/K ⇔ L/K � N/K.

In particular Rad(N/K) = Rad(M/K)∩N/K holds and if Rad(M/K) � M/K
then Rad (N/K) � N/K.
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2.3. Recall that a module M is coatomic if every non-zero factor module of M
contains a maximal submodule or equivalently if every proper submodule of M
is contained in a maximal one.

Lemma. A module M is coatomic if and only if Rad (M/N) � M/N for all
N ⊂ M .

Proof. Let M be coatomic and N ⊂ M . Assume Rad (M/N) + L/N = M/N .
Note that Rad(M/L) ⊇ (Rad(M)+L)/L = M/L. Hence M/L = 0 by hypothesis
and M = L. On the contrary if N ⊂ M and Rad (M/N) � M/N , then
Rad (M/N) 6= M/N and there exists a maximal submodule in M/N . �

2.4. With the last two Lemmas we can conclude.

Corollary. Any coclosed submodule of a coatomic module is coatomic.

Hence for any ring R, a left ideal I of R is coclosed implies that I is idempotent
and a left coatomic module. For left duo rings, i.e. every left ideal is a two-sided
ideal this necessary condition is already sufficient for I to be coclosed.

2.5. The next theorem characterises coclosed ideals in left duo rings.

Theorem. Let R be a left duo ring and I an ideal of R. Then I is coclosed as a
left ideal in R if and only if I is idempotent and a left coatomic module.

Proof. We just need to prove the necessity. Assume I = I2 and I is a coatomic
module. Let K ⊂ I and choose a maximal submodule N/K of I/K. Then
P = Ann(I/N) is a maximal ideal of R. Suppose N + P = R, then

I = RI = NI + PI ⊆ N

yields a contradiction. Hence N ⊆ P . Suppose I ⊆ P , then

I = I2 ⊆ PI ⊆ N ⊂ I

leads also to a contradiction. Thus I + P = R and hence I/K + P/K = R/K
with P/K 6= R/K, i.e. K ⊆ I is not cosmall in R. Hence I is coclosed. �

2.6. Over a commutative noetherian ring the sets of coclosed ideals, idempotent
ideals and direct summands coincide. Note that in any commutative von Neu-
mann regular ring which is not semisimple, there are coclosed ideals which are
not direct summands (take for example a direct product of fields for the ring).

3. Idempotents and copolyform modules

Non-singular modules and polyform modules have their dualisations which we
are going to recall here. A module M is called copolyform if Hom (M, N/L) = 0
for all small submodules N � M and L ⊂ N . The rings R that are copolyform
as modules over themselves are precisely the semiprimitve rings, i.e. Jac (R) = 0.

A module M is called non-small if it has no small factor module M/N , i.e.
M/N is not small in any left R-module. It is not difficult to see that non-small
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modules are copolyform, but the converse is not true. The non-small rings R are
precisely the left V -rings.

In between those two classes of modules one has those modules whose factor
modules are copolyform. Call a module M strongly copolyform if every factor
module of M is copolyform. This notion had been introduced by Vanaja and
Talebi in [6].

3.1. A ring is called left fully idempotent if every left ideal is idempotent. The
next theorem characterises the endomorphism ring of projective strongly copoly-
form modules as left fully idempotent ones.

Theorem ([3, 9.25]). Let P be finitely generated self-projective module and S =
End (P ). If P is strongly copolyform then S is left fully idempotent.

We include the proof for the reader’s sake.

Proof. Consider a nonzero f ∈ S. Since P is finitely generated and self-projective
Hom (P, Pf) = Sf and PfHom (P, Pf) = PfSf . As P is π-projective, PfSf is
a cosmall submodule of Pf in P by 2.1. Now P is strongly copolyform implies
that Hom (P, Pf/PfSf) = 0 and hence Pf = PfSf . Thus

Sf = Hom (P, Pf) = Hom (P, PfSf) = Hom (P, P (Sf)2) = (Sf)2,

where the last equality follows since P is finitely generated and self-projective.
Hence cyclic left ideals of S are idempotent and this implies that every left ideal
is idempotent. �

3.2. It now follows that a ring R which is strongly copolyform as a left R-module
must be left fully idempotent. Hence any ring R with Jac (R) = 0 which is not
left fully idempotent gives an example of a module which is copolyform but not
strongly copolyform.

3.3. Call a module M fully idempotent if all submodules of M are idempotent.
As mentioned in 1.4 a ring R is a fully idempotent Re-module if and only if it is
an ideal-algebra and all ideals are idempotent. In the next theorem we examine
when strongly copolyform π-projective modules are fully idempotent.

Theorem. A π-projective strongly copolyform module M is a self-generator if
and only if M is fully idempotent. Moreover in this case Rad (M/N) = 0 for all
fully invariant submodules N of M .

Proof. Suppose that N is a submodule of a self-generator M which is strongly
copolyform and π-projective. By 2.1 N/N2 � M/N2. Take any f ∈ Hom(M, N),
then

(N2)f = NHom (M, N)f ⊂ NHom (M, N) = N2.

Hence f lifts to f : M/N2 → N/N2. By hypothesis f = 0, i.e. Im (f) ⊆ N2.
Since N is M -generated, N = MHom (M, N) = N2 is idempotent.

The contrary is clear, since any idempotent submodule is M -generated.
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If N is a fully invariant submodule of M and C/N � M/N , then since N is
fully invariant, any f : M → C can be lifted to some f : M/N → C/N . Since
M is strongly copolyform, f = 0, i.e. Im (f) ⊆ N . As M is a self-generator,
C = N . �

3.4. From [8, 30.10] it follows that a ring R has the property Rad (R/I) = 0
for all ideals I if and only if R is a cosemisimple Re-module. Thus any ring R
which is strongly copolyform as left R-module is left fully idempotent (by 3.2)
and cosemisimple as Re-module (by 3.3). For rings which are finitely generated
over their centre we have the following:

Theorem. Let R be a ring which is finitely generated as a module over its centre
Z(A). Then R is left strongly copolyform if and only if it is von Neumann regular.

Proof. Let R be left strongly copolyform. As shown before, R is cosemisimple
as Re-module. Since R is finitely generated as Z(R)-module, also Re is finitely
generated as Z(R)-module and [8, 30.12] applies which says that Z(R) is von
Neumann regular, R is biregular (i.e. any principal ideal is generated by a central
idempotent) and an Azumaya algebra. By [1, Theorem 2] R is von Neumann
regular. �

We are left with the three following questions:
Question 1: Are left strongly copolyform ring V -rings ?
Question 2: Are left strongly copolyform ring biregular ?
Question 3: Is the centre of a left strongly copolyform ring regular?
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