
EXTREMAL BEHAVIOUR OF CHAOTIC DYNAMICS

JORGE MILHAZES FREITAS

Abstract. We present a review of recent results regarding the existence of Extreme Value
Laws for stochastic processes arising from dynamical systems. We gather all the conditions
on the dependence structure of stationary stochastic processes in order to obtain both the
distributional limit for partial maxima and the convergence of point processes of rare
events. We also discuss the existence of clustering which can be detected by an Extremal
Index less than 1 and relate it with the occurrence of rare events around periodic points.
We also present the connection between the existence of Extreme Value Laws for certain
dynamically defined stationary stochastic processes and the existence of Hitting Times
Statistics (or Return Times Statistics). Finally, we make a complete description of the
extremal behaviour of expanding and piecewise expanding systems by giving a dichotomy
regarding the types of Extreme Value Laws that apply. Namely, we show that around
periodic points we have an Extremal Index less than 1 and at very other point we have
an Extremal Index equal to 1.

1. Introduction

The purpose of this work is to compile a series of recent results regarding the theory
of extreme events for dynamical systems. Extreme means that we are interested in the
occurrence of rare but possibly catastrophic events. This motivates its applications to
situations where risk assessment is rather crucial.

Instead of focusing on means and average behaviour of the system, often ruled by central
limit theorems, in this approach, we are interested on the largest (or smallest) observations
of sample data in order to understand the extremal behaviour of the system by obtaining
corresponding distributional limits.

The starting point of our analysis is a stationary stochastic process arising from a chaotic
dynamical system simply by evaluating an observable function along the orbits of the
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system, as explained in Section 3, below. Then the extremal behaviour is analysed by
studying the distributional limit of the partial maximum of such stochastic processes or
by investigating the limit of point processes counting the number of exceedances of high
thresholds during some time interval.

In the context of dynamical systems, the study of Extreme Value Laws (EVL) is a quite
recent topic. It appeared first in the pioneering paper of Collet, [16], which has been an
inspiration for plenty of our research on this issue. Then the subject was further addressed
and developed in [25, 26, 54, 27, 28, 33, 38, 30, 29, 39, 22, 20, 21, 49, 41, 8, 19]. The main
results stated here are spread over the papers [26, 27, 28, 30, 29, 8]. We highlight the
connection established in [27] between the existence of EVL and the existence of Hitting
Times Statistics (HTS), which has to do with distributional limits for the elapsed time
before the orbits of the system hit some shrinking targets in the phase space. This other
approach to the study of occurrence of rare events is tied with recurrence and the existence
of Return Times Statistics (RTS), which has received plenty of attention from dynamicists
since the early 1990s.

The structure of this paper is as follows. In Section 2, we introduce the basic definitions
and classical results regarding the theory of EVL for general stochastic processes. In Sec-
tion 3, we give conditions in order to obtain EVL both in the absence and presence of
clustering; we define the rare events point process and also give conditions for its con-
vergence in distribution to a standard Poisson process (no clustering) or to a compound
Poisson distribution (with clustering); we introduce a new notation and prove some ab-
stract lemmata that will allow us to make a common proof of the existence of EVL both in
the presence and absence of clustering (Section 3.4). In Section 4, we give the link between
EVL and HTS for general equilibrium states as in [28]. In Section 5, we start by making
a a brief literature review where we discuss the systems to which we can apply the theory
and prove the existence of laws of rare events. Then, we consider the case of expanding
and piecewise expanding maps for which we can actually prove a dichotomy regarding the
type of limiting law we get, depending on whether the action develops around periodic or
non periodic points. Moreover, in Section 5.1 we show thoroughly how to check the several
mixing conditions introduced in Section 3 from sufficiently fast decay of correlations.

2. Extreme values – definitions and concepts

Let X0, X1, . . . be a stationary stochastic process. We denote by F the cumulative distri-
bution function (d.f.) of X0, i.e., F (x) = P(X0 ≤ x). Given any d.f. F , let F̄ = 1−F and
uF denote the right endpoint of the d.f. F , i.e., uF = sup{x : F (x) < 1}. We say we have
an exceedance of the threshold u < uF whenever

U(u) := {X0 > u} (2.1)

occurs.
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We define a new sequence of random variables M1,M2, . . . given by

Mn = max{X0, . . . , Xn−1}. (2.2)

Definition 1. We say that we have an Extreme Value Law (EVL) for Mn if there is a
non-degenerate d.f. H : R → [0, 1] with H(0) = 0 and, for every τ > 0, there exists a
sequence of levels un = un(τ), n = 1, 2, . . ., such that

nP(X0 > un)→ τ, as n→∞, (2.3)

and for which the following holds:

P(Mn ≤ un)→ H̄(τ), as n→∞. (2.4)

where the convergence is meant at the continuity points of H(τ).

The motivation for using a normalising sequence (un)n∈N satisfying (2.3) comes from the
case when X0, X1, . . . are independent and identically distributed (i.i.d.).

2.1. The i.i.d. setting and the classical results. In the i.i.d. setting, it is clear that
P(Mn ≤ u) = (F (u))n, where F is the d.f. of X0, i.e., F (x) := P(X0 ≤ x). Hence,
condition (2.3) implies that

P(Mn ≤ un) = (1− P(X0 > un))n ∼
(

1− τ

n

)n
→ e−τ , (2.5)

as n→∞. Moreover, the reciprocal is also true (see [46, Theorem 1.5.1] for more details).
Note that in this case H(τ) = 1− e−τ is the standard exponential d.f.

Moreover, the sequences of real numbers un = un(τ), n = 1, 2, . . ., are usually taken to be
one parameter linear families like

un = y/an + bn, (2.6)

where y ∈ R and an > 0, for all n ∈ N. In fact, in the classical theory, one considers the
convergence of probabilities of the form

P(an(Mn − bn) ≤ y).

In this case, the Extremal Types Theorem ([24, 32]) says that, whenever the variables Xi

are i.i.d, if for some constants an > 0, bn, we have

P(an(Mn − bn) ≤ y)→ G(y), (2.7)

where the convergence occurs at continuity points of G, and G is non degenerate (meaning
that there is no y0 ∈ R such that G(y0) = 1 and G(y) = 0, for all y < y0), then G(y) =
e−τ(y), where τ(y) is of one of the following three types (for some α > 0):

τ1(y) = e−y for y ∈ R, τ2(y) = y−α for y > 0 and τ3(y) = (−y)α for y ≤ 0. (2.8)

We emphasise that as observed in [32], for i.i.d. sequences of random variables, the limiting
distribution type of the partial maxima is completely determined by the tail of the d.f. F .
Namely, as can also be found in [46, Theorem 1.6.2], in order to obtain the respective
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domain of attraction for maxima we have the following sufficient and necessary conditions
on the tail of the d.f. F :

Type 1 G(y) = e−τ1(y) (Gumbel) iff there exists some strictly positive function h : R → R
such that for all y ∈ R

lim
s→uF

F̄ (s+ yh(s))

F̄ (s)
= e−y; (2.9)

Type 2 G(y) = e−τ2(y) (Fréchet) iff uF = +∞ and there exists β > 0 such that for all y > 0

lim
s→uf

F̄ (sy)

F̄ (s)
= y−β; (2.10)

Type 3 G(y) = e−τ3(y) (Weibull) iff uF < +∞ and there exists β > 0 such that for all y > 0

lim
s→0

F̄ (uF − sy)

F̄ (uF − s)
= yβ (2.11)

Moreover, in [46, Corollary 1.6.3] one can find specific formulas for the normalising con-
stants an and bn so that the respective extreme limit laws apply.

2.2. Stationary sequences and dependence conditions. When X0, X1, X2, . . . are not
independent but satisfy some mixing condition D(un) introduced by Leadbetter in [44] then
something can still be said about H. Let Fi1,...,indenote the joint d.f. of Xi1 , . . . , Xin , and
set Fi1,...,in(u) = Fi1,...,in(u, . . . , u).

Condition (D(un)). We say that D(un) holds for the sequence X0, X1, . . . if for any inte-
gers i1 < . . . < ip and j1 < . . . < jk for which j1 − ip > m, and any large n ∈ N,∣∣Fi1,...,ip,j1,...,jk(un)− Fi1,...,ip(un)Fj1,...,jk(un)

∣∣ ≤ γ(n, t),

where γ(n, tn) −−−→
n→∞

0, for some sequence tn = o(n).

If D(un) holds for X0, X1, . . . and the limit (2.4) exists for some τ > 0 then there exists
0 ≤ θ ≤ 1 such that H̄(τ) = e−θτ for all τ > 0 (see [45, Theorem 2.2] or [46, Theorem 3.7.1]).

Definition 2. We say that X0, X1, . . . has an Extremal Index (EI) 0 ≤ θ ≤ 1 if we have
an EVL for Mn with H̄(τ) = e−θτ for all τ > 0.

The notion of the EI was latent in the work of Loynes [48] but was established formally by
Leadbetter in [45]. It gives a measure of the strength of the dependence of X0, X1, . . ., so
that θ = 1 indicates that the process has practically no memory while θ = 0, conversely,
reveals extremely long memory. Another way of looking at the EI is that it gives some
indication of how much exceedances of high levels have a tendency to “cluster”. Namely,
for θ > 0 this interpretation of the EI is that θ−1 is the mean number of exceedances of a
high level in a cluster of large observations, i.e., is the “mean size of the clusters”.
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In fact, as shown in [44], if D(un) holds and in addition an anti clustering condition D′(un)
(see definition below) also holds, one can show that the EI is 1. Let (kn)n∈N be a sequence
of integers such that

kn →∞ and kntn = o(n). (2.12)

Condition (D′(un)). We say that D′(un) holds for the sequence X0, X1, X2, . . . if there
exists a sequence {kn}n∈N satisfying (2.12) and such that

lim
n→∞

n

bn/knc∑
j=1

P(X0 > un, Xj > un) = 0. (2.13)

Hence, under conditions D(un) and D′(un) we have an EVL for Mn such that H̄(τ) = e−τ ,
as in the independent case.

Condition D(un) can be seen as a long range mixing condition, requiring that two events
corresponding to no exceedances among two groups of random variables, separated by
a time gap, become more and more independent as the size of the gap increases. On
the other hand, condition D′(un) is a short range dependence condition in the sense that
the occurrence of an exceedance of high threasholds should not be “dependent” of the
occurrence of another nearby exceedance, in the time line. In other words, if we break the
first n random variables into blocks of size bn/knc, then D′(un) restricts the existence of
more than one exceedance in each block.

3. Extreme values for dynamically defined stochastic processes

Take a system (X ,B,P, f), where X is a Riemannian manifold, B is the Borel σ-algebra,
f : X → X is a measurable map and P an f -invariant probability measure.

Suppose that the time series X0, X1, . . . arises from such a system simply by evaluating a
given observable ϕ : X → R∪{±∞} along the orbits of the system, or in other words, the
time evolution given by successive iterations by f :

Xn = ϕ ◦ fn, for each n ∈ N. (3.1)

Clearly, X0, X1, . . . defined in this way is not an independent sequence. However, f -
invariance of P guarantees that this stochastic process is stationary.

We assume that the r.v. ϕ : X → R ∪ {±∞} achieves a global maximum at ζ ∈ X (we
allow ϕ(ζ) = +∞). We also assume that ϕ and P are sufficiently regular so that:

(R1) for u sufficiently close to uF := ϕ(ζ), the event

U(u) = {X0 > u} = {x ∈ X : ϕ(x) > u}

corresponds to a topological ball centred at ζ. Moreover, the quantity P(U(u)), as
a function of u, varies continuously on a neighbourhood of uF .
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(R2) If ζ ∈ X is a repelling periodic point, of prime period1 p ∈ N, then we have that the
periodicity of ζ implies that for all large u, {X0 > u}∩ f−p({X0 > u}) 6= ∅ and the
fact that the prime period is p implies that {X0 > u} ∩ f−j({X0 > u}) = ∅ for all
j = 1, . . . , p−1. Moreover, the fact that ζ is repelling means that we have backward
contraction implying that there exists 0 < θ < 1 so that

⋂i
j=0 f

−jp(X0 > u) is
another ball of smaller radius around ζ with

P

(
i⋂

j=0

f−jp(X0 > u)

)
∼ (1− θ)iP(X0 > u),

for all u sufficiently large.

We are interested in studying the extremal behaviour of the stochastic process X0, X1, . . .
which is tied with the occurrence of exceedances of high levels u. The occurrence of an
exceedance at time j ∈ N0 means that the event {Xj > u} occurs, where u is close to uF .
Observe that a realisation of the stochastic process X0, X1, . . . is achieved if we pick, at
random and according to the measure P, a point x ∈ X , compute its orbit and evaluate
ϕ along it. Then saying that an exceedance occurs at time j means that the orbit of the
point x hits the ball U(u) at time j, i.e., f j(x) ∈ U(u).

3.1. EVLs for dynamical stochastic processes in the absence of clustering. The
first natural approach to study the extremal properties of stochastic processes defined as
in (3.1), would be to apply the dependence conditions of Leadbetter for general stationary
sequences described in Section 2.2. However, since the rates of mixing for dynamical
systems are usually given by decay of correlations of observables in certain given classes of
functions, it turns out that condition D(un) is too strong to be checked for chaotic systems
whose mixing rates are known only through decay of correlations (see Section 5.1 for more
details). For that reason, motivated by Collet’s work [16], in [26] the authors suggested
a condition D2(un) which together with D′(un) was enough to prove the existence of an
exponential EVL (H̄(τ) = e−τ ) for maxima around non-periodic points ζ.

Condition (D2(un)). We say that D2(un) holds for the sequence X0, X1, . . . if for all `, t
and n

|P (X0 > un ∩max{Xt, . . . , Xt+`−1 ≤ un})− P(X0 > un)P(M` ≤ un)| ≤ γ(n, t), (3.2)

where γ(n, t) is decreasing in t for each n and nγ(n, tn) → 0 when n → ∞ for some
sequence tn = o(n).

Condition D2(un) is much weaker than the original D(un), and it is easy to show that it
follows easily from sufficiently fast decay of correlations (see Section 5.1 ).

Theorem 1 ( [26, Theorem 1]). If conditions D2(un) and D′(un) hold for X0, X1, . . . then
there exists an EVL for Mn and H(τ) = 1− e−τ .

1i.e., the smallest n ∈ N such that fn(ζ) = ζ. Clearly f ip(ζ) = ζ for any i ∈ N.
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Observe that while D(un) imposes some rate for the dependence of two blocks of r.v.
separated by a time gap which is independent of the size of the blocks, condition D2(un)
requires something similar but only when the first block is reduced to one r.v. only. This
detail turns out to be crucial when proving D2(un) from decay of correlations as can be
seen in Section 5.1. The interesting fact is that we can replace D(un) by D2(un) in [45,
Theorem 1.2] and the conclusion still holds. The idea is that condition D′(un), instead
of being used once as in the original proof of Leadbetter, it is used twice. In one of the
instances it is used in conjunction with D2(un) to produce the same effect as D(un) alone.

3.2. Clustering and periodicity. In the results mentioned above, condition D′(un) pre-
vented the existence of clusters of exceedances, which implies for example that the EVL
was a standard exponential H̄(τ) = e−τ . However, when D′(un) does not hold, clustering
of exceedances is responsible for the appearance of a parameter 0 < θ < 1 in the EVL
which now is written as H̄(τ) = e−θτ .

In [30], the authors established a connection between the existence of an EI less than 1 and
periodic behaviour. This was later generalised for rare events point processes in [29] . The
main obstacle when dealing with periodic points is that they create plenty of dependence
in the short range. In particular, using (R2) we have that for all u sufficiently large

P({X0 > u} ∩ {Xp > u}) ∼ (1− θ)P(X0 > u).

which implies that D′(un) is not satisfied, since for the levels un as in (2.3) it follows that

n

[n/kn]∑
j=1

P(X0 > un, Xj > un) ≥ nP(X0 > un, Xp > un) −−−→
n→∞

(1− θ)τ.

Recalling the discussion at the end of Section 3.1, condition D′(un) was essential to allow
the replacement of D(un) by D2(un) in order to use decay of correlations to get the result.
To overcome this difficulty around periodic points we make a key observation that roughly
speaking tells us that around periodic points one just needs to replace the topological ball
{X0 > un} by the topological annulus

Qp(u) := {X0 > u, Xp ≤ u}. (3.3)

Then much of the analysis works out as in the absence of clustering. Note that Qp(u)
is obtained by removing from U(u) the points that were doomed to return after p steps,
which form the smaller ball U(u) ∩ f−p(U(u)). Then, the crucial observation is that the
limit law corresponding to no entrances up to time n into the ball U(un) is equal to the
limit law corresponding to no entrances into the annulus Qp(un) up to time n.

In what follows for every A ∈ B, we denote the complement of A as Ac := X \ A. For
s ≤ ` ∈ N0, we define

Qp,s,`(u) =
s+`−1⋂
i=s

f−i(Qp(u))c, (3.4)
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which corresponds to no entrances in the annulus from time s to s+ `− 1. Sometimes to
abbreviate we also write: Q`(u) := Qp,0,`(u).

Theorem 2 ([30, Proposition 1]). Let X0, X1, , . . . be a stochastic process defined by (3.1)
where ϕ achieves a global maximum at a repelling periodic point ζ ∈ X , of prime period
p ∈ N, so that conditions (R1) and (R2) above hold. Let (un)n be a sequence of levels such
that (2.3) holds. Then,

lim
n→∞

P(Mn ≤ un) = lim
n→∞

P(Qn(un)).

Hence, the idea to cope with clustering caused by periodic points is to adapt conditions
D2(un) and D′(un), letting annuli replace balls. In order to make the theory as general
as possible, motivated by the above considerations for stochastic processes generated by
dynamical systems around periodic points, some abstract conditions were given in [30] to
prove the existence of an EI less than 1 for general stationary stochastic processes.

The first one establishes exactly the type of periodic behaviour assumed, namely:

Condition (SPp,θ(un)). We say that X0, X1, X2, . . . satisfies condition SPp,θ(un) for p ∈ N
and θ ∈ [0, 1] if

lim
n→∞

sup
1≤j<p

P(Xj > un|X0 > un) = 0 and lim
n→∞

P(Xp > un|X0 > un)→ (1− θ) (3.5)

and moreover

lim
n→∞

[n−1
p

]∑
i=0

P(X0 > un, Xp > un, X2p > un, . . . , Xip > un) = 0. (3.6)

Condition (3.5), when θ < 1, imposes some sort of periodicity of period p among the
exceedances of high levels un, since if at some point the process exceeds the high level
un, then, regardless of how high un is, there is always a strictly positive probability of
another exceedance occurring at the (finite) time p. In fact, if the process is generated by
a deterministic dynamical system f : X → X and f is continuous then (3.5) implies that
ζ is a periodic point of period p, i.e., fp(ζ) = ζ.

The next two conditions concern to the dependence structure of X0, X1, . . . and can be
described as being obtained from D2(un) and D′(un) by replacing balls by annuli.

Condition (Dp(un)). We say that Dp(un) holds for the sequence X0, X1, X2, . . . if for any
integers `, t and n

|P (Qp,0(un) ∩Qp,t,`(un))− P(Qp,0(un))P(Qp,0,`(un))| ≤ γ(n, t),

where γ(n, t) is non increasing in t for each n and nγ(n, tn) → 0 as n → ∞ for some
sequence tn = o(n).

As with D2(un), the main advantage of this condition when compared to Leadbetter’s
D(un) (or others of the same sort) is that it follows directly from sufficiently fast decay of
correlations as observed in Section 5.1, on the contrary to D(un).
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Assuming Dp(un) holds let (kn)n∈N be a sequence of integers such that (2.12) holds.

Condition (D′p(un)). We say that D′p(un) holds for the sequence X0, X1, X2, . . . if there
exists a sequence {kn}n∈N satisfying (2.12) and such that

lim
n→∞

n

[n/kn]∑
j=1

P(Qp,0(un) ∩Qp,j(un)) = 0. (3.7)

One of the main results in [30] is:

Theorem 3 ([30, Theorem 1]). Let (un)n∈N be such that (2.3) holds. Consider a stationary
stochastic process X0, X1, . . . satisfying SPp,θ(un) for some p ∈ N, and θ ∈ (0, 1). Assume
further that conditions Dp(un) and D′p(un) hold. Then

lim
n→∞

P(Mn ≤ un) = lim
n→∞

P(Qp,0,n(un)) = e−θτ . (3.8)

3.3. Point processes of rare events. If we enrich the process by considering multiple ex-
ceedances we are lead to point processes of rare events counting the number of exceedances
in a certain time frame. For every A ⊂ R we define

Nu(A) :=
∑

i∈A∩N0

1Xi>u.

In the particular case where A = I = [a, b) we simply write N b
u,a := Nu([a, b)). Observe

that N n
u,0 counts the number of exceedances amongst the first n observations of the process

X0, X1, . . . , Xn or, in other words, the number of entrances in U(u) up to time n. Also,
note that

{N n
u,0 = 0} = {Mn ≤ u} = {rU(u) > n} (3.9)

In order to define a point process that through (3.9) captures the essence of an EVL and
HTS, we need to re-scale time using the factor v := 1/P(X > u) given by Kac’s Theorem.
However, before we give the definition, we need some formalism. Let S denote the semi-
ring of subsets of R+

0 whose elements are intervals of the type [a, b), for a, b ∈ R+
0 . Let

R denote the ring generated by S. Recall that for every J ∈ R there are k ∈ N and k
intervals I1, . . . , Ik ∈ S such that J = ∪ki=1Ij. In order to fix notation, let aj, bj ∈ R+

0

be such that Ij = [aj, bj) ∈ S. For I = [a, b) ∈ S and α ∈ R, we denote αI := [αa, αb)
and I + α := [a + α, b + α). Similarly, for J ∈ R define αJ := αI1 ∪ · · · ∪ αIk and
J + α := (I1 + α) ∪ · · · ∪ (Ik + α).

Definition 3. We define the rare event point process (REPP) by counting the number of
exceedances (or hits to U(un)) during the (re-scaled) time period vnJ ∈ R, where J ∈ R.
To be more precise, for every J ∈ R, set

Nn(J) := Nun(vnJ) =
∑

j∈vnJ∩N0

1Xj>un . (3.10)
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Under similar dependence conditions to the ones just seen above, the REPP just defined
converges in distribution to a standard Poisson process, when no clustering is involved
and to a compound Poisson process with intensity θ and a geometric multiplicity d.f.,
otherwise. For completeness, we define here what we mean by a Poisson and a compound
Poisson process. (See [40] for more details).

Definition 4. Let T1, T2, . . . be an i.i.d. sequence of random variables with common
exponential distribution of mean 1/θ. Let D1, D2, . . . be another i.i.d. sequence of random
variables, independent of the previous one, and with d.f. π. Given these sequences, for
J ∈ R, set

N(J) =

∫
1J d

(
∞∑
i=1

DiδT1+...+Ti

)
,

where δt denotes the Dirac measure at t > 0. Whenever we are in this setting, we say that
N is a compound Poisson process of intensity θ and multiplicity d.f. π.

Remark 1. In this paper, the multiplicity will always be integer valued which means that
π is completely defined by the values πk = P(D1 = k), for every k ∈ N0. Note that, if
π1 = 1 and θ = 1, then N is the standard Poisson process and, for every t > 0, the random
variable N([0, t)) has a Poisson distribution of mean t.

Remark 2. When clustering is involved, we will see that π is actually a geometric distri-
bution of parameter θ ∈ (0, 1], i.e., πk = θ(1− θ)k, for every k ∈ N0. This means that, as
in [35], here, the random variable N([0, t)) follows a Pólya-Aeppli distribution, i.e.:

P(N([0, t)) = k) = e−θt
k∑
j=1

θj(1− θ)k−j (θt)j

j!

(
k − 1

j − 1

)
,

for all k ∈ N and P(N([0, t)) = 0) = e−θt.

3.3.1. The absence of clustering. When D′(un) holds, since there is no clustering, then,
due to a criterion proposed by Kallenberg [40, Theorem 4.7], which applies only to simple
point processes, without multiple events, we can simply adjust condition D2(un) to this
scenario of multiple exceedances in order to prove that the REPP converges in distribution
to a standard Poisson process. We denote this adapted condition by:

Condition (D3(un)). Let A ∈ R and t ∈ N. We say that D3(un) holds for the sequence
X0, X1, . . . if

|P ({X0 > un} ∩ {N (A+ t) = 0})− P({X0 > un})P(N (A) = 0)| ≤ γ(n, t),

where γ(n, t) is nonincreasing in t for each n and nγ(n, tn) → 0 as n → ∞ for some
sequence tn = o(n), which means that tn/n→ 0 as n→∞.

As it can be seen in Section 5.1, D3(un) follows, as easily as D2(un), from sufficiently fast
decay of correlations. As it can be seen in [27] we have the following strengthening of
Theorem 1:
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Theorem 4 ([27, Theorem 5]). Let X1, X2, . . . be a stationary stochastic process for which
conditions D3(un) and D′(un) hold for a sequence of levels un such that (2.3) holds. Then

the REPP Nn defined in (3.10) is such that Nn
d−→ N , as n → ∞, where N denotes a

Poisson Process with intensity 1.

3.3.2. The presence of clustering. When there is clustering, one cannot use the aforemen-
tioned criterion of Kallenberg anymore because the point processes are not simple anymore
and possess multiple events. This means that a much deeper analysis must be done in or-
der to obtain convergence of the REPP. We carried this out in [29] and we describe below
the main results and conditions needed. First, we define the sequence

(
U (κ)(u)

)
κ≥0

of

nested balls centred at ζ given by: U (0)(u) = U(u) and U (κ)(u) = f−p(U (κ−1)(u)) ∩ U(u)
for all κ ∈ N. For i, κ, `, s ∈ N ∪ {0}, we define the following events: Qκ

p,i(u) :=

f−i
(
U (κ)(u)− U (κ+1)(u)

)
.

Observe that for each κ, the set Qκ
p,0(u) corresponds to an annulus centred at ζ. Besides,

U(u) =
⋃∞
κ=0Q

κ
p,0(u), which means that the ball centred at ζ which corresponds to U(u) can

be decomposed into a sequence of disjoint annuli whereQ0
p,0(u) is the most outward ring and

the inner ring Qκ+1
p,0 (u) is sent outward by fp to the ring Qκ

p,0(u), i.e., fp(Qκ+1
p,0 (u)) = Qκ

p,0(u).

We are now ready to state:

Condition (Dp(un)∗). We say that Dp(un)∗ holds for the sequence X0, X1, X2, . . . if for
any integers t, κ1, . . . , κς , n and any J = ∪ςi=2Ij ∈ R with inf{x : x ∈ J} ≥ t,∣∣P (Qκ1

p,0(un) ∩
(
∩ςj=2Nun(Ij) = κj

))
− P

(
Qκ1
p,0(un)

)
P
(
∩ςj=2Nun(Ij) = κj

)∣∣ ≤ γ(n, t),

where for each n we have that γ(n, t) is nonincreasing in t and nγ(n, tn) → 0 as n → ∞,
for some sequence tn = o(n).

This mixing condition is stronger than Dp(un) because it requires a uniform bound for all
κ1, nonetheless, it still is much weaker than the original D(un) from Leadbetter [44] or any
of the kind. As all the other preceding conditions (D2, D3, D

p) it can be easily verified for
systems with sufficiently fast decay of correlations (see Section 5.1).

In [29], for technical reasons only, we also introduced a slight modification to D′p(un). The
new condition was denoted by D′p(un)∗ and is obtained by replacing (3.7) by the following

lim
n→∞

n

[n/kn]∑
j=1

P(Qp,0(un) ∩ {Xj > un}) = 0. (3.11)

We can now state the main theorem in [29].

Theorem 5 ( [29, Theorem 1]). Let X0, X1, . . . be given by (3.1), where ϕ achieves a global
maximum at the repelling periodic point ζ, of prime period p, and conditions (R1) and (R2)
hold. Let (un)n∈N be a sequence satisfying (2.3). Assume that conditions Dp(un)∗, D′p(un)∗

hold. Then the REPP Nn converges in distribution to a compound Poisson process N with
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intensity θ and multiplicity d.f. π given by π(κ) = θ(1 − θ)κ, for every κ ∈ N0, where the
extremal index θ is given by the expansion rate at ζ stated in (R2).

3.4. Proofs of the existence of EVLs for dynamical systems under the presence
and absence of clustering. In this section we will prove Theorems 1, 2 and 3. Since the
proofs of Theorems 1 and 3 follow the same lines except for the fact that in the latter the
role of the balls is replaced by those of annuli we introduce some notation in order to cope
with both simultaneously.

Recall that for every A ∈ B, we denote the complement of A as Ac := X \ A.

Let A ∈ B be an event. For some s ∈ N ∪ {0} and ` ∈ N, we define:

Ws,`(A) =
s+`−1⋂
i=s

f−i(Ac). (3.12)

We will write W c
s,`(A) := (Ws,`(A))c. Whenever is clear or unimportant which event A ∈ B

applies, we will drop the A and write just Ws,` or W c
s,`. Observe that

W0,n(U(u)) = {Mn ≤ u} and W0,n(Qp(u)) = Qn(u).

Lemma 3.1. For any fixed A ⊂ B and integers s, t,m, with t < m, we have:

|P(W0,s+t+m(A))− P(W0,s(A) ∩Ws+t,m(A))| ≤ tP(A)

Proof. Using stationarity we have

P(W0,s ∩Ws+t,m)− P(W0,s+t+m) = P(W0,s ∩W c
s,t ∩Ws+t,m) ≤ P(W c

0,t) = P(∪t−1
j=0f

−j(A))

≤
t−1∑
j=0

P(f−j(A)) = tP(A).

�

Lemma 3.2. For any fixed A ⊂ B and integers s, t,m, we have:

|P(W0,s(A) ∩Ws+t,m(A))− P(W0,m(A))(1− sP(A))| ≤∣∣∣∣∣sP(A)P(W0,m(A))−
s−1∑
j=0

P(A ∩Ws+t−j,m(A))

∣∣∣∣∣+ 2s
s−1∑
j=1

P(A ∩ f−j(A))

Proof. Observe that

∣∣P(W0,s∩Ws+t,m)−P(W0,m)(1−sP(A))
∣∣ ≤ ∣∣∣∣∣sP(A)P(W0,m(A))−

s−1∑
j=0

P(A ∩Ws+t−j,m(A))

∣∣∣∣∣+
+

∣∣∣∣∣P(W0,s ∩Ws+t,m)− P(W0,m) +
s−1∑
j=0

P(A ∩Ws+t−j,m)

∣∣∣∣∣ (3.13)
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Regarding the second term on the right, by stationarity, we have

P(W0,s ∩Ws+t,m) = P(Ws+t,m)− P(W c
0,s ∩Ws+t,m) = P(W0,m)− P(W c

0,s ∩Ws+t,m).

Now, since W c
0,s ∩Ws+t,m = ∪s−1

i=0f
−i(A) ∩Ws+t,m, we have

0 ≤
s−1∑
j=0

P(A ∩Ws+t−j,m)− P(W c
0,s ∩Ws+t,m) ≤

s−1∑
j=0

s−1∑
i=0,i 6=j

P(f−j(A) ∩ f−i(A) ∩Ws+t,m)

Hence, using these last two computations we get:∣∣∣P(W0,s ∩Ws+t,m)− P(W0,m)+
s−1∑
j=0

P(A ∩Ws+t−j,m)
∣∣∣ ≤ s−1∑

j=0

s−1∑
i=0,i 6=j

P(f−j(A) ∩ f−i(A) ∩Ws+t,m)

≤
s−1∑
j=0

s−1∑
i=0,i 6=j

P(f−j(A) ∩ f−i(A)) ≤ 2s
s−1∑
j=1

P(A ∩ f−j(A))

The result now follows directly from plugging the last estimate into (3.13). �

Proposition 3.3. Fix A ⊂ B and n ∈ N. Let `, k ∈ N be such that ` = bn/kc and
`P(A) < 2. We have:∣∣P(W0,n(A))− (1− `P(A))k

∣∣ ≤
2ktP(A) + 2n

`−1∑
j=1

P(A ∩ f−j(A)) + k

∣∣∣∣∣`P(A)P(W0,`)−
`−1∑
j=0

P(A ∩W`+t−j,`)

∣∣∣∣∣
Proof. The basic idea is to split the time interval [0, n) into k blocks of size bn/kc. Then,
using Lemma 3.1 we introduce gaps of size t between the blocks, and next we apply
Lemma 3.2 recursively until we exhaust all the blocks.

Using Lemma 3.1, with m = 0, and setting Wi,0 := X , for all i = 0, 1, 2, . . ., we have:∣∣∣P(W0,n)− P(W0,k(`+t))
∣∣∣ ≤ ktP(A). (3.14)

It follows by using Lemmas 3.1 and 3.2 that∣∣∣P(W0,i(`+t))−(1− `P(A))P(W0,(i−1)(`+t))
∣∣∣ ≤ ∣∣P(W0,i(`+t))− P(W0,` ∩W(`+t),(i−1)(`+t))

∣∣
+
∣∣P(W0,` ∩W(`+t),(i−1)(`+t))− (1− `P(A))P(W0,(i−1)(`+t))

∣∣
≤ tP(A) +

∣∣∣∣∣`P(A)P(W0,`)−
`−1∑
j=0

P(A ∩W`+t−j,`)

∣∣∣∣∣+ 2`
`−1∑
j=1

P(A ∩ f−j(A)),

(3.15)

Let Υ := tP(A) +
∣∣∣`P(A)P(W0,`)−

∑`−1
j=0 P(A ∩W`+t−j,`)

∣∣∣ + 2`
∑`−1

j=1 P(A ∩ f−j(A)). Since

`P(A) < 2, then it is clear that |(1−`P(A))| < 1. Also, note that |P(W0,`+t)−(1−`P(A))| ≤
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Υ. Now, we use (3.15) recursively to estimate
∣∣P(W0,k(`+t))− (1− `P(A))k

∣∣. In fact, we
have∣∣P(W0,k(`+t))− (1− `P(A))k

∣∣ ≤ k−1∑
i=0

(1− `P(A))k−1−i ∣∣P(W0,(i+1)(`+t))− (1− `P(A))P(W0,i(`+t))
∣∣

≤
k−1∑
i=0

(1− `P(A))k−1−i Υ ≤ kΥ (3.16)

The result follows now at once from (3.14) and (3.16). �

Proof of Theorem 1. Letting A = U(un), ` = bn/knc, k = kn and t = tn on Proposition 3.3,
we obtain∣∣∣∣∣P(Mn ≤ un)−

(
1−

⌊
n

kn

⌋
P(Un)

)kn∣∣∣∣∣ ≤ 2kntnP(Un) + 2n

bn/knc−1∑
j=1

P(X0 > un ∩Xj > un)

+ kn

∣∣∣∣∣∣
⌊
n

kn

⌋
P(Un)P(Mbn/knc ≤ un)−

bn/knc−1∑
j=0

P(Un ∩W`+t−j,`(Un))

∣∣∣∣∣∣ .
By (2.3) and (2.12), the first term on the right vanishes, as n → ∞. Condition D′(un)
implies that the second term on the right also goes to 0, as n → ∞. Using condition
D2(un), we have that for the third term:

kn

∣∣∣∣∣∣
⌊
n

kn

⌋
P(Un)P(Mbn/knc ≤ un)−

bn/knc−1∑
j=0

P(Un ∩W`+t−j,`(Un))

∣∣∣∣∣∣ ≤ nγ(n, tn) −−−→
n→∞

0.

Finally, by (2.3), we have limn→∞

(
1−

⌊
n
kn

⌋
P(Un)

)kn
= e−τ . �

Proof of Theorem 2. Clearly

{Mn ≤ un} ⊂ Qn(un).

Next, note that if Qn(un) \ {Mn ≤ un} occurs, then you must enter the ball {X0 > un} at
some point which means we may define first time it happens by i = inf{j ∈ {0, 1, . . . n−1} :
Xj > un} and let si = [n−1−i

p
]. However, since Qp,0,n(un) does occur, you must never enter

the annulus Q(un) which is the only way out of the ball {X0 > un}. Hence, once you enter

the ball you must never leave it, which means that f−i
(
∩sij=1f

−jp(X0 > un)
)

must occur.
Consequently,

Qp,0,n(un) \ {Mn ≤ un} ⊂
n−1⋃
i=0

f−i
(
∩sij=0f

−jp(X0 > un)
)
.
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It follows by stationarity, (R2) and (2.3) that

P(Qp,0,n(un))− P({Mn ≤ un}) ≤
n−1∑
i=0

P
(
f−i

(
∩sij=0f

−jp(X0 > un)
))

≤ p

[n/p]∑
κ=0

P
(
∩κj=0f

−jp(X0 > un)
)

. p

∞∑
κ=0

(1− θ)κP (X0 > un) −−−→
n→∞

0.

�

Remark 3. Observe that condition SPp,θ(un) is designed to obtain the equality in Theorem 2
for general stochastic processes not necessarily dynamically defined. As in the previous
proof, even without any geometric consideration and appealing only to the definition of
Qp(un) and U(un) in terms of the random variables in the stochastic process X0, X1, . . .,
we can easily get to the estimate:

P(Qp,0,n(un))− P({Mn ≤ un}) ≤ p

[n/p]∑
κ=0

P (X0 > un, Xp > un, . . . , Xκp > un) ,

which goes to 0 as n diverges on account of SPp,θ(un).

Proof of Theorem 3. By Remark 3, we have that the first equality in (3.8) holds. We are
left then to prove the second equality. Observe that, by definition of un, Qp(un) and (3.5)
we have that

nP(Qp(un)) ∼ θ τ (3.17)

Letting A = Qp(un), ` = bn/knc, k = kn and t = tn on Proposition 3.3, we obtain∣∣∣∣∣P(Qn(un))−
(

1−
⌊
n

kn

⌋
P(Qp(un))

)kn∣∣∣∣∣ ≤ 2kntnP(Qp(un))+2n

bn/knc∑
j=1

P(Qp,0(un)∩Qp,j(un))

+ kn

∣∣∣∣∣∣
⌊
n

kn

⌋
P(Qp(un))P(Q0,bn/knc(un))−

bn/knc∑
j=0

P
(
Qp,0(un) ∩Qb nkn c+t−j,b nkn c(un)

)∣∣∣∣∣∣ .
By (2.3) and (2.12), the first term on the right vanishes, as n → ∞. Condition D′p(un)
implies that the second term on the right also goes to 0, as n → ∞. Using condition
Dp(un), we have that for the third term:

kn

∣∣∣∣∣∣
⌊
n

kn

⌋
P(Qp(un))P(Qbn/knc(un))−

bn/knc−1∑
j=0

P
(
Qp,0(un) ∩Qb nkn c+t−j,b nkn c(un)

)∣∣∣∣∣∣
≤ nγ∗(n, tn) −−−→

n→∞
0.
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Finally, since by (3.17), we have that limn→∞ nP(Qp(un)) = θτ then it follows that

limn→∞

(
1−

⌊
n
kn

⌋
P(Qp(un))

)kn
= e−θτ . �

4. Hitting Times, Return Times and the link with Extreme Values

In the dynamical systems setting, another approach to the statistical study of rare events
has been addressed since the early works of Pitskel and Hirata [50, 36]. It pertains to
the statistical study of the elapsed time before hitting (or returning to) some target sets
in the phase space. This type of results is usually referred to as Hitting Time Statistics
and Return Time Statistics. In order to define such concepts, we begin by introducing the
following notion: consider a set A ∈ B and a new r.v. that we refer to as first hitting time
to A and denote by rA : X → N ∪ {+∞} where

rA(x) = min
{
j ∈ N ∪ {+∞} : f j(x) ∈ A

}
.

for a set.

If there exists a non degenerate d.f. G such that for all t ≥ 0,

lim
u→uF

P
(
rU(u) ≤

t

P(U(u))

)
= G(t),

then we say we have Hitting Time Statistics (HTS) G for balls. Similarly, we can restrict
our observations to U(u): if there exists a non degenerate (d.f.) G̃ such that for all t ≥ 0,

lim
u→uF

P
(
rU(u) ≤

t

P(U(u))

∣∣∣∣ U(u)

)
= G̃(t),

then we say we have Return Time Statistics (RTS) G̃ for balls.

The normalising term in the definition of HTS/RTS is inspired by Kac’s Theorem which
states that the expected amount of time you have to wait before you return to U(u) is
exactly 1

P(U(u))
.

Remark 4. Let P0 denote a partition of X . We define the corresponding pullback partition
Pn =

∨n−1
i=0 f

−i(P0), where ∨ denotes the join of partitions. We refer to the elements of
the partition Pn as cylinders of order n. For every ζ ∈ X , we denote by Zn[ζ] the cylinder
of order n that contains ζ. For some ζ ∈ X this cylinder may not be unique, but we can
make an arbitrary choice, so that Zn[ζ] is well defined. We say that the system has HTS
(RTS) G (G̃) to cylinders at ζ if we have HTS (RTS) G (G̃) when U(u) is replaced by the
cylinder Zn(ζ), and the limit is taken as n diverges.

The existence of exponential HTS (G(t) = 1− e−t) is equivalent to the existence of expo-
nential RTS (G̃(t) = 1 − e−t). In fact, according to the Main Theorem in [34], a system
has HTS G if and only if it has RTS G̃ and

G(t) =

∫ t

0

(1− G̃(s)) ds. (4.1)
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Note that by assumption (R1) we have that {Mn ≤ u} = {rU(u) > n}. Motivated by this
observation, in [27], a complete relation between the existence of HTS/RTS and EVLs
was established for absolutely continuous (with respect to Lebesge) invariant probability
measures (acip) and natural observables depending basically on the distance to ζ. Then,
in [28], by adapting the observables, this relation was further developed to hold for general
equilibrium states.

4.1. The choice of observables. We assume that the observable ϕ : X → R ∪ {+∞} is
of the form

ϕ(x) = g
(
P
(
Bdist(x,ζ)(ζ)

))
, (4.2)

where ζ is a chosen point in the phase space X and the function g : [0,+∞)→ R ∪ {+∞}
is such that 0 is a global maximum (g(0) may be +∞); g is a strictly decreasing bijection
g : V → W in a neighbourhood V of 0; and has one of the following three types of
behaviour:

Type g1: there exists some strictly positive function h : W → R such that for all y ∈ R

lim
s→g1(0)

g−1
1 (s+ yh(s))

g−1
1 (s)

= e−y; (4.3)

Type g2: g2(0) = +∞ and there exists β > 0 such that for all y > 0

lim
s→+∞

g−1
2 (sy)

g−1
2 (s)

= y−β; (4.4)

Type g3: g3(0) = D < +∞ and there exists γ > 0 such that for all y > 0

lim
s→0

g−1
3 (D − sy)

g−1
3 (D − s)

= yγ. (4.5)

It may be shown that no non-degenerate limit applies if
∫ g1(0)

0
g−1

1 (s)ds is not finite. Hence,

an appropriate choice of h in the Type 1 case is given by h(s) =
∫ g1(0)

s
g−1

1 (t)dt/g−1
1 (s) for

s < g1(0).

Examples of each one of the three types are as follows: g1(x) = − log x (in this case (4.3)
is easily verified with h ≡ 1), g2(x) = x−1/α for some α > 0 (condition (4.4) is verified with
β = α) and g3(x) = D − x1/α for some D ∈ R and α > 0 (condition (4.5) is verified with
γ = α).

In [27] we assumed that ϕ(x) = g
(
dist(x, ζ)

)
. Since the invariant measure there was an

acip, using Lebesgue’s differentiation theorem, we could write P(Bη(ζ)) ∼ ρ(ζ)Leb (Bη(ζ)),
where we assume that ρ(ζ) = dP

Leb
(ζ) > 0 and Lebesgue’s differentiation theorem applies to

ζ. In here, since P may not be an acip the function ~ defined for small η ≥ 0 and given by

~(η) = P(Bη(ζ)) (4.6)

may not be absolutely continuous. However, we require that ~ is continuous in η. For
example, if X is an interval and P a Borel probability with no atoms,i.e., points with
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positive P measure, then ~ is continuous. One of our applications is to equilibrium states,
which we explain in Section 5.3. A major difference here is that although g is invertible in a
small neighbourhood of 0, the function ~ does not have to be. This means that, in contrast
with [27], the observable ϕ, as a function of the distance to ζ, may not be invertible in any
small neighbourhood of ζ.

For that reason, we now set

`(γ) := inf{η > 0 : P(Bη(ζ)) = γ}, (4.7)

which is well defined for all small enough γ ≥ 0, by the continuity of ~. Moreover, again
by continuity of ~, we have

P
(
B`(γ)(ζ)

)
= γ. (4.8)

Remark 5. Observe that the choice of the observables in (4.2) and the assumption on P
regarding the continuity of ~ guarantee that condition (R1) holds.

Remark 6. Observe that if at time j ∈ N we have an exceedance of level u (sufficiently
large), i.e., Xj(x) > u, then we have an entrance of the orbit of x into the ball B`(g−1(u))(ζ)
of radius `(g−1(u)) around ζ, at time j. This means that the behaviour of the tail of F ,
i.e., the behaviour of 1 − F (u) as u → uF is basically determined by g−1. The above
conditions are just the translation in terms of the shape of g−1, of the sufficient and
necessary conditions on the tail of F that appear in (2.9), (2.10) and (2.11).

The fact that the conditions on the shape of g−1 imposed by (4.3), (4.4) and (4.5) corre-
spond to the sufficient and necessary conditions (2.9), (2.10) and (2.11), respectively, on
the tail of a distribution which guarantee a non-degenerate EVL in the iid setting, means
that the only interesting cases for us are the ones where g is of one of the three types above.

Remark 7. The choice of the observables in (4.2) implies that the shape of g determines
the type of extremal distribution we get. In particular, for observables of type gi we get
an extremal law of type e−τi , for i = 1, 2, 3. While the type of the extremal distribution
is essentially determined by the shape of the observable, in the cases when types 2 and 3
apply, i.e., the Fréchet and Weibull families of distributions, respectively, the exponent α
in (2.8) is also influenced by other quantities such as the EI and the local dimension of the
stationary invariant measure P. In particular, when such measure is absolutely continuous
with respect to Lebesgue and its Radon-Nikodym derivative has a singularity at ζ, then
the order of the singularity also influences the value of α.

4.2. The connection between EVL and HTS. For the statements below, we recall
that the stochastic process X0, X1, . . . is defined by (3.1) where the observable ϕ is defined
by (4.2). We stress that g stands for some gi with i = 1, 2, 3 defined by conditions (4.3),
(4.4) and (4.5), respectively.

Our first main result, which obtains EVLs from HTS for balls, is the following.

Theorem 6 ([28, Theorem 1]). Let (X ,B,P, f) be a dynamical system, ζ ∈ X be in the
support of P and assume that P is such that the function ~ defined on (4.6) is continuous.
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If we have HTS G to balls centred on ζ ∈ X , then we have an EVL H = G for Mn that
applies to the observables (4.2) achieving a maximum at ζ. Moreover, for all i = 1, 2, 3, if
un is chosen as linear normalising sequence, as in (2.6), then the shape gi for the observable
corresponds to an extremal type law of the form e−τi, given in (2.8).

Now, we state a result in the other direction, i.e., we show how to get HTS from EVLs for
balls.

Theorem 7 ([28, Theorem 2]). Let (X ,B,P, f) be a dynamical system, ζ ∈ X be in the
support of P and assume that P is such that the function ~ defined in (4.6) is continuous.

If we have an EVL H for Mn which applies to the observables (4.2) achieving a maximum
at ζ ∈ X then we have HTS G = H to balls at ζ.

5. Existence of Extreme Value Laws for chaotic systems

As it can be seen in Section 4, the theory of HTS/RTS and the theory of EVL for dynamical
systems are two sides of the same coin. This means that we can prove the existence of
EVLs by proving HTS and the other way around.

The theory of HTS/RTS laws is now a well developed topic, applied first to cylinders and
hyperbolic dynamics, and then extended to balls and also to non-uniformly hyperbolic
systems. We refer to [14] and [53] for very nice reviews as well as many references on
the subject. (See also [3], where the focus is more towards a finer analysis of uniformly
hyperbolic systems.) Since the early papers [50, 36], several different approaches have been
used to prove HTS/RTS: from the analysis of adapted Perron-Frobenius operators as in
[36], the use of inducing schemes as in [10], to the relation between recurrence rates and
dimension as explained in [53, Section 4].

For many mixing systems it is known that the HTS/RTS are standard exponential around
almost every point. Among these systems we note the following: Markov chains [50], Axiom
A diffeomorphisms [36], uniformly expanding maps of the interval [15], 1-dimensional non-
uniformly expanding maps [37, 10, 12, 11], partially hyperbolic dynamical systems [18],
toral automorphisms [17], higher dimensional non-uniformly hyperbolic systems (including
Hénon maps) [13].

In most of the papers mentioned so far, exponential HTS and RTS have been proved for
generic points, in the sense that there exists exponential HTS/RTS for almost all ζ in the
phase space, with respect to the invariant measure. However, in [36] and [35], the authors
consider specific points. Namely, they consider the cases when ζ is a periodic point and
obtain the existence of an EI less than 1, although they did not stated in these terms
because, at the time, the connection with EVL was not yet established. In fact, Galves
and Schmitt [31] introduced a short correction factor λ in order to get exponential HTS,
that was then studied later in great detail by Abadi et al. [3, 1, 2, 5, 6, 4], and which, in
case of being convergent, can actually be seen as the EI itself.
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On the other hand, EVLs for the partial maximum of dynamically defined stochastic
processes is a much recent topic and have been proved directly in the recent papers [16,
25, 27, 38, 33, 28, 30, 29, 41, 8]. We highlight the pioneering work of Collet [16] for
the innovative ideas introduced. The dynamical systems covered in these papers include
non-uniformly hyperbolic 1-dimensional maps (in all of them), higher dimensional non-
uniformly expanding maps in [27], suspension flows in [38], billiards and Lozi maps in [33].
In [8], using the advantage of the simplicity of the EVL approach, in terms of its definition
from a stationary stochastic process, it is shown that for randomly perturbed systems with
additive noise one can prove exponential HTS/RTS and EVLs, regardless of the point ζ
chosen in the phase space.

In this section, we will prove the existence of EVLs for uniformly expanding and piecewise
expanding systems. Although, these are not as general as the non-uniformly expanding
systems treated in many of the papers mentioned above, for these systems we can actually
prove a dichotomy which basically states that either there exists an EI less than 1 at
periodic repelling points or there exists an EI equal to 1 at every other point of continuity
of the map.

Up to our knowledge, the statement of this dichotomy appeared first in [30, Section 6],
where it was proved for uniformly expanding systems in S1 equipped with the Bernoulli
measure and for the cylinder case. Moreover, in the introduction of [30], it was conjec-
tured that this dichotomy should hold in much greater generality (both for more general
systems and for the more general case of balls rather than cylinders). In [23], which ap-
peared shortly after [30] on arXiv, the authors build up on the work of [36] and eventually
obtain the dichotomy for balls and for conformal repellers. Then, in [41], making use of
powerful spectral theory tools developed in [42], the dichotomy for balls was established
for general systems such as those for which there exists as spectral gap for their respective
Perron-Frobenius operator. In [8], the dichotomy for balls was obtained once again for the
same type of systems considered in [41] but using as assumption the existence of decay of
correlations against L1 observables (see definition below). Finally, in the very recent [43],
the dichotomy for cylinders is established for mixing countable alphabet shifts, but also in
the context of nonconventional ergodic sums.

Our basic assumption to prove conditions D2(un), D′(un) and their twins Dp(un), D′p(un),
will be sufficiently fast decay of correlations, in some specific function spaces. Hence we
define:

Definition 5 (Decay of correlations). Let C1, C2 denote Banach spaces of real valued mea-
surable functions defined on X . We denote the correlation of non-zero functions φ ∈ C1

and ψ ∈ C2 w.r.t. a measure P as

CorP(φ, ψ, n) :=
1

‖φ‖C1‖ψ‖C2

∣∣∣∣∫ φ (ψ ◦ fn) dP−
∫
φ dP

∫
ψ dP

∣∣∣∣ .
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We say that we have decay of correlations, w.r.t. the measure P, for observables in C1

against observables in C2 if, for every φ ∈ C1 and every ψ ∈ C2 we have

CorP(φ, ψ, n)→ 0, as n→∞.

We say that we have decay of correlations against L1 observables whenever this holds for
C2 = L1(P) and ‖ψ‖C2 = ‖ψ‖1 =

∫
|ψ| dP.

We are now in condition of stating an abstract result giving general conditions to establish
the dichotomy:

Theorem 8 ([8]). Consider a continuous dynamical system (X ,B,P, f) for which there
exists a Banach space C of real valued functions such that for all φ ∈ C and ψ ∈ L1(P),

CorP(φ, ψ, n) ≤ Cn−2, (5.1)

where C > 0 is a constant independent of both φ, ψ. Let X0, X1, . . . be given by (3.1), where
ϕ achieves a global maximum at some ζ ∈ X and condition (R1) holds.

• If ζ is a non periodic point and there exists some C > 0 such that, for all n ∈ N, we
have ‖1U(un)‖C ≤ C, then conditions D2(un) and D′(un) hold for X0, X1, . . . which
means we have an EI equal to 1, i.e., we have an EVL with H(τ) = 1− e−τ .
• If ζ is a periodic point of prime period p, at which condition (R2) holds and there

exists some C > 0 such that, for all n ∈ N, we have ‖1Qp(un)‖C ≤ C, then conditions
Dp(un) and D′p(un) hold for X0, X1, . . . which means we have an EI equal to θ < 1,

i.e., we have an EVL with H(τ) = 1− e−θτ , where θ is given in (R2).

In fact, if we consider the REPP we can also state the following stronger version of the
dichotomy

Theorem 9 ([8]). Under the same assumptions of Theorem 8

• If ζ is a non periodic point and there exists some C > 0 such that, for all n ∈ N, we
have ‖1U(un)‖C ≤ C, then conditions D3(un) and D′(un) hold for X0, X1, . . . which
means the REPP Nn defined in (3.10) converges in distribution, as n → ∞ to a
standard Poisson process.
• If ζ is a periodic point of prime period p, at which condition (R2) holds and there

exists some C > 0 such that, for all n ∈ N, we have ‖1Qp(un)‖C ≤ C, then conditions
Dp(un)∗ and D′p(un)∗ hold for X0, X1, . . . which means that the REPP Nn converges
in distribution to a compound Poisson process N with intensity θ and multiplicity
d.f. π given by π(κ) = θ(1 − θ)κ, for every κ ∈ N0, where the extremal index θ is
given by the expansion rate at ζ stated in (R2).

Remark 8. Observe that decay of correlations as in (5.1) against L1(P) observables is a
very strong property. In fact, regardless of the rate (in this case n−2), as long as it is
summable, one can actually show that the system has exponential decay of correlations of
Hölder observables against L∞(P). See [7, Theorem B].
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Remark 9. For simplicity, here, we will not deal with discontinuity points of the map f .
However, that can be done and the existence of an EI less than 1 depends on the existence
of some periodic behaviour. Otherwise, we also get an EI equal to 1. See [8, Section 3.3].

Remark 10. We observe that the second statement of Theorem 8 had already been estab-
lished in [30], while the second statement of Theorem 9 had already been established in
[29, Theorem 2]. The first statement of Theorem 8, which finally allowed to establish the
dichotomy, was obtained in [8].

In Section 5.3 we will show some specific expanding and piecewise expanding systems for
which we can verify the assumptions in Theorems 8 and 9.

5.1. Conditions D2(un), D3(un), Dp(un), Dp(un)∗ and decay of correlations. Rates
of decay of correlations are nowadays well known for many chaotic systems. Examples of
these include hyperbolic or uniformly expanding systems as well as the non hyperbolic or
non-uniformly expanding admitting, for example, inducing schemes with a well behaved
return time function. In fact, in two remarkable papers Lai-Sang Young showed that the
rates of decay of correlations of the original system are intimately connected with the
recurrence rates of the respective induced map.

In general terms the conditionsD2(un), D3(un), Dp(un) andDp(un)∗ follow from sufficiently
fast (e.g. polynomial) decay of correlations of the dynamical system. This is where they
are seen to be much more useful than Leadbetter’s D(un). While D(un) usually follows
only from strong uniform mixing, like α-mixing (see [9] for definition), and even then
only at certain subsequences, which means most of the time the final result holds only for
cylinders, D2(un), D3(un), Dp(un) and Dp(un)∗ follow from decay of correlations which is
much weaker and allows to obtain the result for balls, instead.

In fact, in order to prove that D2(un), D3(un), Dp(un) and Dp(un)∗, there is actually
no need for such strong type of decay of correlations as such as against L1, like in the
assumptions of Theorems 8 or 9. It suffices to have decay of correlations against all ψ in
L∞, for example.

Just to give an idea of how simple it is to check D2(un), D3(un), Dp(un) and Dp(un)∗ for
systems with sufficiently fast decay of correlations, let us begin by defining the following
Banach spaces:

Given a function ψ : Y → R on an interval Y , the variation of ψ is defined as

Var(ψ) := sup

{
n−1∑
i=0

|ψ(xi+1)− ψ(xi)|

}
,

where the supremum is taken over all finite ordered sequences (xi)
n
i=0 ⊂ Y .

We use the norm ‖ψ‖BV = sup |ψ|+Var(ψ), which makesBV := {ψ : Y → R : ‖ψ‖BV <∞}
into a Banach space.
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Now, let X be a compact subset of Rd and let ψ : X → R. Given a Borel set Γ ⊂ X , we
define the oscillation of ψ ∈ L1(Leb) over Γ as

osc(ψ,Γ) := ess sup
Γ

ψ − ess inf
Γ

ψ.

It is easy to verify that x 7→ osc(ψ,Bε(x)) defines a measurable function (see [52, Propo-
sition 3.1]). Given real numbers 0 < α ≤ 1 and ε0 > 0, we define α-seminorm of ψ
as

|ψ|α = sup
0<ε≤ε0

ε−α
∫
Rd

osc(ψ,Bε(x)) dLeb(x).

Let us consider the space of functions with bounded α-seminorm Vα = {ψ ∈ L1(Leb) :
|ψ|α <∞}, and endow Vα with the norm ‖ · ‖α = ‖ · ‖L1(Leb) + | · |α which makes it into a
Banach space. We note that Vα is independent of the choice of ε0.

In what follows we assume that for every ζ ∈ X condition (R1) holds and, in case ζ is
periodic of period p then condition (R2) also holds.

Proposition 5.1. Assume that for our system f : X → X we have decay of correlations
for all φ ∈ C, where C is BV or Vα, depending on whether X is a compact subset of R or
Rd (with d = 2, 3, . . .), and all ψ ∈ L∞ so that there exist C, independent of φ, ψ, and a
rate function % : N→ R such that∣∣∣∣∫ φ · (ψ ◦ f t)dP−

∫
φdP

∫
ψdP

∣∣∣∣ ≤ C‖φ‖C‖ψ‖∞%(t), ∀t ∈ N0, (5.2)

and n%(tn)→ 0, as n→∞ for some tn = o(n). Then conditions D2(un), D3(un), Dp(un)
and Dp(un)∗ hold.

Proof. In what follows, for all n ∈ N, let An = U(un), in case ζ is non periodic, and
An = Qp(un) if ζ is periodic of prime period p. Take φ = 1An , ψ = 1W0,`(An). Observe
that whether ‖ · ‖C is ‖ · ‖BV or ‖ · ‖α, we have that there exists some C ′ > 0 such that
‖1An‖C ≤ C ′, for all n ∈ N. Set c = CC ′. Then (5.2) implies that, in case ζ is non periodic,
condition D2(un) holds and, in case ζ is periodic of prime period p, condition Dp(un) holds,
where γ(n, t) = γ(t) := c%(t) and for the sequence tn such that n%(tn) → 0, as n → ∞.
Note that to prove D3(un), we just have to take ψ = 1N (A)=0 and for Dp(un)∗, we would
take φ = 1Qκ1p,0(un), ψ = 1(∩ςj=2Nun (Ij)=κj) and the argument would follow as before. �

Note that, in the proof above, to check D2(un) and Dp(un), it was useful the facts that
1An ∈ C and ‖1An‖C ≤ C ′. However, these conditions can still be checked even when
1An /∈ C. This is the case when C is the Banach space of Hölder observables which is used,
for example, to obtain decay of correlations for systems with Young towers. The idea is to
use, as in [16, Lemma 3.3], an adequate Hölder approximation for 1An .

Now, let X be a compact subset of Rd and let φ : X → R. LetHβ denote the space of Hölder
continuous functions φ with exponent β equipped with the norm ‖φ‖Hβ = ‖φ‖∞ + |φ|Hβ ,
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where

|φ|Hβ = sup
x6=y

|φ(x)− φ(y)|
|x− y|β

.

Proposition 5.2. Assume that X is a compact subset of Rd and f : X → X is a system
with an acip P, such that dP

Leb
∈ L1+ε. Assume, moreover, that the system has decay

of correlations for all φ ∈ Hβ against any ψ ∈ L∞ so that there exists some C > 0
independent of φ, ψ and t, and a rate function % : N→ R such that∣∣∣∣∫ φ · (ψ ◦ f t)dP−

∫
φdP

∫
ψdP

∣∣∣∣ ≤ C‖φ‖Hβ‖ψ‖∞%(t), (5.3)

and n1+β(1+max{(0,ε+1)/ε−d}+δ)%(tn) → 0, as n → ∞ for some δ > 0 and tn = o(n). Then
conditions D2(un), D3(un), Dp(un) and Dp(un)∗ hold.

Proof. Since dP
Leb
∈ L1+ε, by Hölder’s inequality, this last fact implies that for all Borel sets

B, there exists C > 0 such that

P(B) ≤ C(Leb(B))Θ, (5.4)

where Θ = ε/(1 + ε).

For η = max{Θ−1−d, 0}+ δ > 0 we build the Hölder approximation φ of 1An , where An is
as in the proof of Proposition 5.1. Let Dn := {x ∈ An : dist(x,Acn) ≥ (P(An))1+η}, where
Ā denotes the closure of A. Define φ : X → R as

φ(x) =


0 if x ∈ Acn

dist(x,Acn)

dist(x,Acn)+dist(x,Dn)
if x ∈ Acn

c \Dn

1 if x ∈ Dn

.

Observe that φ is Hölder continuous with Hölder constant (P(An))−β(1+η).

Now, we apply the decay of correlations to the Hölder continuous function φ against ψ =
1W0,`(An) to get∣∣∣∣∫ φ · (1W0,`(An) ◦ f t)dP−

∫
φdP

∫
1W0,`(An)dP

∣∣∣∣ ≤ C(P(An))−β(1+η)%(t).

Observe that the support of 1An − φ is contained in An \Dn whose Lebesgue measure is
O
(
(P(An))d+η

)
and, using (5.4), we get that

∫
1An − φdP ≤ O

(
(P(An))Θ(d+η)

)
. It follows

that∣∣P(An ∩ f−t(W0,`(An)))− P(An)P(W0,`(An))
∣∣ ≤ (P(An))−β(1+η)%(t) +O

(
(P(An))Θ(d+η)

)
.

Hence, we take γ(n, t) = O
(
(P(An))−β(1+η)

)
%(t) + O

(
(P(An))Θ(d+η)

)
. Let tn be as in the

hypothesis and recalling that P(An) ∼ θτ/n, where θ < 1 is given by (R2) if ζ is periodic
and θ = 1 otherwise, we have that nγ(n, tn) ≤ O

(
n1+β(1+η)

)
%(tn) + O

(
n−δ
)
−−−→
n→∞

0. As

before, to prove D3(un) the argument is the same except for the fact that we need to take
ψ = 1N (A)=0. In order to prove Dp(un)∗ we just need to follow the proof as before and use
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a Hölder continuous approximation for 1Qκ1p (un). The only extra difficulty is that we need
an upper bound that works for all κ1 ∈ N0. Now, taking ψ = 1(∩ςj=2Nun (Ij)=κj), recalling

that P(Qκ
p,0) ∼ θ(1− θ)κP(X0 > un) and following the same footsteps, we easily conclude

that (5.3) leads to the following estimate∣∣P (Qκ1
p,0(un) ∩

(
∩ςj=2Nun(Ij) = κj

))
− P

(
Qκ1
p,0(un)

)
P
(
∩ςj=2Nun(Ij) = κj

)∣∣
≤ C

((
n

(1− θ)κ1

)β(1+η)

%(t) +

(
(1− θ)κ1

n

)Θ(d+η)
)
,

for any η > 0, some C > 0 and where d is the dimension of X . Now, we have to be cautious
because the first term in the right hand side explodes as κ1 → ∞. However, the trivial
observation:∣∣P (Qκ1

p,0(un) ∩
(
∩ςj=2Nun(Ij) = κj

))
− P

(
Qκ1
p,0(un)

)
P
(
∩ςj=2Nun(Ij) = κj

)∣∣ ≤ 2P
(
Qκ1
p,0(un)

)
,

allows us to set:

γ(n, t) = min
κ1∈N0

{
2θ(1− θ)κ1P(X0 > un), C

((
n

(1− θ)κ1

)β(1+η)

%(t) +

(
(1− θ)κ1

n

)Θ(d+η)
)}

.

Since by assumption, there exists a sequence (tn)n∈N such that n1+β(1+η)%(tn)+n−δ −−−→
n→∞

0,

then nγ(n, tn)→ 0 as n→∞, as required.

�

5.2. Dichotomy for uniformly and piecewise expanding systems. In this section
we prove Theorems 8 and 9. We begin with the following notion:

Definition 6. For every A ∈ B, we define the first return time to A, which we denote by
R(A), as the minimum of the return time function to A, i.e.,

R(A) = min
x∈A

rA(x).

Proposition 5.3. Consider a dynamical system (X ,B,P, f) for which there exists decay
of correlations against L1 as in the assumptions of Theorems 8 and 9. For any point ζ,
assume that (R1) holds and, in case ζ is periodic, that (R2) also holds. Consider that
X0, X1, . . . is defined as in (3.1), let un be such that (2.3) holds. For every n ∈ N, if ζ
is not periodic take An = Un := U(un) and, if ζ is periodic of period p, let An = Qp(un).
Also, set Rn := R(Un), when ζ is non-periodic and Rn := minx∈Qp(un) rUn(x), when ζ is
periodic of prime period p.

If there exists C ′ > 0 such that for all n we have 1An ∈ C, ‖1An‖C ≤ C ′ and Rn →∞, as
n → ∞, then condition D′(un) holds for X0, X1, . . ., when ζ is not periodic and D′p(un)∗

holds, when ζ is periodic of period p.
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Proof. Taking φ = 1An and ψ = 1Un in (5.1) and since ‖1An‖C ≤ C ′ we easily get

P
(
An ∩ f−j(Un)

)
≤ (P(Un))2 + C ‖1An‖C ‖1Un‖L1(P) j

−2 ≤ (P(Un))2 + C∗P(Un)j−2, (5.5)

where C∗ = CC ′ > 0. By definition of Rn, estimate (5.5) and since nP(Un)→ τ as n→∞
it follows that there exists some constant c > 0 such that

n

bn/knc∑
j=1

P(An ∩ f−j(Un)) = n

bn/knc∑
j=Rn

P(An ∩ f−j(Un)) ≤ n
⌊
n
kn

⌋
P(Un)2 + nC∗P(Un)

bn/knc∑
j=Rn

j−2

≤ (nP(Un))2

kn
+ nC∗P(Un)

∞∑
j=Rn

j−2 ≤ c

(
τ 2

kn
+ τ

∞∑
j=Rn

j−2

)
−−−→
n→∞

0.

�

Lemma 5.4. Assume that ζ is not a periodic point and that f is continuous at every point
of the orbit of ζ, namely ζ, f(ζ), f 2(ζ), . . ., then limn→∞R(U(un)) =∞.

Proof. Note that, by hypothesis, f i is continuous at ζ, for all i ∈ N. For some fixed
j, we define ε = mini=1,...,j dist(f i(ζ), ζ) Then, using the continuity of each f i at ζ, for
every i = 1, . . . , j, there exists δi > 0 such that f i(Bδi(ζ)) ⊂ Bε/2(f i(ζ)). Now, let

U := ∩ji=1Bδi(ζ).

If we choose N sufficiently large so that Un ⊂ U for all n ≥ N then, by definition of ε it is
clear that f i(Un) ∩ Un = ∅, for all i = 1, . . . , j, which implies that R(U(un)) > j. �

Proof of Theorems 8 and 9. As explained in Section 5.1, conditionsD2(un), D3(un), Dp(un),
Dp(un)∗ are designed to follow easily from decay of correlations and we even do not need
such strong version as decay against L1. In any case, if we choose φ = 1An (φ = 1Qκ1p (un),

in the case of Dp(un)∗) and ψ = 1W0,`(An) (ψ = 1N (A)=0 in the case of D3(un) and
ψ = 1(∩ςj=2Nun (Ij)=κj), in the case of Dp(un)∗) we have that we can take γ(n, t) = C∗t−2,

where C∗ = CC ′. Hence, conditions D2(un), Dp(un) are trivially satisfied for the sequence
(tn)n given by tn = n2/3, for example.

To end the proof we only need to check the hypothesis of Proposition 5.3. For that purpose,
note that by Proposition 5.4 we have R(U(un)) −−−→

n→∞
∞.

Regarding the case when ζ is periodic point of prime period p, by the Hartman-Grobman
theorem there is a neighbourhood V around ζ where f is conjugate to its linear approxi-
mation given by the derivative at ζ. Hence, for n sufficiently large so that U(un) ⊂ V , if
a point starts in Qp(un) it takes a time αn to leave V , during which, it is guaranteed that
it does not return to U(un). Moreover, since by condition (R1) and definition of un, we
have that U(un) shrinks to ζ as n → ∞, then αn → ∞ as n → ∞. Since Rn ≥ αn then
Rn −−−→

n→∞
∞. This gives that D′p(un)∗ holds which implies that D′p(un) holds as well. �
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5.3. Examples of specific dynamical systems. Let f : X → X be a measurable
function as above. For a measurable potential φ : X → R, we define the pressure of
(X , f, φ) to be

P (φ) := sup
P∈Mf

{
h(P) +

∫
φ dP : −

∫
φ dP <∞

}
,

where h(P) denotes the metric entropy of the measure P, see [55] for details. If P is an
invariant probability measure such that h(Pφ) +

∫
φ dP = P (φ), then we say that P is an

equilibrium state for (X , f, φ).

A measure m is called a φ-conformal measure if m(X ) = 1 and if whenever f : A→ f(A)
is a bijection, for a Borel set A, then m(f(A)) =

∫
A
e−φ dm. Therefore, setting

Snφ(x) := φ(x) + · · ·+ φ ◦ fn−1(x),

if fn : A→ fn(A) is a bijection then m(fn(A)) =
∫
A
e−Snφ dm.

Note that for example for a smooth map interval map f , Lebesgue measure is φ-conformal
for φ(x) := − log |Df(x)|. Moreover, if for example f is a topologically transitive quadratic
interval map then as in Ledrappier [47], any acip P with h(P) > 0 is an equilibrium state
for φ. This also holds for the even simpler case of piecewise smooth uniformly expanding
maps, which we consider below. This is the case we principally consider in this paper. For
results on more general equilibrium states see [28].

5.3.1. Rychlik systems. The first class of examples to which we apply our results is the
class of interval maps considered by Rychlik in [51], that is given by a triple (Y, f, φ),
where Y is an interval, f a piecewise expanding interval map (possibly with countable
discontinuity points) and φ a certain potential. This class includes, for example, piecewise
C2 uniformly expanding maps of the unit interval with the relevant physical measures. We
refer to [51] or to [30, Section 4.1] for details on the definition of such class and instead
give the following list of examples of maps in such class:

• Given m ∈ {2, 3, . . .}, let f : x 7→ mx mod 1 and φ ≡ − logm. Then mφ = Pφ = Leb.

• Let f : x 7→ 2x mod 1 and for α ∈ (0, 1), let

φ(x) :=

{
− logα if x ∈ (0, 1/2)

− log(1− α) if x ∈ (1/2, 1)

(and φ = −∞ elsewhere). Then mφ = Pφ is the (α, 1− α)-Bernoulli measure on [0, 1].

• Let f : (0, 1] → (0, 1] and φ : (−∞, 0) be defined as f(x) = 2k(x − 2−k) and φ(x) :=
−k log 2 for x ∈ (2−k, 2−k+1]. Then mφ = Pφ = Leb.

In order to prove that the stated dichotomies hold for these systems, we basically need to
show that these systems satisfy the conditions Theorems 8 and 9.

In this setting, as in [51], there is a unique f -invariant probability measure Pφ � mφ

which is also an equilibrium state for (Y, f, φ) with a strictly positive density
dPφ
dmφ
∈ BV .
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Moreover, there exists exponential decay of correlations against L1(mφ), i.e., there exist
C > 0 and β > 0, such that for any υ ∈ BV and ψ ∈ L1(mφ) we have∣∣∣∣∫ ψ ◦ fn · υ dPφ −

∫
ψ dPφ

∫
υ dPφ

∣∣∣∣ ≤ C‖υ‖BV ‖ψ‖L1(mφ) e−βn.

Assume that ζ is such that 0 <
dPφ
dmφ

(ζ) < ∞ and the observable ϕ : X → R ∪ {+∞} is

of the form (4.2). The the regularity of Pφ and ϕ guarantee that condition (R1) holds for
every such ζ. Besides, if ζ is a repelling p-periodic point, which means that fp(ζ) = ζ, fp

is differentiable at ζ and 0 < |detD(f−p)(ζ)| < 1. As shown in [30, Theorem 5], we have
that (R2) holds. Moreover, the EI is given by the formula θ = 1− eSpφ(ζ).

Finally, since U(un) is an interval and Qκ1
p,0(un) is the union of two intervals, for all κ1,

we have that ‖1U(un)‖BV ≤ 3 and ‖1Qκ1p,0(un)‖BV ≤ 5, which means all the assumptions of

Theorems 8 and 9 hold.

5.3.2. Piecewise expanding maps in higher dimensions. The second class of examples we
consider here corresponds to a higher dimensional version of the piecewise expanding in-
terval maps of the previous section. We refer to [52, Section 2] for precise definition of this
class of maps and give a very particular example corresponding to a uniformly expanding
map on the 2-dimensional torus:

• let T2 = R2/Z2 and consider the map f : T2 → T2 defined by the action of a 2 × 2
matrix with integer entries and eigenvalues λ1, λ2 > 1.

According to [52, Theorem 5.1], there exists an acip P. Also in [52, Theorem 6.1], it is
shown that on the mixing components, P enjoys exponential decay of correlations against
L1 observables on Vα, more precisely, if the map f is as defined above and if P is the mixing
acip, then there exist constants C <∞ and γ < 1 such that∣∣∣ ∫ ψ ◦ fn h dP

∣∣∣ ≤ C‖ψ‖L1‖h‖αγn, ∀ψ ∈ L1, where

∫
ψ dP = 0 and ∀h ∈ Vα.

Assume that the observable ϕ : X → R∪ {+∞} is of the form (4.2). This guarantees that
condition (R1) holds. If ζ is a repelling p-periodic point, which means that fp(ζ) = ζ, fp

is differentiable at ζ and 0 < |detD(f−p)(ζ)| < 1. Then condition (R2) holds and the EI
is equal to θ = 1 − |detD(f−p)(ζ)| (see [30, Theorem 3]). It is also easy to check that
‖1U(un)‖α and ‖1Qκ1p,0(un)‖α are bounded by a positive constant, for all κ1, which means that

all conditions of Theorems 8 and 9 hold.
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