
DUALITY FOR PARTIAL GROUP ACTIONS

CHRISTIAN LOMP

Abstract. Given a finite group G acting as automorphisms on a ring A, the skew
group ring A∗G is an important tool for studying the structure of G-stable ideals of
A. The ring A∗G is G-graded, i.e.G coacts on A∗G. The Cohen-Montgomery duality
says that the smash product A ∗ G#k[G]∗ of A ∗ G with the dual group ring k[G]∗

is isomorphic to the full matrix ring Mn(A) over A, where n is the order of G. In
this note we show how much of the Cohen-Montgomery duality carries over to partial
group actions in the sense of R.Exel. In particular we show that the smash product
(A ∗α G) #k[G]∗ of the partial skew group ring A ∗α G and k[G]∗ is isomorphic to a
direct product of the form K × eMn(A)e where e is a certain idempotent of Mn(A)
and K is a subalgebra of (A ∗α G) #k[G]∗. Moreover A∗αG is shown to be isomorphic
to a separable subalgebra of eMn(A)e. We also look at duality for infinite partial
group actions and for partial Hopf actions.

1. Introduction

Let k be a commutative unital ring and A a untial k-algebra. Given a finite group
G acting as k-linear automorphisms on A, Cohen and Montgomery showed in [3] that
the smash product A∗G#k[G]∗ of the skew group ring A∗G and the dual group ring
k[G]∗ = Hom(k[G], k) is isomorphic to the full matrix ring Mn(A) over A, where n is
the order of G.

R.Exel introduced in [6] the notion of a partial group action on a k-algebra: G acts
partially on A by a family {αg : Dg−1 → Dg}g∈G if for all g ∈ G, Dg is an ideal of A
and αg is an isomorphism of k-algebras such that for all g, h ∈ G:

(i) De = A and αe is the identity map of A;
(ii) αg(Dg−1 ∩Dh) = Dg ∩Dgh;
(iii) αg(αh(x)) = αgh(x) for all x ∈ Dh−1 ∩D(gh)−1 .

The partial skew group ring of A and G is defined to be the projective left A-module
A ∗α G =

⊕
g∈GDg with multiplication

(ag)(bh) = αg(αg−1(a)b)gh

for all a ∈ Dg and b ∈ Dh and where g is the placeholder for the gth component of⊕
g∈GDg. Since A ∗α G is naturally G-graded, the question arises how much of the

Cohen-Montgomery duality carries over to partial group actions.
As in [5] we will assume that the ideals Dg are generated by central idempotents,

i.e. Dg = A1g with central idempotent 1g ∈ A for all g ∈ G. For any g ∈ G we define
1
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the following endomorphism βg : A→ A of A by

βg(a) = αg(a1g−1) ∀a ∈ A
This map gives rise to a k-linear map k[G]⊗ A→ A with

g ⊗ a 7→ g · a := βg(a) = αg(a1g−1)

for all g ∈ G, a ∈ A.

Lemma 1.1. With the notation above we have that

(1) βg are k-algebra endomorphisms of A for all g ∈ G, i.e.

g · (ab) = (g · a)(g · b) ∀a, b ∈ A.
(2) g · (h · a) = ((gh) · a)1g for all g, h ∈ G and a ∈ A.
(3) (g · a)b = g · (a(g−1 · b)) for all a, b ∈ A and g ∈ G.

Proof. (1) follows since the αg are algebra homomorphisms and the idempotents 1g are
central, i.e. for all a, b ∈ A:

βg(ab) = αg(ab1g−1) = αg(a1g−1b1g−1) = αg(a1g−1)αg(b1g−1) = βg(a)βg(b).

(2) follows from [5, 2.1(ii)]:

αg(αh(a1h−1)1g−1) = αgh(a1h−1g−1)1g

what expressed by β yields the statement of (2).
(3) Using (1), (2) and the fact that βe = id and that the image of βg is Dg = A1g

we have that

g · (a(g−1 · b)) = (g · a)(g · (g−1 · b)) = (g · a)b1g = (g · a)b.
�

Obviously we also have g · 1 = αg(1g−1) = 1g and g · (g−1 · a) = ((gg−1) · a)1g = a1g

for all a ∈ A and g ∈ G using property (2). Moreover using the fact that αg is bijective
and 1g central we have for all a ∈ A and g ∈ G that g ·a = 0 if and only if a ∈ A(1−1g).

2. Grading of the partial skew group ring

The partial skew group ring is the projective left A-module A∗αG =
⊕

g∈GDg. We

will write an element of A∗α G as a finite sum of elements
∑

g∈G agg where ag ∈ Dg =
A1g and g is a placeholder for the g-th component. A ∗α G becomes an associative
k-algebra by the product:

(ag)(bh) = αg(αg−1(a)b)gh

for all g, h ∈ G and a ∈ Dg and b ∈ Dh. Using our ’·’-notation we see easily

(ag)(bh) = a(g · b)gh.
The algebra A ∗α G is naturally G-graded where the homogeneous elements are those
in {Dg}g∈G, i.e. DgDh ⊆ Dgh by definition of the multiplication in A ∗α G. Thus
A ∗α G becomes a k[G]-comodule algebra. Note that the G-grading is strong, in the
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sense that DgDh = Dgh if and only if Dg = A for all g ∈ G, i.e. the G-action is global
(since if DgDh = Dgh for all g, h ∈ G, then

A1g1g−1 = DgDg−1 = Dgg−1 = De = A,

thus 1g is an invertible central idempotent and hence equals 1, i.e. Dg = A). Known
results on graded rings can be applied to the G-grading of A ∗α G.

3. Duality for partial actions of finite groups

Assume G to be finite, then k[G]∗ becomes a Hopf algebra with projective basis
pg ∈ k[G]∗ where pg(h) = δg,h for all g, h ∈ H. The multiplication is defined as
pg ∗ph = δg,hpg and the identity element of k[G]∗ is 1 =

∑
h∈H ph. Now A∗αG becomes

a k[G]∗-module algebra by

ph . (ag) = δg,hag

for all g, h ∈ G and ag ∈ Dg. The multiplication of the smash product (A ∗α G) #k[G]∗

is defined as

(ag#ph)(bk#pl) =
∑
s∈G

(ag)[ps.(bk)]#ps−1h∗pl = (ag)(bk)#pk−1h∗pl = a(g·b)gk#δh,klpl.

The identity element of B = A∗αG#k[G]∗ is
∑

h∈G 1e#ph. In the case of global actions
Cohen and Montgomery proved in [3] that A ∗G#k[G]∗ 'Mn(A) where n = |G| and
Mn(A) denotes the ring of n×n-matrizes over A. We will index the matrizes of Mn(A)
by elements of G and denote by Eg,h the elementary matrix that has the value 1 in the
g-th row and the h-th column and zero elsewhere.

Proposition 3.1. Let G be a finite group of n elements, acting partially on an k-
algebra A and consider the k-algebra B = (A ∗α G) #k[G]∗. The map

Φ : B −→Mn(A) with∑
g,h

ag,hg#ph 7→
∑
g,h

h−1 · (g−1 · ag,h)Egh,h

is a k-algebra homomorphism.

Proof. First note that for any g, h, k ∈ G and a ∈ Dg, b ∈ Dh we have, using Lemma
1.1(2) in the 2nd, 4th and 6th line and Lemma 1.1(1) in the 3rd line:

k−1 · ((gh)−1 · (a(g · b))) = k−1 ·
(
((gh)−1 · a)((gh)−1 · (g · b))

)
= k−1 ·

[
((gh)−1 · a)(h−1 · b)1(gh)−1

]
=

[
k−1 · ((gh)−1 · a)

] [
k−1 · (h−1 · b)

]
= ((ghk)−1 · a)((hk)−1 · b)1k−1

= ((ghk)−1 · a)1(hk)−1((hk)−1 · b)1k−1

= ((hk)−1 · (g−1 · a))(k−1 · (h−1 · b))
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Thus we showed:

(1) k−1 · ((gh)−1 · (a(g · b))) = ((hk)−1 · (g−1 · a))(k−1 · (h−1 · b))

For any ag#ph, bk#pl ∈ (A ∗α G) #k[G]∗ we have, using equation (1):

Φ((ag#ph)(bk#pl)) = Φ(a(g · b)gk#δh,klpl)

= l−1 · ((gk)−1 · (a(g · b)))Egkl,lδh,kl

= ((kl)−1 · (g−1 · a))(l−1 · (k−1 · b))Egh,hEkl,lδh,kl

= (h−1 · (g−1 · a))Egh,h (l−1 · (k−1 · b))Ekl,l

= Φ(ag#ph)Φ(bk#pl)

Hence Φ is an algebra homomorphism. �

Note that Φ restricted to A ∗α G is injective, i.e. A ∗α G can be considered a
subalgebra of Mn(A). In general Ker(Φ) is non-trivial, unless the partial action is a
global action.

Proposition 3.2. Ker(Φ) =
⊕

g,h∈GA(1− 1gh)1gg#ph.

Proof. Suppose γ =
∑

g,h ag,hg#ph ∈ Ker(Φ), then h−1 · (g−1 ·ag,h) = 0 for all g, h ∈ G.

Thus (g−1 · ag,h) ∈ A(1− 1h) ∩Dg−1 = A(1− 1h)1g−1 . Hence

ag,h = g · (g−1 · ag,h) ∈ Ag · (1− 1h) = A(1g − 1g1gh),

i.e. γ ∈
⊕

g,hA(1− 1gh)1gg#ph. The other inclusion follows because

Φ ((g · (1− 1h))g#ph) = h−1 · (g−1 · (g · (1− 1h)))Egh,h = h−1 · ((1− 1h)1g)Egh,h = 0.

�

Note that the inclusion of A∗αG into (A ∗α G) #k[G]∗ is given by ag 7→
∑

h∈G ag#ph

for all g ∈ G and a ∈ Dg. If
∑

h∈G ag#ph ∈ Ker(Φ), then a ∈ A(1 − 1gh)1g for all
h ∈ G. In particular for h = e we have a ∈ A(1 − 1g)1g = 0. Hence Φ restricted to
A ∗α G is injective.

We will describe the image of Φ. By definition of Φ, the image of an arbitrary
element γ =

∑
g,h ag,hg#ph is

Φ(γ) =
∑
g,h

((gh)−1 · ag,h)1(gh)−11h−1Egh,h = (br,s1r−11s−1)r,s∈G

with br,s = r−1 · ars−1,s for all r, s ∈ G.

Proposition 3.3. The image of Φ consists of all matrices of the form (bg,h1g−11h−1)
g,h∈G

for any matriz (bg,h) of elements of A. In particular Im(Φ) = eMn(A)e, where e is the
idempotent

∑
g∈G 1g−1Eg,g.
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Proof. We saw already that an element of the image of Φ is of the given form. Note
that by definition of partial group action we have

Dg ∩Dgh = αg(Dg−1 ∩Dh)

for all g, h ∈ G. Hence also

Dg−1 ∩Dh−1 = αg−1(Dg ∩Dgh−1)

holds for all g, h ∈ G. Thus for all b ∈ A there exists a ∈ A such that

b1g−11h−1 = αg−1(a1gh−11g) = g−1 · (a1gh−1).

This implies that

Φ(a1g1gh−1gh−1#ph) = h−1 · ((hg−1) · (a1g1gh−1))Eg,h

= g−1 · (a1g1gh−1))1h−1Eg,h

= b1g−11h−1Eg,h

Hence given any matrix (bg,h) there are elements ag,h such that

Φ

(∑
g,h

ag,h1g1gh−1gh−1#ph

)
=
∑
g,h

bg,h1g−11h−1Eg,h = (bg,h1g−11h−1)
g,h∈G

.

This shows that Im(Φ) consists of all matrizes of the given form and hence is equal to
eMn(A)e. Note that e is the image of the identity element of B. �

The last Propositions yield our main result in this section

Theorem 3.4. (A ∗α G) #k[G]∗ ' Ker(Φ)× eMn(A)e.

Proof. The kernel of Φ is an ideal and a direct summand of B = (A ∗α G) #k[G]∗. To
see this we first show that the left A-module I =

⊕
g,h∈GA1gh1gg#ph is a two-sided

ideal of B. For any xk#pl ∈ B and a1gh1gg#ph ∈ I we have

(a1gh1gg#ph)(bk#pl) = a1gh1g(g · b1k)gk#δh,klpl = a(g · b)δh,kl1gkl1gkgk#pl ∈ I.
(bk#pl)(a1gh1gg#ph) = b(k · a1gh1g)kg#δk,ghph = b(g · a)δh,kl1kgh1kgkg#ph ∈ I.

Since I ⊕ Ker(Φ) = B and both direct summands are two-sided ideals we have B =
I × Ker(Φ) (ring direct product). Moreover Φ(I) = eMn(A)e = Im(Φ). This implies
B ' Ker(Φ)× eMn(A)e.

�

Note that Φ embedds A ∗α G into the Pierce corner eMn(A)e.

Corollary 3.5. A ∗α G is isomorphic to a separable subalgebra of eMn(A)e.

Proof. Recall that the subalgebra A∗α G sits into B by ag 7→
∑

h∈G ag#ph. The right
action of A ∗α G on B is given by

(xk#pl) · ag = (xk#pl)

(∑
h∈G

ag#ph

)
= (xk)(ag)#pg−1l
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The left action is given by

ag · (xk#pl) =

(∑
h∈G

ag#ph

)
(xk#pl) = (ag)(xk)#pl

The element

f =
∑
g∈G

e#pg ⊗ e#pg ∈ B ⊗A∗αG B

is A ∗α G-centralising, i.e. for all ah ∈ A ∗α G we have

fah =
∑
g∈G

e#pg ⊗ ah#ph−1g =
∑
g∈G

ah#ph−1g ⊗ e#ph−1g = ahf

Since also µ(f) = e#
∑

g∈G pg = 1B we have that f is a seperability idempotent for B
over A ∗α G. Hence eMn(A)e ' Φ(B) is separable over Φ(A ∗α G) ' A ∗α G. �

4. Trivial partial actions

The easiest example of partial actions arise from (central) idempotents in a k-algebra
A. Suppose that A admits a non-zero central idempotent, i.e. there exist algebras R,S
such that A = R×S as algebras. For any group G set Dg = R×0 and αg = idDg for all
g 6= e and De = A and αe = idA. Then {αg | g ∈ G} is a partial action of G on A. The
partial skew group ring turns out to be A ∗α G ' R[G] × S, where R[G] denotes the
group ring of R and G. Note that 0×S is in the zero-componente of the G-grading on
A∗αG. If G is finite, say of order n, then a short calculation (using Cohen-Montgomery
duality and Theorem 3.4) shows that B = (A∗αG)#k[G] is isomorphic to Mn(R)×Sn

where Sn denotes the direct product of n copies of S. Depending on the rings R and
S, B might or might not be Morita equivalent to A. For instance if R = S = F is
a field, then any progenerator P for A has the form F k × Fm for numbers k,m ≥ 1.
Thus Endk(P ) ' Mk(F ) ×Mm(F ), whose center is isomorphic to F 2 = A. On the
other hand B = (A ∗α G)#k[G] 'Mn(F )× F n has center F n+1, i.e. B will be Morita
equivalent to A if and only if G is trivial.

On the other hand, there are algebras which satisfy (as algebras) An ' A 'Mn(A)
for any n. To give an example, let R be the ring of sequences of elements of a field k,
i.e. R = kN. The function χ with χ(2n) = 1 and χ(2n + 1) = 0 for all n defines an
idempotent of R. The map Ψ : χR→ R with Ψ(χf)(n) = f(2n) is a ring isomorphism.
Analogosuly we can show that (1−χ)R ' R. Hence R2 ' R. Now take A = Endk(F ),
where F = R(N) denotes the countable infinite free R-module. Using again χ we have
that

A = (χA)× ((1− χ)A) ' A×A ' · · · ' An

for any n ≥ 2. Moreover for any partition of N into n infinite disjoint subsets Λ1, . . . ,Λn,
we have that

F = R(N) ' R(Λ1) ⊕ · · · ⊕R(Λn) ' F n.
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Hence A = Endk(F ) ' Endk(F
n) ' Mn(A). Applying the double skew group ring

construction again we conclude that

B = (A ∗α G)#k[G] 'Mn(χA)× ((1− χ)A)n ' A×A ' A.

5. Infinite partial group action

Following Quinn [8] we define Φ in case of G being infinite as a map from A∗α G to
the ring of row and column finite matrizes. Let MG(A) be the subring of Endk(A|G|)
consisting of row and column finite matrizes (ag,h)g,h∈G indexed by elements of G with
entries in A, i.e. for any g ∈ G the sets {agh|h ∈ G} and {ahg|h ∈ G} are finite.
Let Eg,h be, as above, those matrizes that are 1 in the (g, h)th component and zero
elsewhere. Note that Eg,hEr,s = δh,rEg,s. Then define Φ : A ∗α G→MG(A) by

ag 7→
∑
h∈G

h−1 · (g−1 · a)Egh,h

for any ag ∈ A ∗α G. Note that the (infinite) sum on the right side makes sense in
MG(A). As above one checks that Φ is an algebra homomorphism.

Proposition 5.1. Let G be any group acting partially on A. Then A ∗α G is isomor-
phic to a subalgebra of eMG(A)e where MG(A) denotes the ring of row and column
finite matrizes indexed by elements of G and with entries in A. The element e is the
idempotent

∑
g∈G 1g−1Eg,g.

Proof. For all ag, bh ∈ A ∗α G we have using equation (1) in the 4th line:

Φ(ag)Φ(bh) =

(∑
k∈G

k−1 · (g−1 · a)Egk,k

)(∑
l∈G

l−1 · (h−1 · b)Ehl,l

)
=

∑
k,l∈G

(k−1 · (g−1 · a))(l−1 · (h−1 · b))Egk,kEhl,l

=
∑
l∈G

((hl)−1 · (g−1 · a))(l−1 · (h−1 · b))Eghl,l

=
∑
l∈G

l−1 · ((gh)−1 · (a(g · b)))Eghl,l

= Φ(a(g · b)gh)
= Φ((ag)(bh))

Hence Φ is an algebra homomorphism. Since

Φ(ag) = 0 ⇔ (∀h ∈ G) : h−1 · (g−1 · a) = 0 ⇒ g · (g−1 · a) = a1g = 0 ⇒ a = 0,

we have that Φ is injective. Moreover Φ(ag) ∈ eMG(A)e as above. �
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6. Partial Hopf action

In [2] Caenepeel and Janssen defined the notion of a partial Hopf action as follows:
Let H be a Hopf algebra, with comultiplication ∆, counit ε and antipode S, and let A
be a k-algebra such that there exists a k-linear map

· : H ⊗ A→ A

sending h ⊗ a 7→ h · a. The action · is called a partial Hopf action if for all h, g ∈ H
and a, b ∈ A:

(1) h · (ab) =
∑

(h)(h1 · a)(h2 · b);
(2) 1H · a = a;
(3) h · (g · a) =

∑
(h)(h1 · 1)((h2g) · a);

Let H be a Hopf algebra which is finitely generated and projective as k-module with
dual basis {(bi, pi) ∈ H × H∗ | 1 ≤ i ≤ n}. Then there exist structure constants
cik,l and mi

k,l in k such that ∆(bi) =
∑n

k,l=1 c
i
k,lbk ⊗ bl and bkbl =

∑n
i=1m

i
k,lbi for all

1 ≤ i, k, l ≤ n. It is well-known that H∗ becomes a Hopf algebra with comultiplication
and multiplication defined on the generators {pi | 1 ≤ i ≤ n} as follows: ∆H∗(pi) =∑n

k,l=1m
i
k,lpk⊗pl and pk ∗pl =

∑n
i=1 c

i
k,lpi. The counit of H∗ is given by εH∗(f) = f(1).

Recall that H∗ acts on H from the left by f ⇀ h =
∑

(h) h1f(h2), such that the
smash product H#H∗ can be considered whose multiplication is given by

(h#f)(k#g) =
∑
(f)

h(f1 ⇀ k)#f2 ∗ g

for all h, k ∈ H and f, g ∈ H∗. The smash product yields a left module action on H,
i.e. an algebra homomorphism

λ : H#H∗ → Endk(H) h#f 7→ [k 7→ h(f ⇀ k)].

The smash product H#H∗ is sometimes called the Heisenberg double of H and in
case H is free of finite rank isomorphic to Endk(H) (see [7, 9.4.3]).

Analougosly we have a right action of H∗ on H by h ↼ f =
∑

(h) h2f(h1) for all
f ∈ H∗ and h ∈ H, turning H into a right H∗-module algebra. The smash product
H∗#H yields a right module action on H, i.e. an algebra anti-homomorphism

ρ : H∗#H → Endk(H) f#h 7→ [k 7→ (k ↼ f)h]

As in [7, 9.4.10] one shows that for all h, k ∈ H and f, g ∈ H∗:

(2) λ(h#f)ρ(g#1) =
∑
(g)

ρ(g2#1)λ((h ↼ S(g1))#f)

Now assume that H acts partially on A, then the map ∆A : A→ A⊗H∗ with

∆(a)A =
n∑

i=1

(bi · a)⊗ pi
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for all a ∈ A defines a partially coaction. The map ∆A satisfies:

∆A(ab) = ∆A(a)∆A(b)

(1⊗ εH∗)∆A(a) = idA(a)

(∆A ⊗ 1)∆A(a) = (∆A(1)⊗ 1)(1⊗∆H∗)∆A(a)

The last equation shows that in general this coaction does not make A into a right
H-comodule. It can be deduced using the structre constants and property (3) from
above

n∑
i,j=1

bj · (bi · a)⊗ pj ⊗ pi =
n∑

i,j,k,l,r=1

cjk,lm
r
l,i(bk · 1)(br · a)⊗ pj ⊗ pi

=
n∑

i,k,l,r=1

mr
l,i(bk · 1)(br · a)⊗ pkpl ⊗ pi

=
n∑

k,r=1

(bk · 1)(br · a)⊗ (pk ⊗ 1)∆H∗(pr)

=

(
n∑

k=1

(bk · 1)⊗ pk

)(
n∑

r=1

(br · a)⊗∆(pr)

)
With the above notation we define a homomorphism φ : A → A⊗ Endk(H) by

φ(a) =
n∑

i=1

(bi · a)⊗ ρ(S−1(pi)#1).

Then φ is an algebra homomorphism, because

φ(ab) =
n∑

i=1

(bi · (ab)⊗ ρ(S−1(pi)#1)

=
n∑

i=1

((bi)1 · a)(((bi)2 · b)⊗ ρ(S−1(pi)#1)

=
n∑

k,l=1

(bk · a)((bl · b)⊗ ρ(S−1(cik,lpi)#1)

=
n∑

k,l=1

(bk · a)((bl · b)⊗ ρ(S−1(pl)S
−1(pk)#1)

=
n∑

k,l=1

(bk · a)((bl · b)⊗ ρ(S−1(pk)#1)ρ(S−1(pl)#1)

= φ(a)φ(b).

where we use in the line before the last the fact that ρ is an anti-homomorphism.
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The partial smash product of A and H is defined as a certain submodule of A⊗H.
On A⊗H we define a new (associative) multiplication by

(a⊗ h)(b⊗ g) :=
∑
(h)

a(h1 · b)⊗ h2g.

for all a, b ∈ A, h, g ∈ H. Note that A⊗H is naturally an A-bimodule given by

x(a⊗ h)y = (x⊗ 1)(a⊗ h)(y ⊗ 1) =
∑
(h)

xa(h1 · y)⊗ h2

The partial smash product is defined to be A#H = (A⊗H)1A and is spanned by the
elements of the form

∑
(h) a(h1 · 1A) ⊗ h2} for all a ∈ A, h ∈ H. The partial smash

product becomes naturally a right H-comodule algebra by

ρ = 1⊗∆ : A⊗H → A⊗H ⊗H, a⊗ h 7→
∑
(h)

a⊗ h1 ⊗ h2

and for all (a⊗ h)1A ∈ A#H we have

ρ((a⊗ h)1A) =
∑
(h)

a(h1 · 1A)⊗ h2 ⊗ h3,

making A#H into a right H-comodule algebra. Moreover A#H becomes a left H∗-
module algebra, where the action is defined by

f B ((a#h)1A) =
∑
(h)

(a(h1 · 1A)#(f ⇀ h2) = (a#(f ⇀ h))1A,

for all f ∈ H∗, h ∈ H, a ∈ A. The classical Blattner-Montgomery duality ([1] says that
the double smash product A#H#H∗ is isomorphic to Mn(A) where n is the rank of
H over k.

Lemma 6.1. Let ψ : H#H∗ → A⊗Endk(H) be the map defined by h#f 7→ 1⊗λ(h#f)
for all h ∈ H, f ∈ H∗. Then for all a ∈ A, h ∈ H, f ∈ H∗ we have

φ(1)ψ(h#f)φ(a) =
∑
(h)

φ(h1 · a)ψ(h2#f).
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Proof.∑
(h)

φ(h1 · a)ψ(h2#f) =
∑
(h),i

pi(h1)φ(bi · a)ψ(h2#f)

=
∑
i,j

bj · (bi · a)⊗ ρ(S−1(pj)#1)λ(h ↼ pi#f)

=
∑
k,r

(bk · 1)(br · a)⊗ ρ(S−1(pk(pr)1)#1)λ(h ↼ (pr)2#f)

=
∑
k,r

(bk · 1)(br · a)⊗ ρ(S−1(pk)#1)ρ(S−1((pr)1)#1)λ(h ↼ (pr)2#f)

= φ(1)
∑

r

(br · a)⊗ ρ(S−1(pr)2#1)λ(h ↼ (S(S−1(pr)1)#f)

= φ(1)
∑

r

(br · a)⊗ λ(h#f)ρ(S−1(pr)#1)

= φ(1)ψ(h#f)φ(a)

where we use equation (2) in the third line from below. �

Theorem 6.2. Suppose that H is a Hopf algebra, finitely generated projective over k,
which partially actions on A. Then Φ : A⊗H#H∗ → A⊗ Endk(H) with

a⊗ h#f 7→ φ(a)ψ(h#f)

is an algebra homomorphism. The image of the restriction to A#H#H∗ lies inside
e (A⊗ Endk(H)) e where e is the idempotent

e =
n∑

i=1

(bi · 1)⊗ ρ(S−1(pi)⊗ 1).

Proof. For any a, b ∈ A, h, k ∈ H and f, g ∈ H∗ we have

Φ(a⊗ h#f)Φ(b⊗ k#g)) = φ(a)ψ(h#f)φ(b)ψ(k#g)

= φ(a)φ(1)ψ(h#f)φ(b)ψ(k#g)

=
∑
(h)

φ(a)φ(h1 · b)ψ(h2#f)ψ(k#g)

=
∑
(h,f)

φ(a(h1 · b))ψ(h2(f1 ⇀ k)#f2 ∗ g)

= Φ

∑
(h,f)

a(h1 · b)⊗ h2(f1 ⇀ k)#f2 ∗ g


= Φ ((a⊗ h#f)(b⊗ k#g)) .
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Hence Φ is an algebra homomorphism. Since the image of the identity 1 = 1A#1H#1H∗

of A#H#H∗ under the map Φ is e, e is an idempotent. Moreover

Φ(γ) = Φ(1γ1) ∈ e(A⊗ Endk(H))e,

for all γ ∈ A#H#H∗. �
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