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Abstract. Let α and β be automorphisms on a ring R and δ : R → R an (α, β)-derivation.

It is shown that if F is a right Gabriel filter on R then F is δ-invariant if it is both α and
β-invariant. A consequence of this result is that every hereditary torsion theory on the category

of right R-modules is differential in the sense of Bland(2006). This answers in the affirmative a

question posed by Vaš(2007) and strengthens a result due to Golan(1981) on the extendability
of a derivation map from a module to its module of quotients at a hereditary torsion theory.

Introduction

In [4, Corollary 1] Golan proves that if R is a ring endowed with a derivation map δ, M a right
R-module with δ-derivation map d : M →M , and τ a hereditary torsion theory on the category of
right R-modules such that d[tτ (M)] ⊆ tτ (M), then d extends to a δ-derivation map on the module
of quotients Qτ (M) of M at τ . This result is sharpened by Bland [3] who calls a hereditary
torsion theory differential if the aforementioned containment d[tτ (M)] ⊆ tτ (M) holds for all M
and δ-derivations d : M →M , and then proves that the differential hereditary torsion theories are
precisely those hereditary torsion theories τ for which all δ-derivation maps are extendable in the
above sense [3, Proposition 2.3].

In a recent paper Vaš [9] identifies several classes of hereditary torsion theories that are differ-
ential and poses the question [9, page 852]: is every hereditary torsion theory differential? In this
paper we shall answer this question in the affirmative by proving a slightly more general result on
skew-derivations.

1. Preliminaries

Throughout this paper R will denote an associative ring with identity and Mod-R the category
of unital right R-modules. If N,M ∈ Mod-R we write N 6M if N is a submodule of M . If X,Y
are nonempty subsets of M we define (X : Y ) = {r ∈ R | Y r ⊆ X}. If X,Y ⊆ R, then (X : Y )
will be taken as above with R interpreted as a right module over itself.

If d : R → R is an additive map, we say that a nonempty family F of right ideals of R is
d-invariant if, for any I ∈ F, there exists J ∈ F such that d[J ] ⊆ I.

A hereditary torsion theory on Mod-R is a pair τ = (T ,F) where T is a class of right R-modules
that is closed under submodules, homomorphic images, direct sums and module extensions, and
F comprises all N ∈ Mod-R such that HomR(M,E(N)) = 0 for all M ∈ T . The modules in T are
called τ -torsion and those in F τ -torsion-free. For each M ∈ Mod-R there is a largest τ -torsion
submodule of M that we shall denote by tτ (M).

A nonempty family F of right ideals of a ring R is called a right Gabriel filter on R if it satisfies
the following two conditions:

(G1) if I ∈ F then (I : r) ∈ F for all r ∈ R;
(G2) if I ∈ F and J 6 RR is such that (J : a) ∈ F for all a ∈ I, then J ∈ F.
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If τ = (T ,F) is an arbitrary hereditary torsion theory on Mod-R, then

Fτ := {I 6 RR | R/I ∈ T }
is a right Gabriel filter on Mod-R. If F is an arbitrary right Gabriel filter on R, then there is a
(unique) hereditary torsion theory, denoted by τF, whose torsion class T is given by

T = {M ∈ Mod-R | (0 : x) ∈ F for all x ∈M}.
For every ring R the maps τ 7→ Fτ and F 7→ τF constitute a pair of mutually inverse maps between
the sets of hereditary torsion theories on Mod-R and right Gabriel filters on R (see [8, Theorem
VI.5.1, page 146]).

We refer the reader to [1], [5] and [8] for further background information on torsion theories
and Gabriel filters.

2. Differential torsion theories

Let α and β be automorphisms on a ring R. An additive map δ : R → R is called an (α, β)-
derivation on R if

δ(ab) = δ(a)α(b) + β(a)δ(b) for all a, b ∈ R.
If α and β coincide with the identity map on R, it is customary to omit the prefix (α, β) and speak
simply of a derivation on R.

If δ is a derivation on R and M ∈ Mod-R, then an additive map d : M → M is called a
δ-derivation on M if

d(xr) = d(x)r + xδ(r) for all x ∈M and r ∈ R.
The following result is due to Bland [3, Lemma 1.5].

Theorem 1. Let δ be a derivation on a ring R. The following conditions are equivalent for a
hereditary torsion theory τ on Mod-R:
(i) for every M ∈ Mod-R and δ-derivation d on M , d[tτ (M)] ⊆ tτ (M);
(ii) Fτ is δ-invariant.

A hereditary torsion theory τ satisfying the equivalent conditions of Theorem 1 is called dif-
ferential. Differential torsion theories have the important property that every δ-derivation on a
module M extends uniquely to a derivation on the module of quotients of M at the given torsion
theory, as shown in [4, Corollary 1] and [3, Proposition 2.1].

We refer the reader to [4], [3], [2] and [9] as sources of further information on torsion theories
in the context of rings endowed with a derivation map.

We now prove our main theorem from which it shall follow that all hereditary torsion theories
are differential thus answering in the affirmative a question posed by Vaš [9, page 852].

Theorem 2. Let α and β be automorphisms on a ring R and δ : R→ R an (α, β)-derivation on
R. If F is a right Gabriel filter on R that is both α and β-invariant, then F is δ-invariant.

Proof. Let I ∈ F. We have to show that there exists J ∈ F with δ[J ] ⊆ I. Since F is α and
β-invariant, L = α−1[I] ∩ β−1[I] ∈ F. Let

J = {x ∈ L | δ(x) ∈ I}.
Since δ is additive, J is an additive subgroup of R. Take any x ∈ J and r ∈ R. Then δ(xr) =
δ(x)α(r) + β(x)δ(r) ∈ I, because β(x) ∈ β[L] ⊆ I and δ(x) ∈ I by definition, whence xr ∈ J . We
conclude that J is a right ideal.

For each x ∈ L we claim that

(1) (L : α−1(δ(x))) ⊆ (J : x).

To prove (1) note that

y ∈ (L : α−1(δ(x))) ⇔ α−1(δ(x))y ∈ L ⇒ δ(x)α(y) ∈ α[L] ⊆ I.
Since x ∈ L we also have β(x)δ(y) ∈ I, whence

δ(xy) = δ(x)α(y) + β(x)δ(y) ∈ I.
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Inasmuch as xy ∈ L and δ(xy) ∈ I, we have xy ∈ J . This establishes (1).
Since L ∈ F, it follows from (G1) that (L : α−1(δ(x))) ∈ F. Hence by (1), (J : x) ∈ F for all

x ∈ L. We conclude from (G2) that J ∈ F, as required. �

Since every nonempty family of right ideals of R is trivially invariant with respect to the identity
map on R, the following corollary follows immediately from the two previous theorems.

Corollary 3. Let R be any ring endowed with a derivation map δ : R→ R. Then every hereditary
torsion theory on Mod-R is differential.

Remark: The problem of extending derivations to rings of quotients of algebras over fields is
a special case of extending Hopf algebra actions to rings of quotients. Let H be a Hopf algebra
over a field k acting on a k-algebra A and let F be a right Gabriel filter on A with associated ring
of quotients QF(A). Denote by λh(a) := h · a the action of an element h ∈ H to a ∈ A, which
is an additive map. A necessary condition for extending the H-action on A to QF(A) is that H
act F-continuously, i.e., F is λh-invariant for all h ∈ H (see [6]). The terminology is justified if
A is considered a topological ring whose topology is induced by F and interpreting the condition
λ−1
h (I) ∈ F for any I ∈ F as continuity.

In [6] it is shown that if the Hopf algebra H is pointed, i.e., all simple subcoalgebras are one-
dimensional, then H always acts F-continuously on an algebra A. In the case of a derivation δ of
A one might consider the enveloping algebra H of the 1-dimensional Lie algebra which acts as δ
on A. Here H = k[X] is a pointed Hopf algebra and hence the action extends to QF(A).

A purely coalgebraic version was given by Rumynin in [7]: a coalgebra C is said to measure
an algebra A if there exists an action · : C ⊗ A → A such that for all c ∈ C and a, b ∈ A,
c · (ab) =

∑
(c)(c1 · a)(c2 · b) and c · 1 = ε(c)1 where ∆(c) =

∑
(c) c1 ⊗ c2 ∈ C ⊗ C denotes the

comultiplication of C and ε(c) the counit of C. Rumynin proved that if every simple subcoalgebra
of C is 1-dimensional and measures A F-continuously, then C also measures A F-continuously.

Let α and β be automorphisms on A and δ : A → A an (α, β)-derivation. Let C be the
4-dimensional vector space over k with basis 1, g, h and x which becomes a coalgebra with comul-
tiplication

∆(1) = 1⊗ 1, ∆(g) = g ⊗ g, ∆(h) = h⊗ h, ∆(x) = x⊗ g + h⊗ x
and counit ε(1) = ε(g) = ε(h) = 1 and ε(x) = 0. Define the measuring · : C ⊗A→ A by 1 · a = a,
g · a = α(a), h · a = β(a) and x · a = δ(a). The simple subcoalgebras of C are k1, kg and kh which
are 1-dimensional. If F is α and β-invariant, then by [7, Lemma 9], C acts F-continuously on A,
i.e., F is δ-invariant. This yields another proof of Theorem 2 for the special case of algebras over
fields.
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