ON THE FROBENIUS NUMBER OF A PROPORTIONALLY
MODULAR DIOPHANTINE INEQUALITY

M. DELGADO AND J. C. ROSALES

AsstracT. We give an algorithm to compute the greatest integer that is not solu-
tion of a Diophantine inequality of the foraaxmodb < cx. As a consequence
we obtain, for various cases, a formula, functiorag andc, for that number.

1. INTRODUCTION

Given two non negative integeesandb, with b # 0, we denote bya modb
the remainder of the division @ by b. A proportionally modular Diophantine
inequalityis an expression of the forexmodb < cx, wherea is a non negative
integer,b andc are positive integers. In [8] it is shown that the se&, $(c) of
integer solutions of the former inequality is a numerical semigroup, that is, it is
a subset of the saf of the non negative integers that is closed under addition,
contains 0 and whose complemeniNris empty or finite.

If Sis a numerical semigroup, then the greatest integer that is ntisnan
important invariant os which is called thé-robenius numbeof S and is denoted
by g(S). This invariant has been widely studied in the literature (see, for example,
[1, 2, 3,5, 10]). The reader may find many other bibliographic references as well as
results related to the problem of determining the Frobenius number of a numerical
semigroup in [6].

Itis an open problem to find a formula that determines g(%()) as a function
of a, b andc. For the case = 1 some progress was made in [9] and [7]. Our main
goal in this paper is to give an algorithm (Algorithm 17) to compute &(8(€))
from a, b andc in an dficient way. The theoretical basis of that algorithm is
Theorem 5 which gives a particular form for gédlg, ¢)). As a consequence of our
work we obtain Theorem 22 which gives a formula for the Frobenius number of a
large family of proportionally modular Diophantine inequalities.

As usual, for a rational numbey[r] denotes the least integer not smaller than
and|r] denotes the greatest integer not bigger than

We benefited from the computations done witGaP [11] package on numer-
ical semigroups still under development [4] to get the necessary intuition to con-
jecture some of the results proved here. Furthermore, this software was used to
produce some of the examples presented.
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2. THE MAIN RESULT

As the inequalityax modb < cx has precisely the same integer solutions than
the inequality € modb)x modb < cx, we do not loose generality by supposing
thata < b. If ¢ > a, then S&, b, c) = N, thus we may also suppose tlat a.

From now on, unless otherwise stated, we will supposeatiaandc are posi-
tive integers satisfying < a < b.

The following proposition has as a consequence that we may also suppose that

b+c

Proposition 1. S@ b,c) =Sb+c—-ab,c).

Proof. We start proving that &(b,c) € S+ c - a,b,c). If x € S, b,c), then
axmodb < cx. Therefore, there exisf,r € Z such thaax=gb+r,with0<r <
cx Thusp+c—-a)x=(b+c)x—gb-r = (x—gb+cx—r,withO<cx-r <cx
It follows that (0 + ¢ — @)x modb < cxand consequently e S(b+ ¢c— a, b, ¢).

Now note thatt < b+ ¢ — a < b. Repeating the preceding reasoning we have
that Sb+ c—a,b,c) C S, b, c). |

Our next goal is to prove Theorem 5. To thi$eet we need some preliminary
results.

Lemma 2. Let a and b be positive integers such that &. Then, for each integer
k there exists exactly one integeg such that fa — k) — a < aax < b(a - k).
Moreoveray = b — L%’J -1

Proof. As 0 < kbmoda < a, we have thab(a— k) —a < b(a—k) —a+ kbmoda <

b(a - k). Thereforeb(a— k) —a < ab-a-|¥]a < b(a- k), sincekb =¥ |a +
kbmoda. Consequentiyp(a-K) —a < a(b-|¥|-1) < b(a-k). Uniqueness
follows from the fact that the s¢b(a — k) —a,b(a—-k) —a+1,...,b(a—- k) — 1}
consists ofa consecutive integers and therefore contains exactly one multiple of
a. o

As an immediate consequence of the uniqueness of the preceding lemma
we get the following:

Lemma 3. Let a and b be positive integers such that & and let k be an integer.
Then gb - | 2| - 1) is the greatest multiple of a in the sé(a - k- 1), b(a— k-
D+1,...,b(a-k)-1}.

Remark4. Observe that for an integes; if b(a— k — 1) < ax < b(a — k), then
|2] = a- k- 1. Thusaxmodb = ax— b(a- k - 1). In particular, by Lemma 2,
we have the following equalities which will be used in the sequel:

o - o2

(k + 1)b—a(

—1)—b(a—k—1)

.

kb

kbmoda+ b - a.



ON THE FROBENIUS NUMBER OF A PROPORTIONALLY MODULAR DIOPHANTINE INEQUALITY3

Now we are ready to prove the announced result concerning the form of the
Frobenius number of &(b, c).

Theorem 5. g(S@.b.) € {b- | %] -1 ke (1....,a-1}.

Proof. Let g = g(Sf@, b, c)). Theng ¢ S(a, b, c) and thereforey < b, since every
integer greater than or equal boclearly belongs to $(b, c). Thus there exists
ke{0.1,...,a- 1} such that(a—k-1) <ag<b@-kK. If g < b- || -1,
theng+1 < b- [ J 1 and applying Lemma 2 we have that — k — 1) <
a(g+ 1) < b(a— k). By Remark 4 we have tha{g + 1) modb = a(g+ 1) — b(a -
k—1)=ag-bla-k-1)+a=agmodb+a. Asg ¢ S(@,b,c),agmodb > cg
and thereforea(g + 1) modb > cg+ a > c¢(g + 1), sincea > c. Consequently
g+1¢ S(, b, c), contradicting the fact thatis the Frobenius number of &0, c).
Thusg > b - ['%abJ — 1 and applying Lemma 3 we have thp& b - {k—abJ - 1.
Finally, note that itk = 0, theng = b — 1. This implies that(b — 1) modb >
c(b—1) > b-1, which is absurd. Therefokemust not be 0 and this completes the
proof. O

From the preceding theorem it follows that g§S, c)) = b — [%’J — 1, where

¢=minfke(l,...,a-1}|b-|¥|-1¢ S@b,c)}. The following lemma wil
allow us to reformulate this fact.

Lemma 6. Let ke {1,...,a— 1}). Then b— {k—abJ —1 ¢ S(@b,c) if and only if
komoda+|¥|c> (c- 1)b+a c.

Proof. Observe thab—| 2| -1 ¢ S(a,b, c)if and only ifa(b - | 2| - 1) modb >
c(b-|%] - 1). By Remark 4 we know that(b - | 2| - 1) modb = kbmoda +

b-a. Thusb-|¥|-1¢ S( b, c)ifand only ifkbmoda+b-a> c(b- ¥ | - 1)
andthls|seqU|vaIenttbbmoda+[ Jc>(c b+a-c O

As a consequence we have thattheeet{1,...,a— 1} |b- | ¥| - 1 ¢ S(@ b, c)}

is equal to the sefke (1,...,a-1}| kbmoda+{ blc> (c-1b+a-cf and
therefore we can reformulate the observation made after Theorem 5 as follows:

Corollary 7. g(S@,b,c)) =b —f—bJ—l where
g=min{ke(l....a-1} | kbmoda+|®|c> (c-1)b+a-c}.

The preceding corollary gives an algorithm to compute the Frobenius number of
a proportionally modular Diophantine inequality. Note that one has to do at most
a— 1 tests and that we may, by Proposition 1, supposeeﬂﬁf’;—c. Next we will
work towards an improvement of this algorithm. In next section we give lower
bounds folg.
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3. THE ALGORITHM

In what follows we will use the notation

&= min{ke{l,...,a—l}|kbmoda+{%3

c> (c—l)b+a—c}.

Recall that by Corollary 7 we know that géSb, ¢)) = [be 1 and it follows
from Lemma 6 that = min{k e {1,...,a— 1} |b-|¥| - 1 ¢ S@ b, c)}.

Proposition 8. ¢ > ¢ — 1+ 229,

Proof. By Remark 4 we have that(b - [—J - ) modb = (£ +1)b- a([ aJ

As(b- [‘be 1) ¢ S(a.b. c), we have thatg(+ 1)b— a(be +1)>c(b- [be 1)
and thereforeg+ 1-¢)b > (a- ) (| £ J +1). From¢ > 1 andb > ait follows that

(é+1-cb>2@-c),thusé >c+ 2(abc) 1. o
Corollary 9. £ > c.

Proof. It suffices to apply Proposition 8 and observe ttlatz(a—t;c) — 1 is strictly
greater tharc — 1. -

Note that by Proposition 1 we may suppose that b%c Under this condition
we have thaf®@9 < 229 _ 1t -1 Consequently it < %€, then the
bound given by Proposition 8 is not better than the bound given by Corollary 9,
which has the advantage of being very simple.

As an immediate consequence of Corollaries 7 and 9 we have the following:

Corollary 10. g(S@.b.c)) = b—|2L| - 1if and only if comoda+ |2 |c > (c -
b+a-c.
Examplell Let (a, b, c) = (7,34,6). Thencb moda+[ Jc =175and¢-1)b+
a-c = 171. We thus have g(8(,c)) = b- | 2| - 1 = 4. One can confirm this
value by observing that §(b,c) = {0} U {x e Z | x> 5}.

Combining Corollaries 7 and 9 we have g§S{,c)) = b — [be 1, were¢ =

min{ke{ ,a- 1}|kbmoda+[ Jc>(c Db+a- c} Note that whert =
a—lwehavq-‘_a landwherc =a-2wehavet =a-2oré =a-1. We
get then immediately the following result.

Corollary 12. (1) g(S@.b.a-1))=b-| &2 -1,
(2) 9(Sl.b,a-2)) =

b-|E&2|-1 if (a-2bmoda+|&2L|(a-2)> (@a-3)hb+2

a

b— {(a‘l)bj -1 otherwise
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Our next goal is to prove Proposition 14 where we will give a new lower bound
for £. As we will then see in Fact 16 that bound is better than the one given by
Corollary 9. We start with a simple observation given by the following lemma.

Lemma 13. g(S@, b, ¢)) < 22.

Proof. Letg = g(S@,b,c)). Asg ¢ S(@ b,c), agmodb > cg. Thereforecg <
b-2. O

Proposition 14. ¢ > [a— a_a, g_la)] .

Proof. By Corollary 7 we have that g(8(b, ¢)) = b—[%’J—l. Applying Lemma 13
we have thab - bJ ~ 1< 22 and consequently— £ — 1 < =2 |t follows that

2a
§za—c b+Cb O

As an immediate consequence of Corollary 7 and Proposition 14 we have the
following result.

Corollary 15. Leta = [a— 2 - 2 + Z]. Theng(S@.b.c)) = b— | 2| - 1ifand
only if ab moda + ["bJ c>(c-1)b+a-c.

Recall that Corollary 12 gives us a formula for the Frobenius numberm# S(
1,b,c). We observe next that, when=+ c + 1, the bound given by Proposition 14
improves the bound given by Corollary 9.

Fact 16. Ifa # c + 1, then[a— a_a, gﬁ] > C.

Proof. We consider first the case= 1.
lfc=1thera-2-2+28 -g-a-2+2 -2 Thereforqra— a_2y g—;ﬂ =1.
Let us now suppose that> 2 anda > ¢ + 2. Thena(c -1 =>(c+2)(c-1)=

c2+c-2> c?and therefora— 2 > c. As@ - & = (Cgﬁ)a < 1, we have that

a
a_E_(‘_ )>c—1,whence{a—5—5+cb]zc. o

As a summary of the results shown, we give the following algorithm to compute
the Frobenius number of a proportionally modular Diophantine inequality.

Algorithm 17. INPUT: positive integers & and c.
OUTPUT: g(S@, b, c)).
(1) Ifa<c,thenreturn —1.
(2) a:=amodb.
(3) Ifa=0, thenreturn —1.
(4) Ifa> ¢ thena=b+c-a.
(5) Ifa= c+ 1, thenreturn g = b— | &0 | — 1,
(6) Computer =[a-2 -2+ 2],
(7) whlleabmoda+[ Jc< (c-1b+a-cdoa:=a+1.

(8) return b — [;J -1
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The observations made at the beginning of Section 2 and the fact Mjatg({1
justify the steps (1), (2), (3) and (4). Step (5) is a consequence of Corollary 12.
Finally steps (6) and (7) are consequences of Corollary 7 and Proposition 14.

This algorithm works quite fast. The following self-explanatory example pro-
duced with the already mentioned package on numerical semigroups [4] should
be convincing. The time is measured@AP units. We can observe that for this
example (where@, b andc were (pseudo)-randomly choosen) the time consumed
using our algorithm to compute the Frobenius number is insignificant. This is not
the case for the time consumed to compute the list of elements of the semigroup up
tob.

Examplel18. SmallElementsOfNumericalSemigroup(S) returns the list of ele-
ments of the semigroup not greater than the Frobenius numbdér. (It is readily
obtained from the list of elements not greater thawhich is first computed.)
gap> a := 7957;;b := 733778;;c := 1257;;

gap> S := NumericalSemigroup('propmodular",a,b,c);
<Proportionally modular numerical semigroup satisfying

7957x mod 733778 <= 1257x >

gap> FrobeniusNumberOfNumericalSemigroup(S);

553

gap> time;

0

gap> L := SmallElementsOfNumericalSemigroup(S);;time;

2244

gap> L[Length(L)]-1;

553

4. SOME CONSEQUENCES

This section starts with a proposition that gives an upper bound fiomwill be
used to prove Theorem 22 which gives a formula to compute the Frobenius number
of a large family of proportionally modular Diophantine inequalities.

Proposition 19. ¢ < [a— a, %J 1

C

Proof. By Remark 4,a(b— [@’J - ) modb = (c+t+ 1)b— a([(°+t)bJ + 1)
Thusb — [©22] - 1 ¢ S@b.¢) if and only if ¢+t + )b — a(| L] + 1) >
c(b- 2] — 1), which is equivalent tot(+ 1)b > (a—¢) (| €2 | + 1).

Let us now see that if> a—c+ 29 - 2 then ¢+ 1)b > (a-c) (| 2] + 1),
It suffices to show thatt(+ 1)b > (a - c)((c“)b +1), since| &R | < CHRf
t>a-c+229_2a thentS > @AC ac_ g Henca(l— - )> (a‘°)0+ ae_q
and consequentl'y+ 1> &Lty (a‘c)c + 2 Sot+1> (a- c)( B) and
therefore{+ 1)b > (a—c) (@’ + 1).



ON THE FROBENIUS NUMBER OF A PROPORTIONALLY MODULAR DIOPHANTINE INEQUALITY

We have shown that if > a— ¢ + %52 — &, thenb - | 22| -1 ¢ S(a,b,0).
Therefore ifk > a+ 229 — 2 thenb - [—J —1¢ S(ab,c). By the observation

“bec
a(a-c)

made after Theorem 5 we have tfat L &+ 5~ J +1. O

Combining Propositions 14 and 19 we have the following result.

Corollary 20. [a-2- 2+ Z] <¢<|a-2+ 2D 4 1],

C

Remark?l Leta =[a-2-2+ 2] andg = |a- 2+ 2&9 + 1|, Observe that

C
B— a<( _-+a(%cc)+1) (a—5—5+§g)—a(f,cc)+l+——§—g<a(a 912 since

a_2_atd o1 Thug 29| 12 is an upper bound to the number of tests that
have to be realized in Step (7) of Algorithm 17. Note also thafaf- c) < bc, then

B —a < 3. By Corollary 20 we deduce théte {a, o + 1, @ + 2}. As a consequence

of Corollary 7 we may then state the theorem that follows which gives formulas
for the Frobenius number of a large number of proportionally modular numerical

semigroups. Notice thai(a — c) < bchappens quite frequently.

Theorem 22. If a(a—c) < bc ande = [a- & -  + 2], theng(S(@, b, ¢)) =

c

b-|2] -1 if ebmoda+|%®|c>(c-1b+a-c

b— || 1 if abmoda+|%®|c<(c-1)b+a-c< (a+)bmoda+| L]

b— [%’J -1 otherwise

Example23. In this example we use the notation of the above theorem.

(1) Let @ b,c) = (13, 70,4). Then S& b, ) = {0,6,7,11 12 13, 14, 15}U{x
7| x> 17).
We haver = 10. Asebmoda+ |4 |c = 223> 219= (c- 1)b+a-c,

it follows that g(Sé.b,¢)) = b- | 2| - 1= 16.
(2) Let @ b,c) =(20,92,6). Then S§,b,c) ={0,5,6} U {xe Z| x> 10}.

Now we haver = 17. Aseb moda+| %2 |¢ = 472< 474= (c-1)b+a-c
and €— 1)b+a- ¢ = 474< 508 = (¢ + )b moda + | £ ¢, we have
that g(Sé.b.c) =b— | &2 —1=9,

(3) Let (@ b,c) =(20,40,7). Then S§, b,c) = {0} U{XxeZ| x> 2}.
Now, @ = 17, ebmoda + |@|c = 238, ¢ - )b+ a-c = 253

(@ + Ibmoda + | &P |c = 252, We therefore have g(b.c)) =
{420 .

The following result shows another situation in which we are able to give a
formula for the Frobenius number.

Proposition 24. If b is a multiple of a, thery(S@, b,c)) = b - [%’J -1, where

y=[a—%+§—i—%+1j.
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Proof. As a dividesb, we have thakbmoda + |

only if '%bc > (c—-1)b+a-c, whichis equivalent t& > a— 2 + g—i — 2. Applying

Corollary 7 we have that = [a- 2 + & _a, 1]. O

Jc> (c-1b+a-cifand

Observing that ford, b, ¢) = (20,40, 7) one haga - 2 + & _a, 1] =19, Ex-
ample 23(3) can also be seen as an example of application of previous proposition.

This section ends with a new lower bound for the Frobenius numberolb 3.
Combined with the upper bound given by Lemma 13 we may state the following.

Proposition 25. [b;c"" - l—ﬂ < g(S@b,0) < [b;CZJ .

a

Proof. By Corollary 7 we know that g($(b,c)) = b — [‘%bJ — 1 and by Proposi-
tion 19 we know that < a— & + 29 1 1 Therefore g(¥b,c)) >b-L2-1>

b a—%+a(a;°)+1 B . .
b - % -1=2_2c_b_13-b_2a_Db The otherinequality was
given in Lemma 13. O

Example26. The last theorem guarantees that the g(S£29 6)) lies between 25
and 36. Sinca(a - ¢) < bc, we could use Theorem 22 and get g(S@®, 6)) =
33.
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