
ON THE FROBENIUS NUMBER OF A PROPORTIONALLY
MODULAR DIOPHANTINE INEQUALITY
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A. We give an algorithm to compute the greatest integer that is not solu-
tion of a Diophantine inequality of the formax modb ≤ cx. As a consequence
we obtain, for various cases, a formula, function ofa, b andc, for that number.

1. I

Given two non negative integersa andb, with b , 0, we denote bya modb
the remainder of the division ofa by b. A proportionally modular Diophantine
inequality is an expression of the formax modb ≤ cx, wherea is a non negative
integer,b andc are positive integers. In [8] it is shown that the set S(a,b, c) of
integer solutions of the former inequality is a numerical semigroup, that is, it is
a subset of the setN of the non negative integers that is closed under addition,
contains 0 and whose complement inN is empty or finite.

If S is a numerical semigroup, then the greatest integer that is not inS is an
important invariant ofS which is called theFrobenius numberof S and is denoted
by g(S). This invariant has been widely studied in the literature (see, for example,
[1, 2, 3, 5, 10]). The reader may find many other bibliographic references as well as
results related to the problem of determining the Frobenius number of a numerical
semigroup in [6].

It is an open problem to find a formula that determines g(S(a,b, c)) as a function
of a, b andc. For the casec = 1 some progress was made in [9] and [7]. Our main
goal in this paper is to give an algorithm (Algorithm 17) to compute g(S(a,b, c))
from a, b and c in an efficient way. The theoretical basis of that algorithm is
Theorem 5 which gives a particular form for g(S(a,b, c)). As a consequence of our
work we obtain Theorem 22 which gives a formula for the Frobenius number of a
large family of proportionally modular Diophantine inequalities.

As usual, for a rational numberr, dre denotes the least integer not smaller thanr
andbrc denotes the greatest integer not bigger thanr.

We benefited from the computations done with aGAP [11] package on numer-
ical semigroups still under development [4] to get the necessary intuition to con-
jecture some of the results proved here. Furthermore, this software was used to
produce some of the examples presented.
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edges a sabbatical grant of FCT used to visit the Algebra Department of the University of Granada.
The second author is supported by the project MTM2004-01446 and FEDER founds.
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2. T  

As the inequalityax modb ≤ cx has precisely the same integer solutions than
the inequality (a modb)x modb ≤ cx, we do not loose generality by supposing
thata < b. If c ≥ a, then S(a,b, c) = N, thus we may also suppose thatc < a.

From now on, unless otherwise stated, we will suppose thata,b andc are posi-
tive integers satisfyingc < a < b.

The following proposition has as a consequence that we may also suppose that
a ≤ b+c

2 .

Proposition 1. S(a,b, c) = S(b+ c− a,b, c).

Proof. We start proving that S(a,b, c) ⊆ S(b + c − a,b, c). If x ∈ S(a,b, c), then
ax modb ≤ cx. Therefore, there existq, r ∈ Z such thatax= qb+ r, with 0 ≤ r ≤
cx. Thus (b+ c− a)x = (b+ c)x− qb− r = (x− q)b+ cx− r, with 0 ≤ cx− r ≤ cx.
It follows that (b+ c− a)x modb ≤ cx and consequentlyx ∈ S(b+ c− a,b, c).

Now note thatc < b + c − a < b. Repeating the preceding reasoning we have
that S(b+ c− a,b, c) ⊆ S(a,b, c). �

Our next goal is to prove Theorem 5. To this effect we need some preliminary
results.

Lemma 2. Let a and b be positive integers such that a< b. Then, for each integer
k there exists exactly one integerαk such that b(a − k) − a ≤ aαk < b(a − k).
Moreoverαk = b−

⌊
kb
a

⌋
− 1.

Proof. As 0≤ kbmoda < a, we have thatb(a− k)−a ≤ b(a− k)−a+ kbmoda <
b(a− k). Thereforeb(a− k) − a ≤ ab− a−

⌊
kb
a

⌋
a < b(a− k), sincekb =

⌊
kb
a

⌋
a+

kbmoda. Consequentlyb(a − k) − a ≤ a
(
b−

⌊
kb
a

⌋
− 1

)
< b(a − k). Uniqueness

follows from the fact that the set{b(a− k) − a,b(a− k) − a+ 1, . . . ,b(a− k) − 1}
consists ofa consecutive integers and therefore contains exactly one multiple of
a. �

As an immediate consequence of the uniqueness ofαk in the preceding lemma
we get the following:

Lemma 3. Let a and b be positive integers such that a< b and let k be an integer.
Then a

(
b−

⌊
kb
a

⌋
− 1

)
is the greatest multiple of a in the set{b(a− k− 1),b(a− k−

1)+ 1, . . . ,b(a− k) − 1}.

Remark4. Observe that for an integerx, if b(a − k − 1) ≤ ax < b(a − k), then⌊
ax
b

⌋
= a− k − 1. Thusax modb = ax− b(a− k − 1). In particular, by Lemma 2,

we have the following equalities which will be used in the sequel:

a

(
b−

⌊
kb
a

⌋
− 1

)
modb = a

(
b−

⌊
kb
a

⌋
− 1

)
− b(a− k− 1)

= (k+ 1)b− a

(⌊
kb
a

⌋
+ 1

)
= kbmoda+ b− a.
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Now we are ready to prove the announced result concerning the form of the
Frobenius number of S(a,b, c).

Theorem 5. g(S(a,b, c)) ∈
{
b−

⌊
kb
a

⌋
− 1 | k ∈ {1, . . . ,a− 1}

}
.

Proof. Let g = g(S(a,b, c)). Theng < S(a,b, c) and thereforeg < b, since every
integer greater than or equal tob clearly belongs to S(a,b, c). Thus there exists
k ∈ {0,1, . . . ,a − 1} such thatb(a − k − 1) ≤ ag < b(a − k). If g < b −

⌊
kb
a

⌋
− 1,

theng + 1 ≤ b −
⌊

kb
a

⌋
− 1 and applying Lemma 2 we have thatb(a − k − 1) ≤

a(g+ 1) < b(a− k). By Remark 4 we have thata(g+ 1) modb = a(g+ 1)− b(a−
k − 1) = ag− b(a− k − 1)+ a = agmodb+ a. As g < S(a,b, c), agmodb > cg
and thereforea(g + 1) modb > cg+ a > c(g + 1), sincea > c. Consequently
g+1 < S(a,b, c), contradicting the fact thatg is the Frobenius number of S(a,b, c).
Thusg ≥ b−

⌊
kb
a

⌋
− 1 and applying Lemma 3 we have thatg = b−

⌊
kb
a

⌋
− 1.

Finally, note that ifk = 0, theng = b − 1. This implies thata(b − 1) modb >
c(b−1) ≥ b−1, which is absurd. Thereforek must not be 0 and this completes the
proof. �

From the preceding theorem it follows that g(S(a,b, c)) = b −
⌊
ξb
a

⌋
− 1, where

ξ = min
{
k ∈ {1, . . . ,a− 1} | b−

⌊
kb
a

⌋
− 1 < S(a,b, c)

}
. The following lemma will

allow us to reformulate this fact.

Lemma 6. Let k ∈ {1, . . . ,a − 1}. Then b−
⌊

kb
a

⌋
− 1 < S(a,b, c) if and only if

kbmoda+
⌊

kb
a

⌋
c > (c− 1)b+ a− c.

Proof. Observe thatb−
⌊

kb
a

⌋
−1 < S(a,b, c) if and only if a

(
b−

⌊
kb
a

⌋
− 1

)
modb >

c
(
b−

⌊
kb
a

⌋
− 1

)
. By Remark 4 we know thata

(
b−

⌊
kb
a

⌋
− 1

)
modb = kbmoda+

b−a. Thusb−
⌊

kb
a

⌋
−1 < S(a,b, c) if and only if kbmoda+b−a > c

(
b−

⌊
kb
a

⌋
− 1

)
and this is equivalent tokbmoda+

⌊
kb
a

⌋
c > (c− 1)b+ a− c. �

As a consequence we have that the set
{
k ∈ {1, . . . ,a− 1} | b−

⌊
kb
a

⌋
− 1 < S(a,b, c)

}
is equal to the set

{
k ∈ {1, . . . ,a− 1} | kbmoda+

⌊
kb
a

⌋
c > (c− 1)b+ a− c

}
and

therefore we can reformulate the observation made after Theorem 5 as follows:

Corollary 7. g(S(a,b, c)) = b−
⌊
ξb
a

⌋
− 1, where

ξ = min
{
k ∈ {1, . . . ,a− 1} | kbmoda+

⌊
kb
a

⌋
c > (c− 1)b+ a− c

}
.

The preceding corollary gives an algorithm to compute the Frobenius number of
a proportionally modular Diophantine inequality. Note that one has to do at most
a− 1 tests and that we may, by Proposition 1, suppose thata ≤ b+c

2 . Next we will
work towards an improvement of this algorithm. In next section we give lower
bounds forξ.
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3. T 

In what follows we will use the notation

ξ = min

{
k ∈ {1, . . . ,a− 1} | kbmoda+

⌊
kb
a

⌋
c > (c− 1)b+ a− c

}
.

Recall that by Corollary 7 we know that g(S(a,b, c)) = b−
⌊
ξb
a

⌋
− 1 and it follows

from Lemma 6 thatξ = min
{
k ∈ {1, . . . ,a− 1} | b−

⌊
kb
a

⌋
− 1 < S(a,b, c)

}
.

Proposition 8. ξ > c− 1+ 2(a−c)
b .

Proof. By Remark 4 we have thata
(
b−

⌊
ξb
a

⌋
− 1

)
modb = (ξ+1)b−a

(⌊
ξb
a

⌋
+ 1

)
.

As
(
b−

⌊
ξb
a

⌋
− 1

)
< S(a,b, c), we have that (ξ+1)b−a

(⌊
ξb
a

⌋
+ 1

)
> c

(
b−

⌊
ξb
a

⌋
− 1

)
and therefore (ξ +1− c)b > (a− c)

(⌊
ξb
a

⌋
+ 1

)
. Fromξ ≥ 1 andb > a it follows that

(ξ + 1− c)b > 2(a− c), thusξ > c+ 2(a−c)
b − 1. �

Corollary 9. ξ ≥ c.

Proof. It suffices to apply Proposition 8 and observe thatc + 2(a−c)
b − 1 is strictly

greater thanc− 1. �

Note that by Proposition 1 we may suppose thata ≤ b+c
2 . Under this condition

we have that2(a−c)
b ≤

2(a−c)
2a−c = 1 − c

2a−c < 1. Consequently ifa ≤ b+c
2 , then the

bound given by Proposition 8 is not better than the bound given by Corollary 9,
which has the advantage of being very simple.

As an immediate consequence of Corollaries 7 and 9 we have the following:

Corollary 10. g(S(a,b, c)) = b−
⌊

cb
a

⌋
− 1 if and only if cbmoda+

⌊
cb
a

⌋
c > (c−

1)b+ a− c.

Example11. Let (a,b, c) = (7,34,6). Thencbmoda+
⌊

cb
a

⌋
c = 175 and (c−1)b+

a− c = 171. We thus have g(S(a,b, c)) = b−
⌊

cb
a

⌋
− 1 = 4. One can confirm this

value by observing that S(a,b, c) = {0} ∪ {x ∈ Z | x ≥ 5}.

Combining Corollaries 7 and 9 we have g(S(a,b, c)) = b −
⌊
ξb
a

⌋
− 1, wereξ =

min
{
k ∈ {c, . . . ,a− 1} | kbmoda+

⌊
kb
a

⌋
c > (c− 1)b+ a− c

}
. Note that whenc =

a− 1 we haveξ = a− 1 and whenc = a− 2 we haveξ = a− 2 or ξ = a− 1. We
get then immediately the following result.

Corollary 12. (1) g(S(a,b,a− 1)) = b−
⌊

(a−1)b
a

⌋
− 1.

(2) g(S(a,b,a− 2)) =
b−

⌊
(a−2)b

a

⌋
− 1 if (a− 2)b moda+

⌊
(a−2)b

a

⌋
(a− 2) > (a− 3)b+ 2

b−
⌊

(a−1)b
a

⌋
− 1 otherwise.



ON THE FROBENIUS NUMBER OF A PROPORTIONALLY MODULAR DIOPHANTINE INEQUALITY5

Our next goal is to prove Proposition 14 where we will give a new lower bound
for ξ. As we will then see in Fact 16 that bound is better than the one given by
Corollary 9. We start with a simple observation given by the following lemma.

Lemma 13. g(S(a,b, c)) ≤ b−2
c .

Proof. Let g = g(S(a,b, c)). As g < S(a,b, c), agmodb > cg. Thereforecg ≤
b− 2. �

Proposition 14. ξ ≥
⌈
a− a

c −
a
b +

2a
cb

⌉
.

Proof. By Corollary 7 we have that g(S(a,b, c)) = b−
⌊
ξb
a

⌋
−1. Applying Lemma 13

we have thatb−
⌊
ξb
a

⌋
− 1 ≤ b−2

c and consequentlyb− ξba − 1 ≤ b−2
c . It follows that

ξ ≥ a− a
c −

a
b +

2a
cb. �

As an immediate consequence of Corollary 7 and Proposition 14 we have the
following result.

Corollary 15. Letα =
⌈
a− a

c −
a
b +

2a
cb

⌉
. Theng(S(a,b, c)) = b−

⌊
αb
a

⌋
− 1 if and

only if αb moda+
⌊
αb
a

⌋
c > (c− 1)b+ a− c.

Recall that Corollary 12 gives us a formula for the Frobenius number of S(c +
1,b, c). We observe next that, whena , c+ 1, the bound given by Proposition 14
improves the bound given by Corollary 9.

Fact 16. If a , c+ 1, then
⌈
a− a

c −
a
b +

2a
cb

⌉
≥ c.

Proof. We consider first the casec = 1.
If c = 1, thena− a

c−
a
b+

2a
cb = a−a− a

b+
2a
b =

a
b. Therefore

⌈
a− a

c −
a
b +

2a
cb

⌉
= 1.

Let us now suppose thatc ≥ 2 anda ≥ c+ 2. Thena(c− 1) ≥ (c+ 2)(c− 1) =
c2 + c − 2 ≥ c2 and thereforea − a

c ≥ c. As a
b −

2a
cb =

(c−2)a
cb < 1, we have that

a− a
c − (a

b −
2a
cb) > c− 1, whence

⌈
a− a

c −
a
b +

2a
cb

⌉
≥ c. �

As a summary of the results shown, we give the following algorithm to compute
the Frobenius number of a proportionally modular Diophantine inequality.

Algorithm 17. INPUT: positive integers a,b and c.
OUTPUT: g(S(a,b, c)).

(1) If a ≤ c, thenreturn −1.
(2) a := a modb.
(3) If a = 0, thenreturn −1.
(4) If a > b+c

2 , then a:= b+ c− a.

(5) If a = c+ 1, thenreturn g = b−
⌊

(a−1)b
a

⌋
− 1.

(6) Computeα =
⌈
a− a

c −
a
b +

2a
cb

⌉
.

(7) while αb moda+
⌊
αb
a

⌋
c ≤ (c− 1)b+ a− c do α := α + 1.

(8) return b−
⌊
αb
a

⌋
− 1.
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The observations made at the beginning of Section 2 and the fact that g(N) = −1
justify the steps (1), (2), (3) and (4). Step (5) is a consequence of Corollary 12.
Finally steps (6) and (7) are consequences of Corollary 7 and Proposition 14.

This algorithm works quite fast. The following self-explanatory example pro-
duced with the already mentioned package on numerical semigroups [4] should
be convincing. The time is measured inGAP units. We can observe that for this
example (wherea, b andc were (pseudo)-randomly choosen) the time consumed
using our algorithm to compute the Frobenius number is insignificant. This is not
the case for the time consumed to compute the list of elements of the semigroup up
to b.

Example18. SmallElementsOfNumericalSemigroup(S) returns the list of ele-
ments of the semigroupS not greater than the Frobenius number+1. (It is readily
obtained from the list of elements not greater thanb, which is first computed.)

gap> a := 7957;;b := 733778;;c := 1257;;

gap> S := NumericalSemigroup("propmodular",a,b,c);

<Proportionally modular numerical semigroup satisfying

7957x mod 733778 <= 1257x >

gap> FrobeniusNumberOfNumericalSemigroup(S);

553

gap> time;

0

gap> L := SmallElementsOfNumericalSemigroup(S);;time;

2244

gap> L[Length(L)]-1;

553

4. S 

This section starts with a proposition that gives an upper bound forξ. It will be
used to prove Theorem 22 which gives a formula to compute the Frobenius number
of a large family of proportionally modular Diophantine inequalities.

Proposition 19. ξ ≤
⌊
a− a

c +
a(a−c)

bc

⌋
+ 1.

Proof. By Remark 4,a
(
b−

⌊
(c+t)b

a

⌋
− 1

)
modb = (c + t + 1)b − a

(⌊
(c+t)b

a

⌋
+ 1

)
.

Thusb −
⌊

(c+t)b
a

⌋
− 1 < S(a,b, c) if and only if (c + t + 1)b − a

(⌊
(c+t)b

a

⌋
+ 1

)
>

c
(
b−

⌊
(c+t)b

a

⌋
− 1

)
, which is equivalent to (t + 1)b > (a− c)

(⌊
(c+t)b

a

⌋
+ 1

)
.

Let us now see that ift > a− c+ a(a−c)
bc −

a
c , then (t + 1)b > (a− c)

(⌊
(c+t)b

a

⌋
+ 1

)
.

It suffices to show that (t + 1)b > (a − c)
(

(c+t)b
a + 1

)
, since

⌊
(c+t)b

a

⌋
≤

(c+t)b
a . If

t > a−c+ a(a−c)
bc −

a
c , thent c

a >
(a−c)c

a + a−c
b −1. Hencet

(
1− a−c

a

)
> (a−c)c

a + a−c
b −1

and consequentlyt + 1 > a−c
a t + (a−c)c

a + a−c
b . So,t + 1 > (a − c)

(
t
a +

c
a +

1
b

)
and

therefore (t + 1)b > (a− c)
(

(c+t)b
a + 1

)
.
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We have shown that ift > a− c + a(a−c)
bc −

a
c , thenb−

⌊
(c+t)b

a

⌋
− 1 < S(a,b, c).

Therefore ifk > a+ a(a−c)
bc −

a
c , thenb−

⌊
kb
a

⌋
− 1 < S(a,b, c). By the observation

made after Theorem 5 we have thatξ ≤
⌊
a− a

c +
a(a−c)

bc

⌋
+ 1. �

Combining Propositions 14 and 19 we have the following result.

Corollary 20.
⌈
a− a

c −
a
b +

2a
cb

⌉
≤ ξ ≤

⌊
a− a

c +
a(a−c)

bc + 1
⌋
.

Remark21. Let α =
⌈
a− a

c −
a
b +

2a
cb

⌉
andβ =

⌊
a− a

c +
a(a−c)

bc + 1
⌋
. Observe that

β−α ≤
(
a− a

c +
a(a−c)

bc + 1
)
−
(
a− a

c −
a
b +

2a
cb

)
=

a(a−c)
bc +1+ a

b−
2a
cb <

a(a−c)
bc +2 since

a
b −

2a
cb =

a(c−2)
cb < 1. Thus

⌊
a(a−c)

bc

⌋
+2 is an upper bound to the number of tests that

have to be realized in Step (7) of Algorithm 17. Note also that ifa(a−c) < bc, then
β− α < 3. By Corollary 20 we deduce thatξ ∈ {α, α+ 1, α+ 2}. As a consequence
of Corollary 7 we may then state the theorem that follows which gives formulas
for the Frobenius number of a large number of proportionally modular numerical
semigroups. Notice thata(a− c) < bchappens quite frequently.

Theorem 22. If a(a− c) < bc andα =
⌈
a− a

c −
a
b +

2a
cb

⌉
, theng(S(a,b, c)) =

b−
⌊
αb
a

⌋
− 1 if αb moda+

⌊
αb
a

⌋
c > (c− 1)b+ a− c;

b−
⌊

(α+1)b
a

⌋
− 1 if αb moda+

⌊
αb
a

⌋
c ≤ (c− 1)b+ a− c < (α + 1)b moda+

⌊
(α+1)b

a

⌋
c;

b−
⌊

(α+2)b
a

⌋
− 1 otherwise.

Example23. In this example we use the notation of the above theorem.
(1) Let (a,b, c) = (13,70,4). Then S(a,b, c) = {0,6,7,11,12,13,14,15}∪{x ∈
Z | x ≥ 17}.

We haveα = 10. Asαb moda+
⌊
αb
a

⌋
c = 223> 219= (c− 1)b+ a− c,

it follows that g(S(a,b, c)) = b−
⌊
αb
a

⌋
− 1 = 16.

(2) Let (a,b, c) = (20,92,6). Then S(a,b, c) = {0,5,6} ∪ {x ∈ Z | x ≥ 10}.
Now we haveα = 17. Asαb moda+

⌊
αb
a

⌋
c = 472≤ 474= (c−1)b+a−c

and (c− 1)b+ a− c = 474< 508= (α + 1)b moda+
⌊

(α+1)b
a

⌋
c, we have

that g(S(a,b, c)) = b−
⌊

(α+1)b
a

⌋
− 1 = 9.

(3) Let (a,b, c) = (20,40,7). Then S(a,b, c) = {0} ∪ {x ∈ Z | x ≥ 2}.
Now, α = 17, αb moda +

⌊
αb
a

⌋
c = 238, (c − 1)b + a − c = 253

(α + 1)b moda +
⌊

(α+1)b
a

⌋
c = 252. We therefore have g(S(a,b, c)) =

b−
⌊

(α+2)b
a

⌋
− 1 = 1.

The following result shows another situation in which we are able to give a
formula for the Frobenius number.

Proposition 24. If b is a multiple of a, theng(S(a,b, c)) = b −
⌊
γb
a

⌋
− 1, where

γ =
⌊
a− a

c +
a2

bc −
a
b + 1

⌋
.
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Proof. As a dividesb, we have thatkbmoda +
⌊

kb
a

⌋
c > (c − 1)b + a − c if and

only if kb
a c > (c− 1)b+ a− c, which is equivalent tok > a− a

c +
a2

bc −
a
b. Applying

Corollary 7 we have thatξ =
⌊
a− a

c +
a2

bc −
a
b + 1

⌋
. �

Observing that for (a,b, c) = (20,40,7) one has
⌊
a− a

c +
a2

bc −
a
b + 1

⌋
= 19, Ex-

ample 23(3) can also be seen as an example of application of previous proposition.
This section ends with a new lower bound for the Frobenius number of S(a,b, c).

Combined with the upper bound given by Lemma 13 we may state the following.

Proposition 25.
⌈

b−a
c −

b
a

⌉
≤ g(S(a,b, c)) ≤

⌊
b−2

c

⌋
.

Proof. By Corollary 7 we know that g(S(a,b, c)) = b −
⌊
ξb
a

⌋
− 1 and by Proposi-

tion 19 we know thatξ ≤ a− a
c +

a(a−c)
bc + 1. Therefore g(S(a,b, c)) ≥ b− ξba − 1 ≥

b −
b
(
a− a

c+
a(a−c)

bc +1
)

a − 1 = b
c −

a−c
c −

b
a − 1 = b

c −
a
c −

b
a. The other inequality was

given in Lemma 13. �

Example26. The last theorem guarantees that the g(S(33,219,6)) lies between 25
and 36. Sincea(a− c) < bc, we could use Theorem 22 and get g(S(33,219,6)) =
33.
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