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1. Introduction and preliminaries

This work deals with Appell sequences with respect to lowering (or annihilating) operators involving the Hahn’s
operator, often called as q-derivative operator, here denoted as Hq:(

Hq f
)
(x) :=

f (qx)− f (x)
(q−1)x

, f ∈P,

where q belongs to the set C̃ := C−
⋃

n>0
Un, where

Un =
{
{0} , n = 0
{z ∈ C : zn = 1} , n> 1.

After giving preliminary results and notations in use, in section 2 the definition and characterization of the so-
called Hq-Appell polynomial sequences (with particular emphasis to the orthogonal ones) will be recalled, but also
some new results will be achieved. The main goal of this work is to obtain information concerning the quadratic
decomposition of these Hq-Appell sequences, which amounts to the same as characterizing the four polynomial
sequences associated to the description of the even and odd terms of an Hq-Appell sequence. This brings us to
section 3. Insofar as such quadratic decomposition gives rise to Appell sequences with respect to a new operator
(which is of second order in Hq2), in the last section, these new Appell sequences will be characterized, stressing
those possessing orthogonality. Finally, we will prove that these latter polynomial sequences must be the Little

1 corresponding author: anafsl@fc.up.pt
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q2-Laguerre polynomials, up to a linear change of variable. The q-Laguerre polynomials will be characterized as
well as Appell sequences with respect to a precise operator.

We denote by P the vector space of the polynomials with coefficients in C (the field of complex numbers) and
by P ′ its dual space, whose elements are called forms (or linear functionals). The action of u ∈P ′ on f ∈P

is denoted as 〈u, f 〉. In particular, we denote by (u)n := 〈u,xn〉, n> 0 the moments of u. Recall that a linear
operator T : P →P has a transpose tT : P ′→P ′ defined by

〈tT (u), f 〉= 〈u,T ( f )〉 , u ∈P ′, f ∈P. (1.1)

For example, for any form u and any polynomial g, let Du = u′ and gu be the forms defined as usually by

〈u′, f 〉 :=−〈u, f ′〉 , 〈gu, f 〉 := 〈u,g f 〉,

where D is the derivative operator. Thus, D on forms is minus the transpose of the differentiation operator D
on polynomials. We will denote by ha f the homothecy of a polynomial f with a ∈ C−{0}, precisely, we have(
ha f
)
(x) := f (ax). In accordance with (1.1), by duality we define the homothecy of any form u by

〈hau, f 〉 := 〈u,ha f 〉= 〈u, f (ax)〉, f ∈P, a ∈ C−{0}.

The q-derivative operator may be also defined as follows

Hq =
1

q−1
ϑ0 ◦ (hq− IP) , (1.2)

where IP represents the identity operator in P and ϑc with c ∈ C is the linear application

ϑc : P −→ P

p 7−→
(
ϑc p
)
(x) =

p(x)− p(c)
x− c

.

This linear application ϑc allows to define the division of form u by a first degree polynomial, that is (x− c)−1u,
so that, by transposition, we merely have 〈(x− c)−1u, p〉 := 〈u,ϑc p〉, for all p ∈P.

The linear operator Hq has a transpose tHq, from P ′ into P ′, defined by duality according to (1.1):

tHq =
1

q−1
(hq− IP ′)x−1

We can define the q-derivative operator Hq on P ′ as minus the transpose of the q-derivative operator on P, that
is, tHq :=−Hq, so that

〈Hqu, f 〉 :=−〈u,Hq f 〉 , f ∈P, u ∈P ′, (1.3)

In particular, this yields (
Hqu

)
n =−[n]q (u)n−1, n> 0,

with the convention (u)−1 = 0, and

[n]q :=
qn−1
q−1

, n> 0.

Next, we formally list some properties of this operator Hq, either on P or on P ′, essential for the sequel:
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Lemma 1.1. The following properties hold [8, 17](
Hq f1 f2

)
(x) =

(
hq f1

)
(x)
(
Hq f2

)
(x)+ f2(x)

(
Hq f1

)
(x), f1, f2 ∈P, (1.4)(

ha f1 f2
)
(x) =

(
ha f1

)
(x)
(
ha f2

)
(x), f1, f2 ∈P, a ∈ C−{0}, (1.5)

ha
(
gu
)

=
(
ha−1g

) (
hau
)
, g ∈P,u ∈P ′ a ∈ C−{0}, (1.6)

Hq
(
gu
)

= g Hqu+
(

Hq−1g
)

hqu, g ∈P,u ∈P ′ (1.7)

Hq
(
gu
)

=
(
hq−1g

)
Hqu+q−1

(
Hq−1g

)
u, g ∈P,u ∈P ′ (1.8)

Hq ◦hq−1 = q−1Hq−1 in P (1.9)

hq−1 ◦Hq = Hq−1 in P (1.10)

Hq ◦ha = a ha ◦Hq in P (with a ∈ C−{0}), (1.11)

Hq ◦Hq−1 = q−1 Hq−1 ◦Hq in P (1.12)

The operator Hq is injective in P ′. (1.13)

Let {Bn}n>0 be a sequence of monic polynomials with degBn = n, n> 0 (monic polynomial sequence: MPS) and
let {un}n>0 be the corresponding dual sequence, un ∈P ′, defined by 〈un,Pk〉 := δn,k, n,k> 0. We recall from [13],
that any form u ∈P ′ may be represented through

u = ∑
n>0
〈u,Bn〉 un . (1.14)

A monic orthogonal polynomial sequence - hereafter MOPS - {Bn}n>0 is characterized by{
B0(x) = 1 ; B1(x) = x−β0

Bn+2(x) = (x−βn+1)Bn+1(x)− γn+1 Bn(x) , n> 0,
(1.15)

un+1 =
(
〈u0,B2

n+1〉
)−1

Bn+1u0 (1.16)

where {un}n>0 represents the corresponding dual sequence and (βn,γn+1)n>0 are known as the recurrence coeffi-
cients with γn+1 6= 0, n> 0.

2. Appell sequences with respect to lowering operators

Consider O to be a lowering operator, that is, a linear operator that decreases in one unit the degree of a polynomial
and such that O(1) = 0.

Given a MPS {Bn}n>0, we construct another MPS {B[1]
n (·;O)}n>0 by setting

B[1]
n (x;O) =

1
ρn+1(O)

O
(
Bn+1(x)

)
, n> 0,

where {ρn+1(O)}n>0 represents a sequence of nonzero constants realizing the condition O(xn+1) = ρn+1(O) xn +bn(x)
with degbn < n, for any integer n> 0.

Definition 2.1. A MPS {Bn}n>0 is called an Appell sequence with respect to a lowering (annihilating) operator
O or simply O-Appell sequence if B[1]

n (·,O) = Bn(·) for all integers n> 0, [4, 5].

Lemma 2.1. Let O represent a lowering operator such that
(
Oζ n+1

)
(x) = ρn+1

{
xn +ηnxn−1 + χn−1xn−2 + . . .

}
with η0 = χ−1 = χ0 = 0 and supose that {Bn}n>0 is an O-Appell sequence. Expressing the terms of {Bn}n>0 as

Bn(x) = xn +bnxn−1 + cn−1xn−2 + . . . , n> 0, (2.1)
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with b0 = c−1 = c0 = 0, we then have
bn+1 = ρn+1

(
b1

ρ1
−

n

∑
ν=1

ην

ρν

)

cn+1 = ρn+1ρn+2

(
c1

ρ1ρ2
−

n

∑
ν=1

χν +ην bν+2
ρν+1
ρν+2

ρν ρν+1

) , n> 1. (2.2)

Proof. The O-Appell character of the sequence {Bn}n>0 ensures the equalities

ρn+1Bn(x) =
(
OBn+1

)
(x) , n> 0,

which, under the assumptions, become

ρn+1

(
xn +ηnxn−1 + χn−1xn−2 + . . .

)
+bn+1ρn

(
xn−1 +ηn−1xn−2 + χn−2xn−3 + . . .

)
+cnρn−1

(
xn−2 +ηn−2xn−3 + χn−3xn−4 + . . .

)
= ρn+1

(
xn +bnxn−1 + cn−1xn−2 + . . .

)
, n> 0,

with the convention ρ−1 = χ−k = η−k = 0 for k > 0. The comparison of the coefficients in the previous identities
provides 

bn

ρn
− bn+1

ρn+1
=

ηn

ρn

cn

ρn ρn+1
− cn+1

ρn+1 ρn+2
=

χn +ηn bn+2
ρn+1
ρn+2

ρn ρn+1

, n> 1,

yielding the relations (2.2). �

For instance, if O = Hq or O = D, then we have
(
Hqζ n+1

)
(x) = [n + 1]qxn and

(
Dζ n+1

)
(x) = (n + 1)xn, n > 0,

respectively. In both cases, ηn = χn = 0, n> 0. More generally, we have:

Corollary 2.1. Let O be a lowering operator such that
(
Oζ n+1

)
(x) = ρn+1xn for any integer n> 0. If an O-Appell

sequence {Bn}n>0 is orthogonal, then the corresponding recurrence coefficients are given by

βn =
ρn+1−ρn

ρ1
β0 , n> 0, (2.3)

γn+1 =
ρn+1

ρ12 ρ2

{
ρ1 (ρn+2−ρn) γ1 +

(
ρ1 (ρn+2−ρn)−ρ2 (ρn+1−ρn)

)
β0

2
}

, n> 0, (2.4)

with the notation ρn+1 := ρn+1(O) for any integer n> 0.

Proof. Let us express any element of {Bn}n>0 as in (2.1). By equating the highest powers of x in the second
order recurrence relation (1.15), the standard relations are derived

βn = bn−bn+1 , n> 0

γn+1 = cn− cn+1−βn+1bn+1 , n> 0,

with b0 = c−1 = c0 = 0. Under the assumptions, based on the previous lemma 2.1, we achieve the result, inasmuch

as b1 =−β0 and c1 = β
2
0

(
ρ2

ρ1
−1
)
− γ1 . �

Example. Consider a MPS {Bn}n>0 as above and let {B[1]
n (·;q)}n>0 be the MPS defined by

B[1]
n (x;Hq) :=

1
[n+1]q

(
HqBn+1

)
(x),n> 0. (2.5)

The corresponding dual sequence {u[1]
n (q)}n>0 of {B[1]

n (·;q)}n>0 is related to the dual sequence of {Bn}n>0 through
(see [8])

Hq

(
u[1]

n (q)
)

=−[n+1]q un+1, n> 0. (2.6)
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An Hq-Appell sequence {Bn}n>0 is defined by the condition Bn(·) = B[1]
n (·,Hq) , n> 0.

The existence of orthogonal Hq-Appell polynomial sequences is well known and it was studied from different points
of view, see for instance [1, 8].

Under the assumption that the Hq-Appell polynomial sequence {Bn}n>0 is orthogonal, on the strength of corollary
2.1 with the natural replacement ρn+1 = [n+1]q, n> 0, the corresponding recurrence coefficients are given by

βn = β0 qn , n> 0, (2.7)

γn+1 = qn[n+1]q γ1 , n> 0, (2.8)

where β0 and γ1 6= 0 are two arbitrary constants. In addition, the Hq-Appell character of {Bn}n>0 supplies the
equalities u[1]

n = un, n> 0, whence from (1.16) and (2.6), follows the relation

Hq
(
Bnu0

)
=−

[n+1]q
γn+1

Bn+1 u0, n> 0.

The particular choice n = 0, yields
Hq(u0)+ γ1

−1 B1 u0 = 0. (2.9)

Thus, {Bn}n>0 represents the Al-Salam and Carlitz polynomial sequence [1], up to a linear transformation. For
further reading see the book of Ismail [7, Ch.18]. ♦

3. Quadratic Decomposition of Hq-Appell sequences

It is always possible to consider the quadratic decomposition (QD) of a given a MPS {Bn}n>0, through the
association of two other MPS {Pn}n>0, {Rn}n>0 and two sequences of polynomials {an}n>0 and {bn}n>0, with
degan,degbn 6 n, according to [12, 15]

B2n(x) = Pn(x2)+ x an−1(x2), n> 0, (3.1)

B2n+1(x) = bn(x2)+ x Rn(x2), n> 0, (3.2)

with the convention a−1(·) = 0. Providing the characteristics of {Bn}n>0, it is possible to infer properties about
{Pn}n>0, {Rn}n>0, {an}n>0 and {bn}n>0 and consequently, to get more acquainted from the original MPS {Bn}n>0.
However this procedure is sometime quite hard to solve, specially when the sequence {Bn}n>0 is not symmetric,
since the symmetry of {Bn}n>0 implies an(·) = bn(·) = 0, n> 0.

Under the assumption of the Hq-Appell character over the MPS {Bn}n>0 we are able to derive properties concerning
the four associated sequences, as stated in the next lemma.

Lemma 3.1. Consider the quadratic decomposition of the MPS {Bn}n>0 according to (3.1)-(3.2). If {Bn}n>0 is
Hq-Appell, then the sequences {Pn}n>0 and {Rn}n>0 are Appell sequences with respect to another q-differential
operator. Moreover,

Rn(x) =
1

q−1 [n+1]q2 [2n+3]q
M

(+1)
q

[
Rn+1

]
(x) , n> 0, (3.3)

Pn(x) =
1

q [n+1]q2 [2n+1]q
M

(−1)
q

[
Pn+1

]
(x) , n> 0. (3.4)

bn(x) =
1

q−1 [n+1]q2 [2n+3]q
M

(−1)
q

[
bn+1

]
(x) , n> 0, (3.5)

an(x) =
1

q [n+2]q2 [2n+3]q
M

(+1)
q

[
an+1

]
(x) , n> 0. (3.6)

with
M

(ε)
q = (q+1) Hq2 x Hq2− [−ε]q Hq2 (3.7)
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Proof. Representing by {Bn}n>0 an Hq-Appell sequence, we proceed to its quadratic decomposition in accordance
with (3.1)-(3.2). Operating with Hq on both sides of (3.1), with n replaced by n+1, and on (3.2), we respectively
obtain

[2n+2]q B2n+1(x) =
(

HqPn+1(ξ 2)
)
(x)+

(
Hqξ an(ξ 2)

)
(x), n> 0, (3.8)

[2n+1]qB2n(x) =
(

Hqbn(ξ 2)
)
(x)+

(
Hqξ Rn(ξ 2)

)
(x), n> 0, (3.9)

since the Hq-Appell character of {Bn}n>0 provides
(
HqBn+1

)
(x) = [n + 1]q Bn(x), n > 0. The substitution of B2n

and B2n+1 on the left hand side of the equalities (3.8)-(3.9) by their expressions given in (3.1)-(3.2), permits to
obtain two new relations, none of them depending on the elements of {Bn}n>0, which are:

[2n+2]q
{

bn(x2)+ x Rn(x2)
}

=
(

HqPn+1(ξ 2)
)
(x)+

(
Hqξ an(ξ 2)

)
(x), n> 0, (3.10)

[2n+1]q
{

Pn(x2)+ x an−1(x2)
}

=
(

Hqbn(ξ 2)
)
(x)+

(
Hqξ Rn(ξ 2)

)
(x) , n> 0. (3.11)

If σ : P →P represents the linear operator defined by (σ f )(x) := f (x2), for any f ∈P, then the identity

Hq ◦σ = (q+1) x σ ◦Hq2 in P . (3.12)

holds. Combining the latter with
Hq x = q x Hq + IP in P (3.13)

obtained from (1.4), we get
Hq x ◦σ = σ

(
q(q+1) x Hq2 + IP

)
in P . (3.14)

Based on (3.12) and (3.14) the relations (3.10)-(3.11) become, respectively, as follows:

[2n+2]q
{

σ bn(x)+ x σ Rn(x)
}

= (q+1) x (σ ◦ Hq2)[Pn+1](x)

+σ ◦
(

q(q+1) Hq2 + IP
)
[an](x) , n> 0, (3.15)

[2n+1]q
{

σ Pn(x)+ x σ an−1(x)
}

= (q+1) x (σ ◦ Hq2)[bn+1](x)

+σ ◦
(

q(q+1) Hq2 + IP
)
[Rn](x) , n> 0. (3.16)

Equating the even and odd terms in (3.15) and in (3.16), we respectively have:

[2n+2]q Rn(x) = (q+1) Hq2 [Pn+1](x) , n> 0, (3.17)

[2n+2]q bn(x) =
(

q(q+1) x Hq2 + IP
)
[an](x) , n> 0, (3.18)

[2n+1]q Pn(x) =
(

q(q+1) x Hq2 + IP
)
[Rn](x) , n> 0, (3.19)

[2n+1]q an−1(x) = (q+1) Hq2 [bn](x) , n> 1. (3.20)

The relations (3.17) and (3.19), provide

[2n+2]q [2n+3]q Rn(x) = (q+1)Hq2

(
q(q+1) x Hq2 + IP

)
[Rn+1](x) , n> 0, (3.21)

[2n+1]q [2n+2]q Pn(x) =
(

q(q+1) x Hq2 + IP
)
(q+1)Hq2 [Pn+1](x) , n> 0. (3.22)

By taking into account the identity (3.13), with q2 instead of q, and also the identities (q+1)−1 [2n+2]q = [n+1]q2 ,
with n ∈N, and q−1 =−[−1]q , the achievement of the relations (3.3)-(3.4), under the definition in (3.7), comes
as consequence of the previous obtained relations (3.23)-(3.24).

The other two relations (3.5) and (3.6) that remain to be proved, may be obtained through a procedure as simple
as the previous one. Indeed, by virtue of (3.18) and (3.20), it follows

[2n+2]q [2n+3]q bn(x) =
(

q(q+1) x Hq2 + IP
)
(q+1)Hq2 [bn+1](x) , n> 0, (3.23)

[2n+3]q [2n+4]q an(x) = (q+1)Hq2

(
q(q+1) x Hq2 + IP

)
[an+1](x) , n> 0. (3.24)
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which, because of (3.13), may be transformed into the relations (3.5) and (3.6), respectively. �

The arisen operator M
(ε)
q is another example of a lowering operator. The relations (3.3)-(3.4) ensure that the two

MPS {Rn}n>0 and {Pn}n>0 associated to QD of an Hq-Appell sequence are, according to definition 2.1, M
(+1)
q

and M
(−1)
q -Appell sequences. Therefore, the characterization of these arisen M

(ε)
q -Appell sequences is now the

issue. We will follow an algebraic approach operating on the dual space P ′. In order to accomplish this we
need to determine the transpose of M

(ε)
q denoted by tM

(ε)
q , which, according to (1.3) and (3.7) is given by

tM
(ε)
q = (q+1) Hq2 x Hq2 +[−ε]q Hq2 in P ′. We introduce the operator

Lq;ε,µ := (q+1) Hq2 x Hq2 + µ[−ε]q Hq2 in P (3.25)

and thereby M
(ε)
q = Lq;ε,−1. Thus, the transpose of Lq;ε,µ is tLq;ε,µ := Lq;ε,−µ in P ′ leaving out a slight

abuse of notation without consequence, and it is injective in P ′ since Lq;ε,µ is surjective in P.

Henceforth, we will deal with the characterization of the Lq;ε,µ -Appell sequence and, thereafter, we will seek all
the MOPS that are invariant under the action of this lowering operator.

4. The arisen Lq;ε,µ-Appell polynomial sequence

From a given a MPS {Pn}n>0 we construct another MPS {P[1]
n (·;Lq;ε,µ)}n>0 defined through

P[1]
n (x;Lq;ε,µ) :=

1
ρn+1(ε,µ;q)

(
Lq;ε,µPn+1

)
(x) , n> 0, (4.1)

where the operator Lq;ε,µ is given by (3.7) and {ρn+1(ε,µ;q) := ρn+1}n>0 represents a sequence of nonzero
numbers conveniently chosen in order to have

Lq;ε,µ [ζ n+1](x) = ρn+1 xn , n> 0.

Thereby,

ρn+1 = q−ε [n+1]q2

(
[2n+2+ ε]q− (µ +1) [ε]q

)
, n> 0, (4.2)

where necessarily

(ε,µ) ∈
{

(x,y) ∈ C2 : x 6=−2(n+1) ∧ [−x]q y 6=−[2n+2]q , n> 0
}

. (4.3)

For the sake of simplicity, we will loosely write P[1]
n (·) := P[1]

n
(
· ; Lq;ε,µ

)
, n> 0.

Let us denote by {un}n>0 the dual sequence of {Pn}n>0 and by {u[1]
n }n>0 the dual sequence of {P[1]

n }n>0.

Lemma 4.1. The elements of the sequence {u[1]
n }n>0 fulfil

Lq;ε,−µ

(
u[1]

n

)
= ρn+1 un+1 , n> 0. (4.4)

Proof. The dual sequence {u[1]
n }n>0 is defined by 〈u[1]

n , P[1]
m 〉= δn,m, n,m> 0. The definition of the transpose of

Lq;ε,µ enables the identities

ρn δn,m = 〈u[1]
n , Lq;ε,µ(Pm) 〉= 〈Lq;ε,−µ(u[1]

n ) , Pm 〉 , n,m> 0,

and, according to (1.14), the result is attained. �

There are a few other properties that ought to be determined in order to seek the Lq;ε,µ -Appell orthogonal
sequences, such as the action of Lq;ε,µ over the product of two polynomials or the action of Lq;ε,−µ over the
product of a polynomial by a form.
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Lemma 4.2. For any f , g ∈P and u ∈P ′, the following relations hold

Lq;ε,µ

(
f (x) g(x)

)
= f (x) Lq;ε,µ

(
g(x)

)
+Lq;ε,µ

(
f (x)

)
hq4

(
g(x)

)
+ cq x

(
Hq2 ◦hq2 g(x)

)
Hq2

(
f (x)

)
, (4.5)

and

Lq;ε,−µ

(
g u

)
= hq−4

(
g
)

Lq;ε,−µ

(
u
)
−q−4

(
hq−4 ◦Lq;ε,µ

(
g
))

u

+ q−4 cq

{(
x hq−2 ◦Hq−2

(
g
))

Hq2

(
u
)
+
(

Hq−2 xHq−2

(
g
))

u
}

, g ∈P , u ∈P ′
(4.6)

where
cq := cq;ε,µ = 2[2]q−µ[−ε]q(q2−1) = [2]q

(
2−µ(q−ε −1)

)
(4.7)

Proof. From (1.4) and after some computations according to (1.5), (1.11) and hq2− IP = (q2−1)Hq2 the relation
(4.5) comes out, that holds for any two polynomials f and g. With the substitution of g by

(
hq−4g

)
, (4.5) becomes

like
Lq;ε,µ

(
f hq−4

(
g
))

= f
(
Lq;ε,µ ◦hq−4

(
g
))

+
(
Lq;ε,µ

(
f
))

g

+cq

{
Hq2

(
f
(
xHq2 ◦hq−4g

))
−q−2 f

(
Hq−2 xHq2 ◦hq−2g

))}
which, because of (1.5) and (1.9)-(1.12), amounts to the same as

Lq;ε,µ

(
f hq−4

(
g
))

= q−4
(

hq−4 ◦Lq;ε,µ

(
g
))

f + g
(
Lq;ε,µ

(
f
))

+cq q−4
{

Hq2

(
f
(
x hq−2 ◦Hq−2g

))
− f

(
Hq−2 xHq−2g

))} (4.8)

This permits to infer the action of Lq;ε,µ over the product of a polynomial by a form. Indeed, by duality we define
the product of any g ∈P by u ∈P ′:〈

Lq;ε,−µ

(
gu
)

, f
〉

=
〈
u , g Lq;ε,µ

(
f
)〉

and, because of (4.8) it follows,〈
Lq;ε,−µ

(
gu
)

, f
〉

=
〈

u , Lq;ε,µ

(
f hq−4

(
g
))
−q−4

(
hq−4 ◦Lq;ε,µ

(
g
))

f

−cq q−4
{

Hq2

(
f · x hq−2 ◦Hq−2

(
g
))
− f ·Hq−2 xHq−2

(
g
)} 〉

=
〈

hq−4

(
g
)

Lq;ε,−µ

(
u
)

, f
〉
−
〈

q−4
(

hq−4 ◦Lq;ε,µ

(
g
))

u , f
〉

+cq q−4
〈 (

x hq−2 ◦Hq−2

(
g
))

Hq2

(
u
)
+
(

Hq−2 xHq−2

(
g
))

u , f
〉

, f ∈P

ensuring the identity (4.6). �

We have fulfilled the necessary requirements to seek all the orthogonal polynomial sequences invariant under the
action of Lq;ε,µ to state the result:

Theorem 4.1. If {Pn}n>0 is an Lq;ε,µ -Appell MOPS, then the corresponding regular form u0 fulfils

Hq2

(
x u0

)
−ϑ

−1 (x−β0) u0 = 0 with ϑ =
q2+ε

(
q2−1

)
β0

( (µ +1)qε −qε+2−µ)
6= 0 (4.9)

and the recurrence coefficients are given by

βn =
q2n
(
1+q2(µq−2 +q−2−µq−ε−2)−

(
q2 +1

)
q2n
)

q2(q2−1)
ϑ , n> 0, (4.10)

γn+1 =
q4n+2(q+1)β 2

0 ρn+1

ρ2
1

(4.11)

where the range for the complex parameters ε,µ is set in (4.3).
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Proof. Under the assumption of the existence of a MOPS {Pn}n>0 that is Lq;ε,µ -Appell, proposition 2.1 ensures
that the recurrence coefficients of {Pn}n>0 would be given by (2.3)-(2.4) with ρn+1 given by (4.2). In particular,
(2.3) corresponds to (4.10). Now the goal is to simplify the expression (2.4) in order to ensure γn+1 6= 0 and,
concomitantly, to characterize and identify the MOPS {Pn}n>0. Following (4.4), the Lq;ε,µ -Appell character
of {Pn}n>0 yields the relation Lq;ε,µ

(
un
)

= ρn+1 un+1, n > 0, where {un}n>0 represents the corresponding dual
sequence, whose elements may be expressed as in (1.16), because of the orthogonality of {Pn}n>0. Consequently,
we have

Lq;ε,−µ

(
Pn(x)u0

)
= λn Pn+1(x) u0 , n> 0, (4.12)

where

λn = ρn+1
〈u0,P2

n 〉
〈u0,P2

n+1〉
=

ρn+1

γn+1
, n> 0 (4.13)

When n = 0, the relation (4.12) becomes

Lq;ε,−µ

(
u0
)

= λ0 P1(x) u0. (4.14)

After the substitution n→ n+1, and according to the product rule (4.6), the relation (4.12) may be rewritten like

hq−4 (Pn+1) Lq;ε,−µ

(
u0
)
−q−4 hq−4

(
Lq;ε,µ(Pn+1)

)
u0

+q−4 cq

{
x hq−2 ◦Hq−2

(
Pn+1

)
Hq2(u0)+Hq−2 x Hq−2

(
Pn+1

)
u0

}
= λn+1 Pn+2 u0 , n> 0

(4.15)

By virtue of (4.14) and also because Lq;ε,µ

(
Pn+1

)
= ρn+1 Pn , n> 0, the equality (4.15) becomes

q−4 cq x
(

hq−2 ◦Hq−2

(
Pn+1(x)

))
Hq2(u0) = An+2(x) u0 , n> 0, (4.16)

where

An+2(x) = λn+1Pn+2−λ0 P1 hq−4

(
Pn+1

)
+q−4{

ρn+1 hq−4

(
Pn
)
−Hq−2 xHq−2

(
Pn+1

)}
, n> 0. (4.17)

The particular choice of n = 0 in (4.16) results in another simple functional relation fulfilled by u0:

q−4 cq x Hq2(u0) = A2(x) u0 . (4.18)

Depending on the polynomial A2, the latter functional equation is expected to describe the regular form u0. Before
accomplishing the computation of A2 we will firstly derive more accurate conditions over the λ ’s (and consequently
over the γ ’s) which will indeed provide that degAn+1 6 n for any integer n> 1. To begin with, we will derive a new
expression for the polynomials An+2 and afterwards we will show that necessarily degA2 6 1 implying the claimed
condition. Between (4.16) and (4.18), and on account of the regularity of u0, a q-differential-difference equation
fulfilled by the sequence {Pn}n>0 is achieved:

An+2(x) =
(

hq−2 ◦Hq−2

(
Pn+1(x)

))
A2(x) , n> 0, (4.19)

(which can be transformed into a q-differential equation, upon the replacements Pn+2 = (x−βn+1)Pn+1− γn+1Pn

and also Pn = ρ
−1
n+1 Lq;ε,µ(Pn+1)). By equating the coefficients of xn+2 in (4.19), we derive the relation

λn+1−λ0q−4(n+1) = q−2n [n+1]q−2 (λ1−λ0q−4) , n> 0. (4.20)

On the other hand, the action of Hq2 over the relation (4.18) provides

q−4 cq Hq2 x Hq2(u0) = hq−2(A2)Hq2(u0)+q−2Hq−2(A2)u0 .

and the comparison with (4.14) gives rise to new equation{q−4cqµ[−ε]q
q+1

−hq−2(A2)
}

Hq2(u0) =
{

q−2Hq−2(A2)−
q−4cq

q+1
λ0P1

}
u0 (4.21)

Between (4.18) and (4.21) and by taking into account the regularity of u0, we derive polynomial the relation

q−4cq x
{

q−2Hq−2(A2)−
q−4cq

q+1
λ0P1

}
=
{q−4cqµ[−ε]q

q+1
−hq−2(A2)

}
A2

9
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which implies degA26 1. From the definition (4.17) with n = 0, it follows λ1 = q−4λ0 and therefore (4.20) becomes
like

λn = q−4n
λ0 , n> 0.

Now, recalling the definition of λn in (4.13), the previous relation provides

γn+1 = q4n ρn+1

ρ1
γ1 , n> 0.

Comparing this expression for the γ coefficients with the one previously obtained in (2.4), leads us to a new relation
between β0 and γ1:

q4n ρn+1

ρ1
γ1 =

ρn+1

ρ2
1 ρ2

{
ρ1(ρn+2−ρn) γ1 +

(
ρ1 (ρn+2−ρn)−ρ2 (ρn+1−ρn)

)
β0

2
}

, n> 0,

yielding

γ1 =
ρ1 (ρn+2−ρn)−ρ2 (ρn+1−ρn)

ρ1
(
q4n ρ2−ρn+2 +ρn

) β0
2 , n> 0,

which can only be admissible if β0 6= 0 (rejecting the existence of symmetric sequences). Considering the definition
of the ρ coefficients in (4.2), we have

ρ1 (ρn+2−ρn)−ρ2 (ρn+1−ρn) = q2(q+1)
(
q4n

ρ2−ρn+2 +ρn
)

, n> 0,

whence

γ1 =
q2(q+1)

ρ1
β0

2

providing (4.11). Consequently, λn =
q−4n−2ρ2

1

(q+1)β 2
0

and

A2(x) =
ρ1
((

q4 +1
)

ρ1−ρ2
)

q6(q+1)β0
x +

ρ1
(
ρ2−

(
q4 +1

)
ρ1
)
− cqq2(q+1)

q6(q+1)

= −
(
qε+2 + µ− (µ +1)qε

)
(qε(µ +2)−µ)

q2(2+ε)(q−1)β0
x −µ

(qε −1)(qε(µ +2)−µ)
q2(2+ε)(q−1)

Based on (1.7), the functional equation (4.18) may be rewritten like

Hq2

(
x u0

)
− q2

cq

(
q−4cq +A2(x)

)
u0 = 0 .

which corresponds to (4.9). �

From this latter we may read that an Lq;ε,µ -Appell orthogonal sequence {Pn}n>0 is necessarily Hq2-classical [8] and
the corresponding regular form u0 is Hq2-classical. Hence, we will follow the work of [8] in order to be acquainted
with this sequence within the context of the already known sequences. Consider the sequence {P̂n}n>0 obtained
from the original Lq;ε,µ -Appell orthogonal sequence through P̂n(·) := A−n Pn(Ax) for n> 0, where

A = ϑ
α1

q2−1

in which ϑ is given by (4.9) and α1 := q−2(µ +1−µ q−ε). Let us set

α :=
(
α1 q2)−1 =

(
µ +1−µ q−ε

)−1
.

Consequently, the regular form associated to the Lq;ε,µ -Appell MOPS {P̂n}n>0 is û0 := hA−1u0 and fulfils

Hq2

(
x û0

)
− (q2−1)−1(α q2)−1 (x−1+α q2) û0 = 0 . (4.22)

The corresponding recurrence coefficients are then given by

β̂n := β̂n(q2|α) = q2n (
α +1−α

(
q2 +1

)
q2n) , n> 0,

and
γ̂n+1 := γ̂n+1(q2|α) = α q4n+2 (1−q2n+2)(1−α q2n+2) , n> 0.

10
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Following the discussion carried out on [8] or on the report [9], we conclude that an Lq;ε,µ -Appell orthogonal
sequence corresponds, up to a linear transformation, to the Little q2-Laguerre polynomials that are also Hq2-
classical. The MOPS {P̂n}n>0 actually depends on two parameters: q2 and α , which in turn depends on ε and
µ . This compels us to more accurately write {P̂n(·;q2|α)}n>0. The corresponding regular form û0 := û0(q2|α) is
regular if and only if α 6= q−2(n+1), n> 0 and it is positive definite for

0 < q2 < 1 and 0 < α < q−2 OR q2 > 1 and α ∈
]
−∞, 0

[ ⋃]
−q−2, ∞

[
Replacing q2 by q, the MOPS {P̂n(·;q|α)}n>0 is now Hq-classical, L√q;ε,µ -Appell and it corresponds to the Little
q-Laguerre polynomial sequence. With the substitution of q by q−1, the MOPS {P̂n(·;q−1|α)}n>0 is Hq−1-classical,
Lq−1/2;ε,µ -Appell and it corresponds to the q-Charlier I polynomial sequence [10].

Based on the discussion in [8, pp.96-97], the form û0(q2|α) may be expressed according to

û0(q2|α) =


(αq2;q2)∞ ∑

k>0

(
αq2

)k

(q2;q2)k
δq2k , 0 < q2 < 1 , |α|< q−2

1
(α;q−2)∞

∑
k>0

q−k(k−1)

(q−2;q−2)k
(−α)k

δq2k , q2 > 1 , |α|< 1 or α < 0

therefore, we get the integral representations for any f ∈P and with α := q2τ , it holds

〈 û0(q2|α) , f 〉=



1
2
(αq2;q2)∞ ∑

k>0

(αq2)k

(q2;q2)k
〈 δq2k , f 〉

+
1
2

K1

∫ q−2

0
xτ (q2x ; q2)∞ f (x) dx

, 0 < q2 < 1 , 0 < α < q−2

1
2 (α;q−2)∞

∑
k>0

q−k(k−1)

(q−2;q−2)k
(−α)k 〈 δq2k , f 〉

+
1
2

K2

∫ 0

−∞

|x|τ

(−|x|;q−2)∞

f (x) dx
, q2 > 1 , q−2 < α < 1

where

K1 =
(

q−2(τ+1)
∫ 1

0
tτ (t;q2)∞ dt

)−1

and

K2 =
(∫

∞

0

tτ

(−t;q−2)∞

dt
)−1

with the notations

(a;q)n =


1 , n = 0
n−1

∏
ν=0

(1−aqν) , n> 1
and (a;q)∞ = ∏

ν>0
(1−aqν) , |q|< 1 .

The choice of µ =−1 provides α = q−
ε

2 and L
q−

1
2 ;ε,−1

= M
q−

1
2 ;ε

. Hitherto, from the MOPS
{

P̂n(·;q−1|q−
ε

2 )
}

n>0

we may construct another one
{

P̃n
(
x;q| ε2

)}
n>0 by defining

P̃n
(
x;q| ε

2

)
:= (−1)n P̂n(−x;q−1|q−

ε

2 ) , n> 0.

which is orthogonal with respect to the form ũ0 = h−1û0 = h−A−1u0 that fulfills the equation

Hq−1

(
x ũ0

)
+q

ε

2 +1(q−1−1)−1
(

x+1−q−
ε

2−1
)

ũ0 = 0

11
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The corresponding recurrence coefficients are

β̃n := β̃n(q|− ε

2 ) =−β̂n(q−1|q−
ε

2 ) = q−2n−1− ε

2

(
1−qn+1 +(1−qn+ ε

2 ) q
)

, n> 0,

γ̃n+1 := γ̃n+1(q|− ε

2 ) = γ̂n+1(q−1|q−
ε

2 ) = q−4n−3−ε(1−qn+1)(1−qn+1+ ε

2 ) , n> 0.

Hence the MOPS
{

P̃n
(
x;q| ε2

)}
n>0 corresponds to the q-Laguerre polynomials of parameter ε

2 and it is indeed
L√

q−1,ε,−1
-Appell (which amounts to the same as M√

q−1,ε
-Appell) [18].

The moment and integral representations of the aforementioned forms may, as well, be found in [8].
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