DUALITY FOR PARTIAL GROUP ACTIONS

CHRISTIAN LOMP

ABSTRACT. Given a finite group G acting as automorphisms on a ring \mathcal{A} , the skew group ring $\mathcal{A} * G$ is an important tool for studying the structure of G-stable ideals of \mathcal{A} . The ring $\mathcal{A} * G$ is G-graded, i.e. G coacts on $\mathcal{A} * G$. The Cohen-Montgomery duality says that the smash product $\mathcal{A} * G \# k[G]^*$ of $\mathcal{A} * G$ with the dual group ring $k[G]^*$ is isomorphic to the full matrix ring $M_n(\mathcal{A})$ over \mathcal{A} , where n is the order of G. In this note we show how much of the Cohen-Montgomery duality carries over to partial group actions in the sense of R.Exel. In particular we show that the smash product $(\mathcal{A} *_{\alpha} G) \# k[G]^*$ of the partial skew group ring $\mathcal{A} *_{\alpha} G$ and $k[G]^*$ is isomorphic to a direct product of the form $K \times \mathbf{e} M_n(\mathcal{A}) \mathbf{e}$ where \mathbf{e} is a certain idempotent of $M_n(\mathcal{A})$ and K is a subalgebra of $(\mathcal{A} *_{\alpha} G) \# k[G]^*$. Moreover $\mathcal{A} *_{\alpha} G$ is shown to be isomorphic to a separable subalgebra of $\mathbf{e}M_n(\mathcal{A})\mathbf{e}$. We also look at duality for infinite partial group actions and for partial Hopf actions.

1. INTRODUCTION

Let k be a commutative unital ring and \mathcal{A} a unital k-algebra. Given a finite group G acting as k-linear automorphisms on \mathcal{A} , Cohen and Montgomery showed in [3] that the smash product $\mathcal{A} * G \# k[G]^*$ of the skew group ring $\mathcal{A} * G$ and the dual group ring $k[G]^* = \operatorname{Hom}(k[G], k)$ is isomorphic to the full matrix ring $M_n(\mathcal{A})$ over \mathcal{A} , where n is the order of G.

R.Exel introduced in [6] the notion of a partial group action on a k-algebra: G acts partially on \mathcal{A} by a family $\{\alpha_g: D_{g^{-1}} \to D_g\}_{g \in G}$ if for all $g \in G$, D_g is an ideal of \mathcal{A} and α_q is an isomorphism of k-algebras such that for all $g, h \in G$:

- (i) $D_e = \mathcal{A}$ and α_e is the identity map of \mathcal{A} ;
- (ii) $\alpha_g(D_{g^{-1}} \cap D_h) = D_g \cap D_{gh};$ (iii) $\alpha_g(\alpha_h(x)) = \alpha_{gh}(x)$ for all $x \in D_{h^{-1}} \cap D_{(gh)^{-1}}.$

The partial skew group ring of \mathcal{A} and G is defined to be the projective left \mathcal{A} -module $\mathcal{A} *_{\alpha} G = \bigoplus_{g \in G} D_g$ with multiplication

$$(a\overline{g})(bh) = \alpha_g(\alpha_{g^{-1}}(a)b)gh$$

for all $a \in D_g$ and $b \in D_h$ and where \overline{g} is the placeholder for the gth component of $\bigoplus_{g \in G} D_g$. Since $\mathcal{A} *_{\alpha} G$ is naturally G-graded, the question arises how much of the Cohen-Montgomery duality carries over to partial group actions.

As in [5] we will assume that the ideals D_g are generated by central idempotents, i.e. $D_g = \mathcal{A} 1_g$ with central idempotent $1_g \in \tilde{\mathcal{A}}$ for all $g \in G$. For any $g \in G$ we define the following endomorphism $\beta_g : A \to A$ of \mathcal{A} by

$$\beta_g(a) = \alpha_g(a1_{g^{-1}}) \quad \forall a \in \mathcal{A}$$

This map gives rise to a k-linear map $k[G] \otimes A \to A$ with

 $g \otimes a \mapsto g \cdot a := \beta_g(a) = \alpha_g(a \mathbf{1}_{g^{-1}})$

for all $g \in G, a \in \mathcal{A}$.

Lemma 1.1. With the notation above we have that

(1) β_q are k-algebra endomorphisms of \mathcal{A} for all $g \in G$, i.e.

$$g \cdot (ab) = (g \cdot a)(g \cdot b) \quad \forall a, b \in \mathcal{A}.$$

- (2) $g \cdot (h \cdot a) = ((gh) \cdot a)1_g$ for all $g, h \in G$ and $a \in \mathcal{A}$.
- (3) $(g \cdot a)b = g \cdot (a(g^{-1} \cdot b))$ for all $a, b \in \mathcal{A}$ and $g \in G$.

Proof. (1) follows since the α_g are algebra homomorphisms and the idempotents 1_g are central, i.e. for all $a, b \in \mathcal{A}$:

$$\beta_g(ab) = \alpha_g(ab1_{g^{-1}}) = \alpha_g(a1_{g^{-1}}b1_{g^{-1}}) = \alpha_g(a1_{g^{-1}})\alpha_g(b1_{g^{-1}}) = \beta_g(a)\beta_g(b).$$

(2) follows from [5, 2.1(ii)]:

$$\alpha_g(\alpha_h(a1_{h^{-1}})1_{g^{-1}}) = \alpha_{gh}(a1_{h^{-1}g^{-1}})1_g$$

what expressed by β yields the statement of (2).

(3) Using (1), (2) and the fact that $\beta_e = id$ and that the image of β_g is $D_g = A1_g$ we have that

$$g \cdot (a(g^{-1} \cdot b)) = (g \cdot a)(g \cdot (g^{-1} \cdot b)) = (g \cdot a)b1_g = (g \cdot a)b.$$

Obviously we also have $g \cdot 1 = \alpha_g(1_{g^{-1}}) = 1_g$ and $g \cdot (g^{-1} \cdot a) = ((gg^{-1}) \cdot a)1_g = a1_g$ for all $a \in \mathcal{A}$ and $g \in G$ using property (2). Moreover using the fact that α_g is bijective and 1_g central we have for all $a \in \mathcal{A}$ and $g \in G$ that $g \cdot a = 0$ if and only if $a \in \mathcal{A}(1-1_g)$.

2. Grading of the partial skew group ring

The partial skew group ring is the projective left \mathcal{A} -module $\mathcal{A} *_{\alpha} G = \bigoplus_{g \in G} D_g$. We will write an element of $\mathcal{A} *_{\alpha} G$ as a finite sum of elements $\sum_{g \in G} a_g \overline{g}$ where $a_g \in D_g = A1_g$ and \overline{g} is a placeholder for the g-th component. $\mathcal{A} *_{\alpha} G$ becomes an associative k-algebra by the product:

$$(a\overline{g})(b\overline{h}) = \alpha_q(\alpha_{q^{-1}}(a)b)\overline{gh}$$

for all $g, h \in G$ and $a \in D_q$ and $b \in D_h$. Using our '.'-notation we see easily

$$(a\overline{g})(b\overline{h}) = a(g \cdot b)\overline{gh}$$

The algebra $\mathcal{A} *_{\alpha} G$ is naturally *G*-graded where the homogeneous elements are those in $\{D_g\}_{g\in G}$, i.e. $D_g D_h \subseteq D_{gh}$ by definition of the multiplication in $\mathcal{A} *_{\alpha} G$. Thus $\mathcal{A} *_{\alpha} G$ becomes a k[G]-comodule algebra. Note that the *G*-grading is strong, in the sense that $D_g D_h = D_{gh}$ if and only if $D_g = \mathcal{A}$ for all $g \in G$, i.e. the *G*-action is global (since if $D_g D_h = D_{gh}$ for all $g, h \in G$, then

$$\mathcal{A}1_g 1_{g^{-1}} = D_g D_{g^{-1}} = D_{gg^{-1}} = D_e = \mathcal{A},$$

thus 1_g is an invertible central idempotent and hence equals 1, i.e. $D_g = \mathcal{A}$). Known results on graded rings can be applied to the *G*-grading of $\mathcal{A} *_{\alpha} G$.

3. DUALITY FOR PARTIAL ACTIONS OF FINITE GROUPS

Assume G to be finite, then $k[G]^*$ becomes a Hopf algebra with projective basis $p_g \in k[G]^*$ where $p_g(h) = \delta_{g,h}$ for all $g, h \in H$. The multiplication is defined as $p_g * p_h = \delta_{g,h} p_g$ and the identity element of $k[G]^*$ is $1 = \sum_{h \in H} p_h$. Now $\mathcal{A} *_{\alpha} G$ becomes a $k[G]^*$ -module algebra by

$$p_h \triangleright (a\overline{g}) = \delta_{g,h} a\overline{g}$$

for all $g, h \in G$ and $a_g \in D_g$. The multiplication of the smash product $(\mathcal{A} *_{\alpha} G) \# k[G]^*$ is defined as

$$(a\overline{g}\#p_h)(b\overline{k}\#p_l) = \sum_{s\in G} (a\overline{g})[p_s \triangleright (b\overline{k})] \#p_{s^{-1}h} * p_l = (a\overline{g})(b\overline{k}) \#p_{k^{-1}h} * p_l = a(g \cdot b)\overline{gk} \#\delta_{h,kl}p_l.$$

The identity element of $\mathcal{B} = \mathcal{A} *_{\alpha} G \# k[G]^*$ is $\sum_{h \in G} 1\overline{e} \# p_h$. In the case of global actions Cohen and Montgomery proved in [3] that $\mathcal{A} * G \# k[G]^* \simeq M_n(\mathcal{A})$ where n = |G| and $M_n(\mathcal{A})$ denotes the ring of $n \times n$ -matrizes over \mathcal{A} . We will index the matrizes of $M_n(\mathcal{A})$ by elements of G and denote by $E_{g,h}$ the elementary matrix that has the value 1 in the g-th row and the h-th column and zero elsewhere.

Proposition 3.1. Let G be a finite group of n elements, acting partially on an kalgebra \mathcal{A} and consider the k-algebra $\mathcal{B} = (\mathcal{A} *_{\alpha} G) \# k[G]^*$. The map

$$\Phi: \mathcal{B} \longrightarrow M_n(\mathcal{A}) \quad with$$
$$\sum_{g,h} a_{g,h} \overline{g} \# p_h \mapsto \sum_{g,h} h^{-1} \cdot (g^{-1} \cdot a_{g,h}) E_{gh,h}$$

is a k-algebra homomorphism.

Proof. First note that for any $g, h, k \in G$ and $a \in D_g, b \in D_h$ we have, using Lemma 1.1(2) in the 2nd, 4th and 6th line and Lemma 1.1(1) in the 3rd line:

$$\begin{split} k^{-1} \cdot ((gh)^{-1} \cdot (a(g \cdot b))) &= k^{-1} \cdot \left(((gh)^{-1} \cdot a)((gh)^{-1} \cdot (g \cdot b)) \right) \\ &= k^{-1} \cdot \left[((gh)^{-1} \cdot a)(h^{-1} \cdot b)\mathbf{1}_{(gh)^{-1}} \right] \\ &= \left[k^{-1} \cdot ((gh)^{-1} \cdot a) \right] \left[k^{-1} \cdot (h^{-1} \cdot b) \right] \\ &= ((ghk)^{-1} \cdot a)((hk)^{-1} \cdot b)\mathbf{1}_{k^{-1}} \\ &= ((ghk)^{-1} \cdot a)\mathbf{1}_{(hk)^{-1}}((hk)^{-1} \cdot b)\mathbf{1}_{k^{-1}} \\ &= ((hk)^{-1} \cdot (g^{-1} \cdot a))(k^{-1} \cdot (h^{-1} \cdot b)) \end{split}$$

Thus we showed:

(1)
$$k^{-1} \cdot ((gh)^{-1} \cdot (a(g \cdot b))) = ((hk)^{-1} \cdot (g^{-1} \cdot a))(k^{-1} \cdot (h^{-1} \cdot b))$$

For any $a\overline{g} \# p_h, b\overline{k} \# p_l \in (\mathcal{A} *_{\alpha} G) \# k[G]^*$ we have, using equation (1):

$$\Phi((a\overline{g}\#p_{h})(b\overline{k}\#p_{l})) = \Phi(a(g \cdot b)\overline{gk}\#\delta_{h,kl}p_{l})
= l^{-1} \cdot ((gk)^{-1} \cdot (a(g \cdot b)))E_{gkl,l}\delta_{h,kl}
= ((kl)^{-1} \cdot (g^{-1} \cdot a))(l^{-1} \cdot (k^{-1} \cdot b))E_{gh,h}E_{kl,l}\delta_{h,kl}
= (h^{-1} \cdot (g^{-1} \cdot a))E_{gh,h}(l^{-1} \cdot (k^{-1} \cdot b))E_{kl,l}
= \Phi(a\overline{g}\#p_{h})\Phi(b\overline{k}\#p_{l})$$

Hence Φ is an algebra homomorphism.

Note that Φ restricted to $\mathcal{A} *_{\alpha} G$ is injective, i.e. $\mathcal{A} *_{\alpha} G$ can be considered a subalgebra of $M_n(\mathcal{A})$. In general Ker (Φ) is non-trivial, unless the partial action is a global action.

Proposition 3.2. Ker $(\Phi) = \bigoplus_{g,h \in G} \mathcal{A}(1-1_{gh}) 1_g \overline{g} \# p_h.$

Proof. Suppose $\gamma = \sum_{g,h} a_{g,h} \overline{g} \# p_h \in \operatorname{Ker}(\Phi)$, then $h^{-1} \cdot (g^{-1} \cdot a_{g,h}) = 0$ for all $g, h \in G$. Thus $(g^{-1} \cdot a_{g,h}) \in \mathcal{A}(1-1_h) \cap D_{g^{-1}} = \mathcal{A}(1-1_h)1_{g^{-1}}$. Hence

$$a_{g,h} = g \cdot (g^{-1} \cdot a_{g,h}) \in \mathcal{A}g \cdot (1-1_h) = \mathcal{A}(1_g - 1_g 1_{gh}),$$

i.e. $\gamma \in \bigoplus_{g,h} \mathcal{A}(1-1_{gh}) 1_g \overline{g} \# p_h$. The other inclusion follows because

$$\Phi\left((g\cdot(1-1_h))\overline{g}\#p_h\right) = h^{-1}\cdot(g^{-1}\cdot(g\cdot(1-1_h)))E_{gh,h} = h^{-1}\cdot((1-1_h)1_g)E_{gh,h} = 0.$$

Note that the inclusion of $\mathcal{A}_{\alpha}^{*}G$ into $(\mathcal{A}_{\alpha}^{*}G) \# k[G]^{*}$ is given by $a\overline{g} \mapsto \sum_{h \in G} a\overline{g} \# p_h$ for all $g \in G$ and $a \in D_g$. If $\sum_{h \in G} a\overline{g} \# p_h \in \operatorname{Ker}(\Phi)$, then $a \in \mathcal{A}(1 - 1_{gh})1_g$ for all $h \in G$. In particular for h = e we have $a \in \mathcal{A}(1 - 1_g)1_g = 0$. Hence Φ restricted to $\mathcal{A}_{\alpha}^{*}G$ is injective.

We will describe the image of Φ . By definition of Φ , the image of an arbitrary element $\gamma = \sum_{g,h} a_{g,h} \overline{g} \# p_h$ is

$$\Phi(\gamma) = \sum_{g,h} ((gh)^{-1} \cdot a_{g,h}) \mathbf{1}_{(gh)^{-1}} \mathbf{1}_{h^{-1}} E_{gh,h} = (b_{r,s} \mathbf{1}_{r^{-1}} \mathbf{1}_{s^{-1}})_{r,s \in G}$$

with $b_{r,s} = r^{-1} \cdot a_{rs^{-1},s}$ for all $r, s \in G$.

Proposition 3.3. The image of Φ consists of all matrices of the form $(b_{g,h}1_{g^{-1}}1_{h^{-1}})_{g,h\in G}$ for any matrix $(b_{g,h})$ of elements of \mathcal{A} . In particular $\operatorname{Im}(\Phi) = \mathbf{e}M_n(A)\mathbf{e}$, where \mathbf{e} is the idempotent $\sum_{g\in G} 1_{g^{-1}}E_{g,g}$.

4

Proof. We saw already that an element of the image of Φ is of the given form. Note that by definition of partial group action we have

$$D_g \cap D_{gh} = \alpha_g (D_{g^{-1}} \cap D_h)$$

for all $g, h \in G$. Hence also

$$D_{g^{-1}} \cap D_{h^{-1}} = \alpha_{g^{-1}} (D_g \cap D_{gh^{-1}})$$

holds for all $g, h \in G$. Thus for all $b \in \mathcal{A}$ there exists $a \in \mathcal{A}$ such that

$$b1_{g^{-1}}1_{h^{-1}} = \alpha_{g^{-1}}(a1_{gh^{-1}}1_g) = g^{-1} \cdot (a1_{gh^{-1}}).$$

This implies that

$$\Phi(a1_g1_{gh^{-1}}\overline{gh^{-1}}\#p_h) = h^{-1} \cdot ((hg^{-1}) \cdot (a1_g1_{gh^{-1}}))E_{g,h}$$

= $g^{-1} \cdot (a1_g1_{gh^{-1}}))1_{h^{-1}}E_{g,h}$
= $b1_{q^{-1}}1_{h^{-1}}E_{q,h}$

Hence given any matrix $(b_{g,h})$ there are elements $a_{g,h}$ such that

$$\Phi\left(\sum_{g,h} a_{g,h} \mathbf{1}_g \mathbf{1}_{gh^{-1}} \overline{gh^{-1}} \# p_h\right) = \sum_{g,h} b_{g,h} \mathbf{1}_{g^{-1}} \mathbf{1}_{h^{-1}} E_{g,h} = (b_{g,h} \mathbf{1}_{g^{-1}} \mathbf{1}_{h^{-1}})_{g,h\in G}.$$

This shows that $\operatorname{Im}(\Phi)$ consists of all matrizes of the given form and hence is equal to $\mathbf{e}M_n(A)\mathbf{e}$. Note that \mathbf{e} is the image of the identity element of \mathcal{B} .

The last Propositions yield our main result in this section

Theorem 3.4. $(\mathcal{A} *_{\alpha} G) \# k[G]^* \simeq \operatorname{Ker}(\Phi) \times \mathbf{e} M_n(\mathcal{A}) \mathbf{e}.$

Proof. The kernel of Φ is an ideal and a direct summand of $\mathcal{B} = (\mathcal{A} *_{\alpha} G) \# k[G]^*$. To see this we first show that the left \mathcal{A} -module $I = \bigoplus_{g,h\in G} \mathcal{A} 1_{gh} 1_g \overline{g} \# p_h$ is a two-sided ideal of \mathcal{B} . For any $x\overline{k} \# p_l \in \mathcal{B}$ and $a 1_{gh} 1_g \overline{g} \# p_h \in I$ we have

$$(a1_{gh}1_g\overline{g}\#p_h)(b\overline{k}\#p_l) = a1_{gh}1_g(g \cdot b1_k)\overline{gk}\#\delta_{h,kl}p_l = a(g \cdot b)\delta_{h,kl}1_{gkl}1_{gk}\overline{gk}\#p_l \in I.$$

$$(b\overline{k}\#p_l)(a1_{gh}1_g\overline{g}\#p_h) = b(k \cdot a1_{gh}1_g)\overline{kg}\#\delta_{k,gh}p_h = b(g \cdot a)\delta_{h,kl}1_{kgh}1_{kg}\overline{kg}\#p_h \in I.$$

Since $I \oplus \text{Ker}(\Phi) = \mathcal{B}$ and both direct summands are two-sided ideals we have $\mathcal{B} = I \times \text{Ker}(\Phi)$ (ring direct product). Moreover $\Phi(I) = \mathbf{e}M_n(\mathcal{A})\mathbf{e} = \text{Im}(\Phi)$. This implies $\mathcal{B} \simeq \text{Ker}(\Phi) \times \mathbf{e}M_n(\mathcal{A})\mathbf{e}$.

Note that Φ embedds $\mathcal{A} *_{\alpha} G$ into the Pierce corner $\mathbf{e} M_n(\mathcal{A}) \mathbf{e}$.

Corollary 3.5. $\mathcal{A} *_{\alpha} G$ is isomorphic to a separable subalgebra of $\mathbf{e}M_n(\mathcal{A})\mathbf{e}$.

Proof. Recall that the subalgebra $\mathcal{A} *_{\alpha} G$ sits into \mathcal{B} by $a\overline{g} \mapsto \sum_{h \in G} a\overline{g} \# p_h$. The right action of $\mathcal{A} *_{\alpha} G$ on \mathcal{B} is given by

$$(x\overline{k}\#p_l) \cdot a\overline{g} = (x\overline{k}\#p_l) \left(\sum_{h \in G} a\overline{g}\#p_h\right) = (x\overline{k})(a\overline{g})\#p_{g^{-1}l}$$

The left action is given by

$$a\overline{g} \cdot (x\overline{k}\#p_l) = \left(\sum_{h\in G} a\overline{g}\#p_h\right) (x\overline{k}\#p_l) = (a\overline{g})(x\overline{k})\#p_l$$

The element

$$f = \sum_{g \in G} \overline{e} \# p_g \otimes \overline{e} \# p_g \in \mathcal{B} \otimes_{\mathcal{A} *_{\alpha} G} \mathcal{B}$$

is $\mathcal{A} *_{\alpha} G$ -centralising, i.e. for all $a\overline{h} \in \mathcal{A} *_{\alpha} G$ we have

$$fa\overline{h} = \sum_{g \in G} \overline{e} \# p_g \otimes a\overline{h} \# p_{h^{-1}g} = \sum_{g \in G} a\overline{h} \# p_{h^{-1}g} \otimes \overline{e} \# p_{h^{-1}g} = a\overline{h}f$$

Since also $\mu(f) = \overline{e} \# \sum_{g \in G} p_g = 1_{\mathcal{B}}$ we have that f is a separability idempotent for \mathcal{B} over $\mathcal{A} *_{\alpha} G$. Hence $\mathbf{e} M_n(\mathcal{A}) \mathbf{e} \simeq \Phi(\mathcal{B})$ is separable over $\Phi(\mathcal{A} *_{\alpha} G) \simeq \mathcal{A} *_{\alpha} G$. \Box

4. TRIVIAL PARTIAL ACTIONS

The easiest example of partial actions arise from (central) idempotents in a k-algebra \mathcal{A} . Suppose that \mathcal{A} admits a non-zero central idempotent, i.e. there exist algebras R, S such that $\mathcal{A} = R \times S$ as algebras. For any group G set $D_g = R \times 0$ and $\alpha_g = id_{D_g}$ for all $g \neq e$ and $D_e = \mathcal{A}$ and $\alpha_e = id_{\mathcal{A}}$. Then $\{\alpha_g \mid g \in G\}$ is a partial action of G on \mathcal{A} . The partial skew group ring turns out to be $\mathcal{A} *_{\alpha} G \simeq R[G] \times S$, where R[G] denotes the group ring of R and G. Note that $0 \times S$ is in the zero-componente of the G-grading on $\mathcal{A} *_{\alpha} G$. If G is finite, say of order n, then a short calculation (using Cohen-Montgomery duality and Theorem 3.4) shows that $\mathcal{B} = (\mathcal{A} *_{\alpha} G) \# k[G]$ is isomorphic to $M_n(R) \times S^n$ where S^n denotes the direct product of n copies of S. Depending on the rings R and S, \mathcal{B} might or might not be Morita equivalent to \mathcal{A} . For instance if R = S = F is a field, then any progenerator P for \mathcal{A} has the form $F^k \times F^m$ for numbers $k, m \geq 1$. Thus $\operatorname{End}_k(P) \simeq M_k(F) \times M_m(F)$, whose center is isomorphic to $F^2 = \mathcal{A}$. On the other hand $\mathcal{B} = (\mathcal{A} *_{\alpha} G) \# k[G] \simeq M_n(F) \times F^n$ has center F^{n+1} , i.e. \mathcal{B} will be Morita equivalent to \mathcal{A} if and only if G is trivial.

On the other hand, there are algebras which satisfy (as algebras) $\mathcal{A}^n \simeq \mathcal{A} \simeq M_n(\mathcal{A})$ for any n. To give an example, let R be the ring of sequences of elements of a field k, i.e. $R = k^{\mathbb{N}}$. The function χ with $\chi(2n) = 1$ and $\chi(2n + 1) = 0$ for all n defines an idempotent of R. The map $\Psi : \chi R \to R$ with $\Psi(\chi f)(n) = f(2n)$ is a ring isomorphism. Analogosuly we can show that $(1 - \chi)R \simeq R$. Hence $R^2 \simeq R$. Now take $\mathcal{A} = \operatorname{End}_k(F)$, where $F = R^{(\mathbb{N})}$ denotes the countable infinite free R-module. Using again χ we have that

$$\mathcal{A} = (\chi \mathcal{A}) \times ((1 - \chi) \mathcal{A}) \simeq \mathcal{A} \times \mathcal{A} \simeq \cdots \simeq \mathcal{A}^n$$

for any $n \geq 2$. Moreover for any partition of \mathbb{N} into *n* infinite disjoint subsets $\Lambda_1, \ldots, \Lambda_n$, we have that

$$F = R^{(\mathbb{N})} \simeq R^{(\Lambda_1)} \oplus \cdots \oplus R^{(\Lambda_n)} \simeq F^n.$$

Hence $\mathcal{A} = \operatorname{End}_k(F) \simeq \operatorname{End}_k(F^n) \simeq M_n(\mathcal{A})$. Applying the double skew group ring construction again we conclude that

$$\mathcal{B} = (\mathcal{A} *_{\alpha} G) \# k[G] \simeq M_n(\chi \mathcal{A}) \times ((1 - \chi)\mathcal{A})^n \simeq \mathcal{A} \times \mathcal{A} \simeq \mathcal{A}.$$

5. INFINITE PARTIAL GROUP ACTION

Following Quinn [8] we define Φ in case of G being infinite as a map from $\mathcal{A} *_{\alpha} G$ to the ring of row and column finite matrizes. Let $M_G(\mathcal{A})$ be the subring of $\operatorname{End}_k(\mathcal{A}^{|G|})$ consisting of row and column finite matrizes $(a_{g,h})_{g,h\in G}$ indexed by elements of G with entries in \mathcal{A} , i.e. for any $g \in G$ the sets $\{a_{gh}|h \in G\}$ and $\{a_{hg}|h \in G\}$ are finite. Let $E_{g,h}$ be, as above, those matrizes that are 1 in the (g, h)th component and zero elsewhere. Note that $E_{g,h}E_{r,s} = \delta_{h,r}E_{g,s}$. Then define $\Phi : \mathcal{A} *_{\alpha} G \to M_G(\mathcal{A})$ by

$$a\overline{g} \mapsto \sum_{h \in G} h^{-1} \cdot (g^{-1} \cdot a) E_{gh,h}$$

for any $a\overline{g} \in \mathcal{A} *_{\alpha} G$. Note that the (infinite) sum on the right side makes sense in $M_G(\mathcal{A})$. As above one checks that Φ is an algebra homomorphism.

Proposition 5.1. Let G be any group acting partially on \mathcal{A} . Then $\mathcal{A} *_{\alpha} G$ is isomorphic to a subalgebra of $\mathbf{e}M_G(A)\mathbf{e}$ where $M_G(\mathcal{A})$ denotes the ring of row and column finite matrizes indexed by elements of G and with entries in \mathcal{A} . The element \mathbf{e} is the idempotent $\sum_{g \in G} 1_{g^{-1}} E_{g,g}$.

Proof. For all $a\overline{g}, b\overline{h} \in \mathcal{A} *_{\alpha} G$ we have using equation (1) in the 4th line:

$$\Phi(a\overline{g})\Phi(b\overline{h}) = \left(\sum_{k\in G} k^{-1} \cdot (g^{-1} \cdot a)E_{gk,k}\right) \left(\sum_{l\in G} l^{-1} \cdot (h^{-1} \cdot b)E_{hl,l}\right)$$

$$= \sum_{k,l\in G} (k^{-1} \cdot (g^{-1} \cdot a))(l^{-1} \cdot (h^{-1} \cdot b))E_{gk,k}E_{hl,l}$$

$$= \sum_{l\in G} ((hl)^{-1} \cdot (g^{-1} \cdot a))(l^{-1} \cdot (h^{-1} \cdot b))E_{ghl,l}$$

$$= \sum_{l\in G} l^{-1} \cdot ((gh)^{-1} \cdot (a(g \cdot b)))E_{ghl,l}$$

$$= \Phi(a(g \cdot b)\overline{g}h)$$

$$= \Phi((a\overline{g})(b\overline{h}))$$

Hence Φ is an algebra homomorphism. Since

$$\Phi(a\overline{g}) = 0 \Leftrightarrow (\forall h \in G) : h^{-1} \cdot (g^{-1} \cdot a) = 0 \Rightarrow g \cdot (g^{-1} \cdot a) = a1_g = 0 \Rightarrow a = 0,$$

we have that Φ is injective. Moreover $\Phi(a\overline{g}) \in \mathbf{e}M_G(A)\mathbf{e}$ as above.

CHRISTIAN LOMP

6. Partial Hopf Action

In [2] Caenepeel and Janssen defined the notion of a partial Hopf action as follows: Let H be a Hopf algebra, with comultiplication Δ , counit ϵ and antipode S, and let \mathcal{A} be a k-algebra such that there exists a k-linear map

$$\cdot: H \otimes A \to A$$

sending $h \otimes a \mapsto h \cdot a$. The action \cdot is called a *partial Hopf action* if for all $h, g \in H$ and $a, b \in \mathcal{A}$:

- (1) $h \cdot (ab) = \sum_{(h)} (h_1 \cdot a)(h_2 \cdot b);$
- (2) $1_H \cdot a = a;$ (3) $h \cdot (g \cdot a) = \sum_{(h)} (h_1 \cdot 1)((h_2g) \cdot a);$

Let H be a Hopf algebra which is finitely generated and projective as k-module with dual basis $\{(b_i, p_i) \in H \times H^* \mid 1 \leq i \leq n\}$. Then there exist structure constants $c_{k,l}^i$ and $m_{k,l}^i$ in k such that $\Delta(b_i) = \sum_{k,l=1}^n c_{k,l}^i b_k \otimes b_l$ and $b_k b_l = \sum_{i=1}^n m_{k,l}^i b_i$ for all $1 \leq i, k, l \leq n$. It is well-known that H^* becomes a Hopf algebra with comultiplication and multiplication defined on the generators $\{p_i \mid 1 \leq i \leq n\}$ as follows: $\Delta_{H^*}(p_i) = \sum_{k,l=1}^n m_{k,l}^i p_k \otimes p_l$ and $p_k * p_l = \sum_{i=1}^n c_{k,l}^i p_i$. The counit of H^* is given by $\epsilon_{H^*}(f) = f(1)$.

Recall that H^* acts on H from the left by $f \rightharpoonup h = \sum_{(h)} h_1 f(h_2)$, such that the smash product $H \# H^*$ can be considered whose multiplication is given by

$$(h\#f)(k\#g) = \sum_{(f)} h(f_1 \rightharpoonup k) \#f_2 * g$$

for all $h, k \in H$ and $f, g \in H^*$. The smash product yields a left module action on H, i.e. an algebra homomorphism

$$\lambda: H \# H^* \to \operatorname{End}_k(H) \quad h \# f \mapsto [k \mapsto h(f \rightharpoonup k)].$$

The smash product $H \# H^*$ is sometimes called the Heisenberg double of H and in case H is free of finite rank isomorphic to $\operatorname{End}_k(H)$ (see [7, 9.4.3]).

Analougosly we have a right action of H^* on H by $h \leftarrow f = \sum_{(h)} h_2 f(h_1)$ for all $f \in H^*$ and $h \in H$, turning H into a right H^* -module algebra. The smash product $H^* \# H$ yields a right module action on H, i.e. an algebra anti-homomorphism

$$\rho: H^* \# H \to \operatorname{End}_k(H) \quad f \# h \mapsto [k \mapsto (k \leftarrow f)h]$$

As in [7, 9.4.10] one shows that for all $h, k \in H$ and $f, q \in H^*$:

(2)
$$\lambda(h\#f)\rho(g\#1) = \sum_{(g)} \rho(g_2\#1)\lambda((h \leftarrow S(g_1))\#f)$$

Now assume that H acts partially on \mathcal{A} , then the map $\Delta_{\mathcal{A}} : \mathcal{A} \to \mathcal{A} \otimes H^*$ with

$$\Delta(a)_A = \sum_{i=1}^n (b_i \cdot a) \otimes p_i$$

for all $a \in \mathcal{A}$ defines a *partially coaction*. The map $\Delta_{\mathcal{A}}$ satisfies:

$$\begin{aligned} \Delta_{\mathcal{A}}(ab) &= \Delta_{\mathcal{A}}(a)\Delta_{\mathcal{A}}(b) \\ (1 \otimes \epsilon_{H^*})\Delta_{\mathcal{A}}(a) &= id_A(a) \\ (\Delta_{\mathcal{A}} \otimes 1)\Delta_{\mathcal{A}}(a) &= (\Delta_{\mathcal{A}}(1) \otimes 1)(1 \otimes \Delta_{H^*})\Delta_{\mathcal{A}}(a) \end{aligned}$$

The last equation shows that in general this coaction does not make \mathcal{A} into a right H-comodule. It can be deduced using the structre constants and property (3) from above

$$\sum_{i,j=1}^{n} b_j \cdot (b_i \cdot a) \otimes p_j \otimes p_i = \sum_{i,j,k,l,r=1}^{n} c_{k,l}^j m_{l,i}^r (b_k \cdot 1) (b_r \cdot a) \otimes p_j \otimes p_i$$
$$= \sum_{i,k,l,r=1}^{n} m_{l,i}^r (b_k \cdot 1) (b_r \cdot a) \otimes p_k p_l \otimes p_i$$
$$= \sum_{k,r=1}^{n} (b_k \cdot 1) (b_r \cdot a) \otimes (p_k \otimes 1) \Delta_{H^*} (p_r)$$
$$= \left(\sum_{k=1}^{n} (b_k \cdot 1) \otimes p_k \right) \left(\sum_{r=1}^{n} (b_r \cdot a) \otimes \Delta(p_r) \right)$$

With the above notation we define a homomorphism $\phi : \mathcal{A} \to \mathcal{A} \otimes \operatorname{End}_k(H)$ by

$$\phi(a) = \sum_{i=1}^{n} (b_i \cdot a) \otimes \rho(S^{-1}(p_i) \# 1).$$

Then ϕ is an algebra homomorphism, because

$$\begin{split} \phi(ab) &= \sum_{i=1}^{n} (b_{i} \cdot (ab) \otimes \rho(S^{-1}(p_{i})\#1)) \\ &= \sum_{i=1}^{n} ((b_{i})_{1} \cdot a)(((b_{i})_{2} \cdot b) \otimes \rho(S^{-1}(p_{i})\#1)) \\ &= \sum_{k,l=1}^{n} (b_{k} \cdot a)((b_{l} \cdot b) \otimes \rho(S^{-1}(c_{k,l}^{i}p_{i})\#1)) \\ &= \sum_{k,l=1}^{n} (b_{k} \cdot a)((b_{l} \cdot b) \otimes \rho(S^{-1}(p_{l})S^{-1}(p_{k})\#1)) \\ &= \sum_{k,l=1}^{n} (b_{k} \cdot a)((b_{l} \cdot b) \otimes \rho(S^{-1}(p_{k})\#1)\rho(S^{-1}(p_{l})\#1)) \\ &= \phi(a)\phi(b). \end{split}$$

where we use in the line before the last the fact that ρ is an anti-homomorphism.

CHRISTIAN LOMP

The partial smash product of \mathcal{A} and H is defined as a certain submodule of $\mathcal{A} \otimes H$. On $\mathcal{A} \otimes H$ we define a new (associative) multiplication by

$$(a \otimes h)(b \otimes g) := \sum_{(h)} a(h_1 \cdot b) \otimes h_2 g.$$

for all $a, b \in \mathcal{A}, h, g \in H$. Note that $\mathcal{A} \otimes H$ is naturally an \mathcal{A} -bimodule given by

$$x(a \otimes h)y = (x \otimes 1)(a \otimes h)(y \otimes 1) = \sum_{(h)} xa(h_1 \cdot y) \otimes h_2$$

The partial smash product is defined to be $\mathcal{A}\#H = (\mathcal{A} \otimes H)1_{\mathcal{A}}$ and is spanned by the elements of the form $\sum_{(h)} a(h_1 \cdot 1_{\mathcal{A}}) \otimes h_2$ for all $a \in \mathcal{A}, h \in H$. The partial smash product becomes naturally a right *H*-comodule algebra by

$$\rho = 1 \otimes \Delta : \mathcal{A} \otimes H \to \mathcal{A} \otimes H \otimes H, \quad a \otimes h \mapsto \sum_{(h)} a \otimes h_1 \otimes h_2$$

and for all $(a \otimes h) 1_{\mathcal{A}} \in \underline{\mathcal{A} \# H}$ we have

$$\rho((a \otimes h) \mathbf{1}_{\mathcal{A}}) = \sum_{(h)} a(h_1 \cdot \mathbf{1}_{\mathcal{A}}) \otimes h_2 \otimes h_3,$$

making $\underline{\mathcal{A}\#H}$ into a right *H*-comodule algebra. Moreover $\underline{\mathcal{A}\#H}$ becomes a left *H*^{*}-module algebra, where the action is defined by

$$f \rhd ((a \# h) \mathbf{1}_{\mathcal{A}}) = \sum_{(h)} (a(h_1 \cdot \mathbf{1}_{\mathcal{A}}) \# (f \rightharpoonup h_2) = (a \# (f \rightharpoonup h)) \mathbf{1}_{\mathcal{A}},$$

for all $f \in H^*$, $h \in H$, $a \in \mathcal{A}$. The classical Blattner-Montgomery duality ([1] says that the double smash product $\mathcal{A} \# H \# H^*$ is isomorphic to $M_n(\mathcal{A})$ where n is the rank of H over k.

Lemma 6.1. Let $\psi : H \# H^* \to \mathcal{A} \otimes \operatorname{End}_k(H)$ be the map defined by $h \# f \mapsto 1 \otimes \lambda(h \# f)$ for all $h \in H, f \in H^*$. Then for all $a \in \mathcal{A}, h \in H, f \in H^*$ we have

$$\phi(1)\psi(h\#f)\phi(a) = \sum_{(h)} \phi(h_1 \cdot a)\psi(h_2\#f).$$

Proof.

$$\sum_{(h)} \phi(h_1 \cdot a) \psi(h_2 \# f) = \sum_{(h),i} p_i(h_1) \phi(b_i \cdot a) \psi(h_2 \# f)$$

$$= \sum_{i,j} b_j \cdot (b_i \cdot a) \otimes \rho(S^{-1}(p_j) \# 1) \lambda(h \leftarrow p_i \# f)$$

$$= \sum_{k,r} (b_k \cdot 1) (b_r \cdot a) \otimes \rho(S^{-1}(p_k(p_r)_1) \# 1) \lambda(h \leftarrow (p_r)_2 \# f)$$

$$= \sum_{k,r} (b_k \cdot 1) (b_r \cdot a) \otimes \rho(S^{-1}(p_k) \# 1) \rho(S^{-1}((p_r)_1) \# 1) \lambda(h \leftarrow (p_r)_2 \# f)$$

$$= \phi(1) \sum_r (b_r \cdot a) \otimes \rho(S^{-1}(p_r)_2 \# 1) \lambda(h \leftarrow (S(S^{-1}(p_r)_1) \# f))$$

$$= \phi(1) \sum_r (b_r \cdot a) \otimes \lambda(h \# f) \rho(S^{-1}(p_r) \# 1)$$

$$= \phi(1) \psi(h \# f) \phi(a)$$

where we use equation (2) in the third line from below.

Theorem 6.2. Suppose that H is a Hopf algebra, finitely generated projective over k, which partially actions on \mathcal{A} . Then $\Phi : A \otimes H \# H^* \to \mathcal{A} \otimes \operatorname{End}_k(H)$ with

$$a \otimes h \# f \mapsto \phi(a)\psi(h \# f)$$

is an algebra homomorphism. The image of the restriction to $\underline{\mathcal{A}\#H}\#H^*$ lies inside $\mathbf{e}(A \otimes \operatorname{End}_k(H))\mathbf{e}$ where \mathbf{e} is the idempotent

$$\mathbf{e} = \sum_{i=1}^{n} (b_i \cdot 1) \otimes \rho(S^{-1}(p_i) \otimes 1).$$

Proof. For any $a, b \in \mathcal{A}, h, k \in H$ and $f, g \in H^*$ we have

$$\Phi(a \otimes h \# f) \Phi(b \otimes k \# g)) = \phi(a)\psi(h \# f)\phi(b)\psi(k \# g)$$

$$= \phi(a)\phi(1)\psi(h \# f)\phi(b)\psi(k \# g)$$

$$= \sum_{(h)} \phi(a)\phi(h_1 \cdot b)\psi(h_2 \# f)\psi(k \# g)$$

$$= \sum_{(h,f)} \phi(a(h_1 \cdot b))\psi(h_2(f_1 \rightharpoonup k) \# f_2 * g)$$

$$= \Phi\left(\sum_{(h,f)} a(h_1 \cdot b) \otimes h_2(f_1 \rightharpoonup k) \# f_2 * g\right)$$

$$= \Phi\left((a \otimes h \# f)(b \otimes k \# g)\right).$$

Hence Φ is an algebra homomorphism. Since the image of the identity $\mathbf{1} = \mathbf{1}_{\mathcal{A}} \# \mathbf{1}_{H} \# \mathbf{1}_{H^*}$ of $\mathcal{A} \# H \# H^*$ under the map Φ is \mathbf{e} , \mathbf{e} is an idempotent. Moreover

$$\Phi(\gamma) = \Phi(\mathbf{1}\gamma\mathbf{1}) \in \mathbf{e}(\mathcal{A} \otimes \operatorname{End}_k(H))\mathbf{e},$$

for all $\gamma \in \mathcal{A} \# H \# H^*$.

References

- R.J.Blattner and S.Montgomery, A duality theorem for Hopf module algebras. J. Algebra 95 (1985), no. 1, 153–172.
- [2] S.Caenepeel and K. Janssen Partial entwining structures, arxiv.org/math/0610524
- M.Cohen and S.Montgomery, Group-graded rings, smash products, and group actions., Trans. Amer. Math. Soc. 282 (1984), no. 1, 237–258.
- W.Cortes and M.Ferrero, Partial skew polynomial rings: prime and maximal ideals., Comm. Algebra 35 (2007), no. 4, 1183–1199.
- [5] M. Dokuchaev, M.Ferrero and A.Paques, *Partial actions and Galois theory.*, J. Pure Appl. Algebra 208 (2007), no. 1, 77–87.
- [6] R. Exel, Circle actions on C*-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequences, J. Funct. Anal. 122 (1994), 361?401.
- [7] S.Montgomery, Hopf algebras and their actions on rings., CBMS Regional Conference Series in Mathematics, 82. AMS (1993)
- [8] D.Quinn, Group-graded rings and duality. Trans. Amer. Math. Soc. 292 (1985), no. 1, 155–167.