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A. MOURA

Abstract. Generalizing a property of the pseudovariety of all aperiodic semi-
groups observed by Tilson, we call E-local a pseudovariety V which satisfies the
following property: for a finite semigroup, the subsemigroup generated by its
idempotents belongs to V if and only if so do the subsemigroups generated by
the idempotents in each of its regular D-classes. In this paper, we characterize
the E-local pseudovarieties. We also determine several examples of the small-
est E-local pseudovariety containing a given pseudovariety and present some
necessary or sufficient conditions for a pseudoidentity to define an E-local pseu-
dovariety.

1. Introduction

The motivation for this work came from an exercise suggested by Pin [5] about
a result from Tilson [8]. With the aim of finding a method for computing the
complexity of a finite semigroup in terms of the structure of its subsemigroups,
Tilson started by establishing a useful method for computing the group-complexity
of a finite semigroup with at most two non-zero D-classes. This led him to prove the
following result: given a finite semigroup S, the subsemigroup 〈E(S)〉 is aperiodic if
and only if, for every regular D-class D of S, the subsemigroup 〈E(D)〉 is aperiodic.

As a consequence of the work of Fitz-Gerald [4], we have that a regular semigroup
is orthodox if and only if the product of idempotents of every regular D-class of S is
idempotent. Thus, it suffices to analyze the property of the product of idempotents
to be an idempotent on every regular D-class to conclude the property for an
arbitrary product of idempotents.

Much work has been done on the structure of idempotent-generated semigroups.
So, it becomes interesting to determine the pseudovarieties V satisfying the following
property: given S ∈ S, 〈E(S)〉 ∈ V if and only if 〈E(D)〉 ∈ V, for each regular D-
class D of S. We call E-local a pseudovariety with this property.

In this paper, we characterize the E-local pseudovarieties. We start by recalling,
in Section 2, some basics of the theory of pseudovarieties of semigroups, in partic-
ular, some results concerning the block operator B and the idempotent-generated
subsemigroups of a semigroup. Section 3, which is the main section, concerns the
study of E-local pseudovarieties: we observe some properties and examples, we
make a complete characterization of E-local pseudovarieties, and we introduce a
new operator, E, where VE is the smallest E-local pseudovariety containing a pseu-
dovariety V. Finally, in Section 4, we present some necessary or sufficient conditions
for a pseudoidentity to define an E-local pseudovariety.
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2. Preliminaries

We briefly recall some basics of the theory of pseudovarieties of semigroups. We
recommend [1, 5, 7] for a better understanding of this area.

Let S be a semigroup. We denote by E(S) the set of idempotents of S and by
〈E(S)〉 the subsemigroup of S generated by E(S). More generally, 〈X〉 denotes the
subsemigroup of S generated by X ⊆ S. In case S is finite, sω denotes the unique
idempotent in the subsemigroup generated by a given s ∈ S.

Let S be a finite semigroup and let D be a regular D-class of S. Consider the
equivalence relation ∼ on the set of group elements of a regular D-class D of S
defined in the following way: given two group elements a and b of D, a ∼ b if
and only if there exists an idempotent-chain e0, e1, . . . , en−1, en such that a H e0,
b H en, and either ei R ei−1 or ei L ei−1, for all i ∈ {1, . . . , n}. A block of D is the
Rees quotient of the subsemigroup of S generated by a ∼-class modulo the ideal
consisting of the elements that are not in D. The blocks of S are the blocks of its
regular D-classes.

A class of finite semigroups that is closed under taking subsemigroups, homo-
morphic images and finite direct products is called a pseudovariety and generally
denoted by V. For example, S denotes the pseudovariety of all finite semigroups.

We may construct new pseudovarieties from known ones by applying operators
to pseudovarieties. In this paper, we use the following operators on pseudovarieties:

• EV consists of all S ∈ S such that 〈E(S)〉 ∈ V;
• DV consists of all S ∈ S such that, for every regular D-class D of S, D ∈ V;
• for a pseudovariety H of groups, H̄ consists of all S ∈ S such that every

subgroup G of S belongs to H;
• BV consists of all S ∈ S such that, for every block B of S, B ∈ V;
• VE is the pseudovariety generated by the idempotent-generated semigroups

of V.
The last operator was introduced in Almeida and Moura [2] and we refer the reader
to that paper as needed, but we opt to present here an easy lemma that will be
used frequently in this paper:

Lemma 2.1 (Almeida and Moura [2]). The operator E has the following properties,
where V and W are arbitrary pseudovarieties:

(1) V ⊆ W implies VE ⊆ WE;
(2) (V ∩W)E ⊆ VE ∩WE;
(3) (VE)E = VE;
(4) (EV)E = VE;
(5) E(VE) = EV.

The main aim of our study is the characterization of the E-local pseudovarieties.
For this purpose, we need some results concerning idempotent-generated subsemi-
groups and blocks of such subsemigroups.

Lemma 2.2. For every pseudovariety V, BBV = BV.

Lemma 2.3. Let S ∈ S and X ⊆ E(S). Then 〈E〈X〉〉 = 〈X〉.
To prove that the idempotent-generated subsemigroup of a regular semigroup is

also regular, Fitz-Gerald [4] uses a technique that consists in writing a product of
idempotents of 〈E(S)〉 as a product of idempotents of 〈E(D)〉, for a regular D-class
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D of S. As a consequence, we have the following lemma whose statement and proof
may be found in [7, Lemma 4.13.1], for example. It enables us to easily conclude the
statement presented in the introduction that a regular semigroup S is orthodox if
and only if the product of idempotents of every regular D-class of S is idempotent.

Lemma 2.4. Let S be a semigroup and let s ∈ 〈E(S)〉 be an element of a regular
J -class J of S. Then, there exists an idempotent-chain e1, e2, . . . , em ∈ E(J) such
that s = e1e2 · · · em. Hence 〈E(S)〉 ∩ J = 〈E(J)〉 ∩ J .

Corollary 2.5. Every finite semigroup S has the following properties:
(1) Let a be a regular element of 〈E(S)〉. Then a is in a block of Da, where Da

is the regular D-class of S containing a.
(2) Let B be a block of 〈E(S)〉. Then B is also a block of 〈E(D)〉, for some

regular D-class D of S.
(3) Given X ⊆ E(S), the regular D-classes of 〈X〉 have only one block.

Proof. (1) and (2) follow immediately from Lemma 2.4 and from the definition of
block of S. Now, by Lemma 2.3 and by (1), we have that every regular element of
〈E〈X〉〉 = 〈X〉 is in a block of 〈E〈X〉〉 = 〈X〉 and we have (3). ¤

A pseudoidentity is a formal equality u = v, where u, v ∈ ΩAS, the set of A-ary
implicit operations. We say that S ∈ V satisfies u = v, and we write S |= u = v,
if uS = vS . Recall that an A-ary operation uS : SA → S has the following
property: for every homomorphism ϕ : S → T , with S, T ∈ V, the following
diagram commutes:

SA
uS //

ϕA

²²

S

ϕ

²²
TA

uT

// T

Reiterman’s Theorem [6] says that every pseudovariety is defined by some set of fini-
tary pseudoidentities, in the sense that it is the class of finite semigroups satisfying
this set of pseudoidentities. The converse of the theorem is easily verified.

In this paper, we use, in particular, the pseudovarieties that we list below to-
gether with some corresponding bases of pseudoidentities defining them:

I = Jx = yK trivial semigroups;

J = J(xy)ωx = (xy)ω = y(xy)ωK J -trivial semigroups;

R = J(xy)ωx = (xy)ωK R-trivial semigroups;

L = Jy(xy)ω = (xy)ωK L-trivial semigroups;

A = Jxω+1 = xωK aperiodic (or H-trivial) semigroups;

G = Jxω = 1K groups;

LG = J(xωy)ωxω = xωK local groups;

CR = Jxω+1 = xK completely regular semigroups;

CS = Jxω+1 = x, (xyx)ω = xωK completely simple semigroups;

RB = Jx2 = x, xyx = xK rectangular bands;
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LZ = Jxy = xK left-zero semigroups;

DA = J((xy)ωx)2 = (xy)ωxK regular D-classes are aperiodic semigroups;

DG = J(xy)ω = (yx)ωK regular D-classes are groups;

DO = J(xy)ω(yx)ω(xy)ω = (xy)ωK regular D-classes are orthodox semigroups;

DS = J((xy)ωx)ω+1 = (xy)ωxK regular D-classes are semigroups.

3. E-local pseudovarieties

We start this section by observing some properties of E-local pseudovarieties and
several examples of pseudovarieties having this property. In particular, we prove,
in Example 3.8, the result of Tilson [8] that the pseudovariety A is E-local. After
that, we characterize the E-local pseudovarieties. We finish with the introduction of
the operator E, where VE denotes the smallest E-local pseudovariety containing V.

3.1. Properties and examples. We start by noting that the property of being
E-local is preserved under intersection. Next, we relate the E-locality of V, EV
and VE.

Lemma 3.1. Let V be a pseudovariety and let S ∈ S. The following conditions are
equivalent:

(1) for every regular D-class D in S, 〈E(D)〉 ∈ V;
(2) for every regular D-class D in S, 〈E(D)〉 ∈ EV;
(3) for every regular D-class D in S, 〈E(D)〉 ∈ VE.

Proof. (3) ⇒ (1) ⇒ (2): This follows immediately from VE ⊆ V ⊆ EV.
(2) ⇒ (3): Note that 〈E(D)〉 ∈ EV if and only if 〈E〈E(D)〉〉 = 〈E(D)〉 ∈ V,

by Lemma 2.3. By the same lemma and by the definition of VE, we deduce that
〈E〈E(D)〉〉 = 〈E(D)〉 ∈ VE. ¤

Similarly, we may prove the following lemma:

Lemma 3.2. The following conditions are equivalent for every pseudovariety V
and every finite semigroup S:

(1) 〈E(S)〉 ∈ V;
(2) 〈E(S)〉 ∈ EV;
(3) 〈E(S)〉 ∈ VE. ¤

The equivalence of E-locality for the pseudovarieties V, EV, and VE follows di-
rectly from the previous lemmas.

Corollary 3.3. Let V be a pseudovariety. The following conditions are equivalent:
(1) V is E-local;
(2) EV is E-local;
(3) VE is E-local.

The properties of the operator E (see Lemma 2.1) together with the previous
corollary enable us to identify intervals consisting of E-local pseudovarieties.

Proposition 3.4. Let V be an E-local pseudovariety. Then any pseudovariety
U ∈ [VE, EV] is E-local.

Proof. Applying Lemma 2.1, we obtain EV = E(VE) ⊆ EU ⊆ EV. The result now
follows from Corollary 3.3. ¤
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In an attempt to identify all E-local pseudovarieties, we start by determining
several families of pseudovarieties satisfying this property.

Proposition 3.5. Let V and H, with H ⊆ G, be pseudovarieties. Then:
(1) BV is E-local;
(2) DV is E-local;
(3) H̄ is E-local.

Proof. (1) follows directly from item (2) of Corollary 2.5.
(2) By items (2) and (3) from Corollary 2.5, we have that, for every regular

D-class D of 〈E(S)〉, there exists a regular D-class D′ of S such that D is a D-
class of 〈E(D′)〉. Let S be a semigroup such that, for every regular D-class D,
〈E(D)〉 ∈ DV. Then, every regular D-class of 〈E(D)〉 is a semigroup in V. It
follows that every regular D-class of 〈E(S)〉 is a semigroup in V.

(3) Let S ∈ S be such that, for every regular D-class D, 〈E(D)〉 ∈ H̄. Let T be
a subgroup of 〈E(S)〉. By Lemma 2.4, T ⊆ 〈E(DT )〉, where DT is the D-class of S
containing T . Hence T ∈ H and 〈E(S)〉 ∈ H̄. ¤
Example 3.6. Since J = DI (see Pin [5, Proposition III.4.1]), it follows from
Proposition 3.5 that J is E-local.

Example 3.7. Since R = DLZ (see Pin [5, Proposition III.4.1]), it follows from
Proposition 3.5 that R is E-local.

Example 3.8. To conclude the result from Tilson [8], it suffices to note that
A = Ī. So, the conclusion that the pseudovariety is E-local follows immediately
from Proposition 3.5.

3.2. Characterizations. The properties of the operators E and B are useful to
characterize the E-local pseudovarieties, as follows:

Theorem 3.9. The following conditions are equivalent:
(1) V is E-local;
(2) EV = EBEV;
(3) there exists W such that EV = EBW;
(4) there exists W such that (EBW)E ⊆ V ⊆ EBW;
(5) EV = BEV;
(6) there exists W such that EV = BW.

Proof. (1) ⇒ (2): The direct inclusion follows from EV ⊆ BEV ⊆ EBEV. For the
converse, let S ∈ EBEV, i.e., for every block B of 〈E(S)〉, 〈E(B)〉 ∈ V. We want to
show that S ∈ EV, i.e., 〈E(S)〉 ∈ V. Using the E-locality of V, it suffices to show
that, for every regular D-class D of S, 〈E(D)〉 ∈ V. Let D be a regular D-class of S.
Using again the E-locality of V and Lemma 2.3, we prove that, for every regular
D-class D′ of 〈E(D)〉, 〈E(D′)〉 ∈ V. Recall that, by item (3) from Corollary 2.5,
D′ has a unique block. Hence D′ ⊆ B, for some block B of 〈E(D)〉 and, therefore,
〈E(D′)〉 ≤ 〈E(B)〉 ∈ V. Hence 〈E(S)〉 ∈ V and S ∈ EV.

(2) ⇒ (3) ⇒ (1): The first implication is trivial and the second follows from
item (1) of Proposition 3.5 and Corollary 3.3.

(3) ⇔ (4): Given W such that EV = EBW, it follows, by Lemma 2.1, that
(EBW)E = (EV)E = VE ⊆ V ⊆ EV = EBW. Conversely, if (EBW)E ⊆ V ⊆ EBW
for some W, applying the increasing operator E , we obtain, by the same lemma,
E((EBW)E) = EBW ⊆ EV ⊆ EEBW = EBW, i.e., EV = EBW.
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(2) ⇒ (5) ⇒ (6) ⇒ (1): Since EV ⊆ BEV ⊆ EBEV, if EV = EBEV, then
EV = BEV and we have the first implication. The second implication is trivial.
Finally, if there exists W such that EV = BW, it follows, by Proposition 3.5 and
Corollary 3.3, that V is E-local. ¤
Corollary 3.10. Let V ⊆ EDS be such that V = EV. Then V is E-local if and only
if there exists W ⊆ CS such that V = BW.

Proof. Suppose that V is E-local. Since V = EV and by item (5) from Theorem 3.9,
we have V = EV = BEV = BV with V ⊆ EDS. Given S ∈ V = BV, we have that
every block B of S is such that B ∈ V ⊆ EDS and, therefore, 〈E(B)〉 ∈ DS, i.e.,
〈E(B)〉 ∈ CS. Note that 〈E(B)〉 has the same structure in R-classes and L-classes
as B, but it may have less elements in the H-classes. Hence B ∈ CS. It follows that
B ∈ V ∩ CS and S ∈ B(V ∩ CS). The converse follows from B being an increasing
operator and from V = BV. Thus, we have V = BV = B(V ∩ CS). The converse
implication follows directly from Proposition 3.5. ¤

Theorem 3.9 gives several characterizations of E-local pseudovarieties. It is an
easy exercise to verify the E-locality of the pseudovarieties J, R, DS and A, for
example, using such characterizations.

3.3. The operator E. Because there are pseudovarieties V which are not E-local,
it is natural to consider the smallest E-local pseudovariety containing V, which we
denote VE.

In this subsection, we determine some pseudovarieties of the form VE. For that
purpose, we also use the operator E which is studied in detail in [2].

Proposition 3.11. Let V ⊆ CS be such that VE = V. Then VE = (DV)E.

Proof. Let S = 〈E(S)〉 ∈ DV and let W be any E-local pseudovariety containing V.
Then 〈E(D)〉 ∈ V, for every regular D-class D of S, since D is in V and 〈E(D)〉 ≤ D.
Since W is E-local and V ⊆ W, it follows that S = 〈E(S)〉 ∈ W. Hence (DV)E ⊆ W
and, therefore, (DV)E ⊆ VE.

For the direct inclusion, since V ⊆ CS, we have V ⊆ DV. As E is an increasing
operator, it follows that V = VE ⊆ (DV)E. By Proposition 3.5, DV is E-local and so
is (DV)E, by Corollary 3.3. This yields the inclusion VE ⊆ (DV)E. ¤
Corollary 3.12. The class J is the smallest E-local pseudovariety.

Proof. Let V be an E-local pseudovariety. Since I ⊆ V, we have IE ⊆ VE = V.
By Proposition 3.11, we have IE = (DI)E = JE = J, where the last equality follows
from [2, Corollary 5.6]. Hence J ⊆ V. By Example 3.6, J is E-local, which establishes
the corollary. ¤
Example 3.13. It follows from Corollary 3.12 that the pseudovarieties LG and CR
are not E-local.

Example 3.14. By Proposition 3.11, we conclude that (RB)E = (DRB)E = (DA)E =
DA, where the last equality follows by [2, Corollary 5.6], and (CS)E = (DCS)E =
(DS)E.

Example 3.15. By Example 3.14, we have (DS)E = (CS)E ⊆ (CR)E. Conversely,
since CR ⊆ DS, by [2, Proposition 3.16] and Lemma 2.1, we deduce that CR =
(CR)E ⊆ (DS)E. Note that (DS)E is E-local, by Proposition 3.5 and Corollary 3.3.
Hence (CR)E ⊆ (DS)E, which establishes the equality (CR)E = (DS)E.
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Example 3.16. Let H be a pseudovariety of groups. By [2, Example 3.7], we
have (DH)E = J ⊆ J ∨ H ⊆ DH. Since, by Proposition 3.5, DH is E-local, it
follows, by Proposition 3.4, that J∨H is E-local. That J∨H is the smallest E-local
pseudovariety containing H, is an immediate consequence from the fact that J is
the smallest E-local pseudovariety. Thus HE = J ∨ H.

Example 3.17. Let H be a pseudovariety of groups. By Example 3.14, we have
DA = (RB)E ⊆ (RB ∨ H)E and, therefore, DA ∨ H ⊆ (RB ∨ H)E. Now, from [2,
Lemma 3.1, Example 3.8, Corollary 4.2], we obtain (DO ∩ H̄)E ⊆ (DO)E ∩ H̄E =
DA∩ H̄ ⊆ DA. Therefore, (DO∩ H̄)E ⊆ DA ⊆ DA∨H ⊆ DO∩ H̄. As an intersection
of E-local pseudovarieties, the pseudovariety DO∩ H̄ is E-local. By Proposition 3.4,
DA ∨ H is E-local. Thus (RB ∨ H)E = DA ∨ H.

Example 3.18. Since LG ⊆ DS and DS is E-local by Proposition 3.5, we have
(LG)E ⊆ DS. On the other hand, by Example 3.14 and by [2, Example 3.17], we
obtain (DS)E = (CS)E = ((LG)E)E ⊆ (LG)E. Thus the equality (DS)E ⊆ (LG)E ⊆ DS
holds.

If we prove that (DS)E = DS, we will have the equality in the previous example.
This provides additional motivation for the calculation of (DS)E which remains an
open problem (see [2]).

We end this subsection by noting that (V∩W)E ⊆ VE∩WE, for all pseudovarieties
V and W. However, we do not know whether equality holds.

4. E-local pseudoidentities

We call E-local a pseudoidentity which defines an E-local pseudovariety. Note
that a pseudovariety defined by a set of E-local pseudoidentities is E-local, since it
is the intersection of the E-local pseudovarieties defined by each pseudoidentity of
the set. We do not know whether the converse is valid.

In 3.2 we obtained several characterizations of E-local pseudovarieties that enable
us to also characterize E-local pseudoidentities. However, some of the results that we
obtained, like some techniques developed allow us to give a different characterization
of several pseudoidentities with this property.

For u ∈ ΩAS, let first(u) and last(u) be, respectively, the first and last letters
of u. We relate the E-locality of the pseudoidentities of the form u = v, where
first(u) 6= first(v) or last(u) 6= last(v), with the condition V ⊆ Ju = vK, where V is
one of the pseudovarieties R, L and J. We also obtain some results concerning the
pseudovariety DA.

Proposition 4.1. The following properties are verified by every pseudoidentity
u = v.

(1) If last(u) 6= last(v) and R |= u = v, then u = v is E-local.
(2) If first(u) 6= first(v) and L |= u = v, then u = v is E-local.
(3) If first(u) 6= first(v), last(u) 6= last(v) and J |= u = v, then u = v is E-local.

Proof. Let u = v be a pseudoidentity such that last(u) 6= last(v) and suppose that
R |= u = v. We claim that R ⊆ Ju = vK ⊆ ER. So that, by Example 3.7 and by
Proposition 3.4, Ju = vK is E-local. The first inclusion is assumed by hypothesis. To
prove the second inclusion, let S be a semigroup satisfying u = v and suppose that
S /∈ ER, i.e., 〈E(S)〉 /∈ R. Then, by [1, cf. Exercise 5.2.8], there exist two distinct
idempotents such that ef = f and fe = e. Evaluating the last letter of u by e, the
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last letter of v by f and the other letters by e or f , we obtain S |= e = u = v = f ,
which is a contradiction.

Similarly, we obtain (2) and (3). ¤
Since, by [2], the pseudovarieties R, L, J and DA satisfy the equality VE = V, it

is easy to obtain the following results:

Theorem 4.2. Let u = v be an arbitrary pseudoidentity.
(1) If first(u) = first(v) and last(u) 6= last(v), then u = v is E-local if and only

if R |= u = v.
(2) If first(u) 6= first(v) and last(u) = last(v), then u = v is E-local if and only

if L |= u = v.
(3) If first(u) 6= first(v) and last(u) 6= last(v), then u = v is E-local if and only

if J |= u = v.
(4) If first(u) = first(v), last(u) = last(v) and u = v is E-local, then DA |=

u = v.

Proof. (1) Let u = v be a pseudovariety such that first(u) = first(v) and last(u) 6=
last(v). Suppose that it is E-local. Since LZ ⊆ CS and (LZ)E = LZ, it follows
from Proposition 3.11 that (LZ)E = (DLZ)E = RE = R. Thus, as the pseudovariety
Ju = vK is E-local and it contains LZ, it also contains (LZ)E = R. The converse
follows from Proposition 4.1. Dually, we obtain (2).

(3) It follows directly from J being the smallest E-local pseudovariety (see Corol-
lary 3.12) and from Proposition 4.1.

(4) In that case, we have RB |= u = v, RB ⊆ CS and RBE = RB. By Propo-
sition 3.11, we have (RB)E = (DRB)E = (DA)E = DA. As in (1), we deduce that
DA = (RB)E ⊆ Ju = vK. ¤

However, we do not have a characterization of all E-local pseudoidentities of the
form u = v, with first(u) = first(v) and last(u) = last(v).

We finish this paper with another sufficient condition for a pseudoidentity to be
E-local that follows from Lemma 2.4.

Theorem 4.3. Let u = v be a pseudoidentity such that u, v ∈ 〈X〉, where all
elements of X ⊆ ΩAS lie in a same regular D-class of ΩAS. Then u = v is E-local.

Proof. Let S be a finite semigroup and suppose that 〈E(D)〉 |= u = v, for each
regularD-class D of S. We want to prove that 〈E(S)〉 |= u = v. Let ϕ : ΩAS → S be
a continuous surjective homomorphism such that, for every x ∈ X, ϕ(x) ∈ 〈E(S)〉.
Since all elements of X lie in a same regular D-class of ΩAS, then there exists
a regular D-class D of S such that ϕ(x) ∈ D, for all x ∈ X. By Lemma 2.4,
it follows that ϕ(x) ∈ 〈E(D)〉, for all x ∈ X. Since u, v ∈ 〈X〉, it follows that
ϕ(u), ϕ(v) ∈ 〈E(D)〉 and, by hypothesis, they are equal. Thus 〈E(S)〉 |= u = v and
u = v is E-local. ¤

Note that several pseudoidentities considered in this paper are of this form.
Specifically, the pseudoidentities that we used in Section 2 to define the pseudova-
rieties J, R, L, A, DA, DG, DO and DS are all of this form. Another example is
the pseudoidentity (xωyω)ω = (yωxω)ω which defines the pseudovariety BG. As
a last example, Almeida and Volkov [3] showed that, if ui = vi, with i ∈ I, is a
basis of pseudoidentities for a pseudovariety of groups H, then u′i = v′i is a basis of
pseudoidentities for H̄, where u′i and v′i result from the substitution of each letter



E-LOCAL PSEUDOVARIETIES 9

xj ∈ A of ui and vi by exje where e is a fixed idempotent in the minimum ideal
of ΩAS. These pseudoidentities are also of the form of Theorem 4.3.

In the last result, we identify all E-local pseudoidentities with only one variable.

Corollary 4.4. The E-local pseudoidentities in one variable are those of the form
xα = xβ, with both α and β infinite.

Proof. If α or β are finite and are not equal, then DA does not satisfy the pseu-
doidentity u = v since DA contains all finite monogenic aperiodic semigroups. Thus,
u = v is not E-local, by item (4) of Theorem 4.2.

On the other hand, if α and β are infinite, then xα and xβ are in a same group
with neutral element xω. Thus, by Theorem 4.3, the pseudoidentity is E-local. ¤

We do not know if every E-local pseudovariety is defined by a set of pseudoiden-
tities satisfying the condition of Theorem 4.3.

Acknowledgments. This work is part of the author’s doctoral thesis, written
under the supervision of Prof. Jorge Almeida, from whose advice the author has
greatly benefited. This work was supported by Fundação para a Ciência e a Tec-
nologia (FCT) through the PhD Grant SFRH/BD/19720/2004, through the Centro
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