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Abstract. We show that generically a pseudogroup generated by holomorphic diffeomor-
phisms defined about 0 ∈ C is free in the sense of pseudogroups even if the class of conjugacy
of the generators is fixed. This result has a number of consequences on the topology of leaves
for a (singular) holomorphic foliation defined on a neighborhood of an invariant curve. In
particular in the classical and simplest case arising from local foliations possessing a unique
separatrix that is given by a cusp of the form {y2−x2k+1 = 0}, our results allow us to settle
the problem of showing that a generic foliation possesses only countably many non-simply
connected leaves and that this countable set is, indeed, infinite.

1. Introduction

This paper is motivated by several difficulties concerning to greater or lesser extent the
“topology of leaves” that are encountered in the study of some well-known problems about
(singular) holomorphic foliations. Yet most of these problems are essentially concerned
with pseudogroups generated by certain local holomorphic diffeomorphisms defined on a
neighborhood of 0 ∈ C. For this reason, we shall begin our discussion by stating our results
in this context. First consider the group Diff (C, 0) of germs of diffeomorphisms and let
this group be equipped with the analytic topology introduced by Takens [T]. The precise
definition of this topology will be given in Section 2, for the time being it suffices to know that
it possesses the Baire property. Here we remind the reader that a Gδ-dense set, sometimes
also called a residual set, is nothing but a countable intersection of open and dense sets in
a Baire space. All the “generic results” stated in this part of the Introduction concern Gδ-
dense sets for this topology. It is however worth pointing out that, once they are established,
it is easy to derive the “generic” character in other contexts by means of ideas similar to
those employed in Section 2 (in particular in suitable topologies involving the coefficients
of their Taylor series at 0 ∈ C and/or in the sense of measure). Next consider a k-tuple of
local holomorphic diffeomorphisms f1, . . . , fk fixing 0 ∈ C. The first theorem proved here
states that we can perturb the fi’s without altering their classes of holomorphic conjugacy
in Diff (C, 0) so that the group they generate is the free product of the corresponding cyclic
groups. The reason for keeping the conjugacy class fixed will be clear when we shall discuss
the applications to singular foliations. For the time being, note only that this condition is
equivalent to preserving the order of a diffeomorphism if this order is finite. Also, in the
case of a diffeomorphism having a hyperbolic fixed point at 0 ∈ C, the condition amounts
to preserving the corresponding multiplier. Next let (Diff (C, 0))k denote the product of
k-copies of Diff (C, 0) endowed with the product analytic topology. Then we have:

Theorem A. Suppose that f1, . . . , fk as above are such that none of the fi’s has finite order
(i.e. f ji 6= id for every j ∈ N∗). Then there exists a Gδ-dense set V ⊂ (Diff (C, 0))k such that,
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whenever (h1, . . . , hk) ∈ V the group generated by h−1
1 ◦ f1 ◦ h1, . . . , h

−1
k ◦ fk ◦ hk induces a

free group in Diff (C, 0). Furthermore, there is a fixed neighborhood V of 0 ∈ C such that,
denoting by Γh the pseudogroup of mappings defined on V by h−1

1 ◦ f1 ◦h1, . . . , h
−1
k ◦ fk ◦hk,

every element of Γh coinciding with the identity on a non-empty open set must coincide with
the identity on all of its domain of definition in V .

Finally there are infinitely many points p1, p2, . . . contained in V such that pi is a hyperbolic
fixed point of some element gi of Γh and the orbits under Γh of pi and pj are disjoint provided
that i 6= j.

The assumption that the order of each fi is infinite does not constitute a limitation of
our methods. In fact, let Gi be the cyclic group generated by fi (which may or may not be
infinite). Theorem B below is formally a generalization of Theorem A whereas our methods
actually yield a unified proof of both statements.

Theorem B. Let f1, . . . , fk and G1, . . . , Gk be as above. Then there exists a Gδ-dense set
V ⊂ (Diff (C, 0))k such that, whenever (h1, . . . , hk) ∈ V the group generated by h−1

1 ◦ f1 ◦
h1, . . . , h

−1
k ◦ fk ◦ hk induces a group in Diff (C, 0) that is isomorphic to the free product

G1 ∗ · · · ∗Gk .

Furthermore, there is a fixed neighborhood V of 0 ∈ C such that, denoting by Γh the
pseudogroup of mappings defined on V by h−1

1 ◦ f1 ◦ h1, . . . , h
−1
k ◦ fk ◦ hk, every element of

Γh coinciding with the identity on a non-empty open set must coincide with the identity on
all of its domain of definition in V .

Finally there are infinitely many points p1, p2, . . . contained in V such that pi is a hyperbolic
fixed point of some element gi of Γh and the orbits under Γh of pi and pj are disjoint provided
that i 6= j.

For the last part of the preceding statements, we note that the existence of a hyperbolic
fixed point for the pseudogroup arising from a “non-solvable” group has been known since
[Sh], [BLL-1] whereas the existence of two or more hyperbolic fixed points with disjoint
orbits was not previously settled. It appears here as a consequence of our theory of generic
pseudogroups.

It is natural to expect the preceding statements to have consequences on the topology
of the leaves of a foliation on a neighborhood of an invariant curve or on a neighborhood
of a singular point. In this paper we shall content ourselves of providing an answer to the
long-standing question of nilpotent singularities leaving a cusp of the form {y2 + x2n+1 = 0}
invariant. By a small abuse of language, by a cusp of the form {y2 +x2n+1 = 0} it will always
be meant a (local) curve analytically equivalent to the cusp in question. This choice will
help us to explain most of the relevant ideas without making the discussion too technical.
To begin with consider a singular foliation F defined about (0, 0) ∈ C2 by a nilpotent 1-form
ydx + · · · and possessing a cusp {y2 + x2n+1 = 0} as its unique separatrix. It then follows
that the linear part of F at the origin is nilpotent (and non-zero). This much studied class
of singularities corresponds to Arnold’s singularities of type A2k+1. Whereas several works
were devoted to these nilpotent singularities, and in particular to the description of suitable
normal forms (cf. [Lo], [S-Z] and references therein), the question about the topology of most
leaves for the “generic foliation” remained unsettled. Our Theorem C below states that for
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a generic foliation in the class A2k+1 there are only a countable (infinite) number of leaves
that are not simply connected.

Generic theorems about foliations, as it is the case of Theorem C, are more commonly
expressed in terms of the Krull topology since the corresponding formulations automatically
bear a meaning in terms of “generic coefficients” for the differential equation in question.
This explains why Theorem C will be stated with respect to the Krull topology rather than
being “parameterized” by Gδ-dense sets in Diff (C, 0) (yet a formulation in terms of Gδ-dense
sets is possible, cf. Section 5 for details).

Let ω ∈ Λ(C2,0) be a 1-form with an isolated singularity at the origin and defining a germ
of a nilpotent foliation F of type A2k+1.

Theorem C (Cusps). For every (sufficiently large) N ∈ N, there exists a 1-form ω′ ∈ Λ(C2,0)

defining a germ of a foliation F ′ and satisfying the following conditions:

• JN0 ω′ = JN0 ω (i.e. the forms ω, ω′ are tangent to order N at the origin).
• The foliations F and F ′ have S as a common separatrix.
• There exists a fundamental system of open neighborhoods {Un}n∈N of S, inside a

closed ball B̄(0, R), such that for all n ∈ N, the leaves of the restriction of F ′ to
Un \ S are simply connected except for a countable number of them.

To apply Theorems A and B to the topology of leaves of foliations in more general settings
is a quite subtle problem for which the theory developed in [M-M] becomes a powerful tool.
Concerning our Theorem C, a self-contained proof is given in Section 5. This proof, however,
amounts to applying the techniques of [M-M] to an elementary case. Another comment
about Theorem C is that, though it is naturally constructed, the systems of neighborhoods
Un cannot be arbitrary. In fact, for an arbitrary neighborhood U it may happen, for example,
that intersections of leaves with the boundary of U create “holes” in the corresponding leaves
which will no longer be simply connected. In Section 5 a result slightly more accurate than
Theorem C will be stated. This section also contains further information and details about
these foliations.

To close this Introduction let us make some comments concerning the standard condition
that we have considered in Theorem A and B. Namely the fact that the analytic conjugacy
class of the initial local diffeomorphisms is always kept fixed. For this it is interesting to

look at a foliation F̃ defined on a neighborhood of a rational curve C (in turn embedded

in some complex surface). The singularities of F̃ in C are denoted by p1, . . . , pk. It is

then natural to consider perturbations of F̃ satisfying our standard condition: the analytic
class of the local holonomy map σk defined by a small loop around pk is fixed. Since the
singularities are simple, this condition is equivalent to saying that the analytic types of the

singularities of F̃ are fixed, as it follows from classical results. In turn, if in addition these
singularities belong to the Poincaré domain, then our context is equivalent to the context
of isospectral deformations i.e. deformations preserving the eigenvalues of each singular
point. For singularities belonging to the Siegel domain however our condition is far stronger
than the isospectral one and, in fact, it is expected to be the natural “good” condition for
developing a (global) moduli theory for holomorphic foliations. Finally, when a singularity in
the Siegel domain gives rise to a local holonomy of finite order, then the condition becomes
equivalent to deforming the foliation while keeping fixed the order of the local holonomy
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maps in question. This last case is precisely the situation that emerges in the analysis of
singularities of type A2k+1 and it will play a role in the proof of Theorem C.

In any event, in a suitable sense, a generic foliation as above will still have all but countably
many leaves simply connected. This assertion may be justified by a construction similar to
the construction carried out in Section 5. Alternatively we can resort to more general results
obtained in [M-M]. In particular the preceding theorems can be viewed as a step towards
Anosov’s conjecture stating a global result about the existence of only countably many non-
simply connected leaves for a generic foliation of the projective plane.

Concerning foliations on the projective plane leaving a projective line invariant, Il’yashenko
and Pyartli [Il-P] proved that, in the class of foliations with degree d of the projective plane
leaving the line at infinity invariant, those for which the holonomy group of (the regular
part of) the line at infinity is free are generic. This very interesting result has a different
nature if compared to statements provided in this work and it deserves some comments.
Whereas Il’yashenko and Pyartli do not worry about how the singular points change in
their considerations about “generic foliations”, one of the main differences between the two
works stems from the fact that their theorem is stated for global foliations whose space of
parameters is far more restrictive and of finite dimension. Therefore their result does not
apply in a singular context, for example in the study of foliations leaving a cusp invariant,
not only because the “parameter space” is totally different but also because singularities
are often “deformed” in their procedure. Similarly our construction does not apply in their
global context since it is unclear whether our “perturbations” can be realized within the
natural parameter space associated to (global) foliations of degree d. Another issue that
needs to be pointed out is that, unfortunately, Il’yashenko and Pyartli’s theorem works only
at the “infinitesimal” level of the group of germs of diffeomorphisms fixing 0 ∈ C. Due to
the reasons explained above (cf. also Section 4), it therefore does not imply the existence of
simply connected leaves (apart from a countable set) in a fixed neighborhood of the line at
infinity. Given the interest of this type of question, we may wonder whether a suitable blend
of ideas in both papers may lead us to fill in some of the gaps mentioned above and provide
further insight into the general case of Anosov’s conjecture.

Finally a word about the structure of the paper. In Section 2 we provide the definition
of the analytic topology in the context adapted to our needs. For the convenience of the
reader a proof that this topology possesses the Baire property was also included. We then
provide some general elementary statements comparing formal “perturbations” with analytic
perturbations that might also be useful in other similar problems. In Section 3 we introduce
our basic technique of perturbation relying on Riemann maps and on Caratheodory theorem.
This section ends with the proof of the “infinitesimal versions” of Theorems A and B. In
other words we find that we can obtain “free subgroups” contained in the group of germs
Diff (C, 0). In Section 4 we elaborate much further on the preceding material so as to be able
to prove the full statements of Theorems A and B along with some simple variants needed
for Section 5. In all these sections we deal exclusively with the case where the corresponding
groups are generated by only two local diffeomorphisms (i.e. k = 2 in the statements of
Theorems A and B). This serves only to abridge notations since the general case does not
offer any additional difficulty. Finally in Section 5 some implications of these theorems to
foliations are discussed and Theorem C is proved.
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2. Formal series and convergent series

In the sequel let Diff (C, 0) stands for the group of local holomorphic diffeomorphisms
fixing 0 ∈ C. The group of formal series

∑∞
i=1 cix

i, ci ∈ C, is going to be denoted by

D̂iff (C, 0). There is an obvious injection of Diff (C, 0) in D̂iff (C, 0) which associates to an
element of Diff (C, 0) its Taylor series about 0 ∈ C.

Let us begin by defining the so called analytic topology (or Cω-topology) in Diff (C, 0). To
the best of our knowledge this type of topology was first considered by Takens [T] who also
observed that it possesses the Baire property.

Given r > 0, let B(r) ⊂ C denote the open disc of radius r about 0 ∈ C. Consider
a holomorphic function h defined around 0 ∈ C and taking values in C. If h possesses
a holomorphic extension (still denoted by h) to B(r), then set ‖h‖r = supz∈B(r) |h(z)|.
Otherwise we pose ‖h‖r = +∞.

Next for r, ε > 0 and f ∈ Diff (C, 0) chosen, let (f + U εr ) ⊆ Diff (C, 0) be the set defined
by

(f + U εr ) = {g ∈ Diff (C, 0) ; ‖g − f‖r < ε} ,
where (g − f) is interpreted simply as a holomorphic function that need not be a local
diffeomorphism at 0 ∈ C. The analytic topology on Diff (C, 0) can now be defined as being
the one generated by the sets (f + U εr ). In other words, the sets (f + U εr ) form a basis of
open sets for the analytic topology. An immediate consequence of this definition is that a
sequence {fi}i∈C ⊂ Diff (C, 0) is convergent in the analytic topology if and only if, to every
pair r, ε > 0, there corresponds N ∈ N such that ‖fi − fj‖r < ε whenever both i, j are
greater than N .

Remark 2.1. Fixed k ∈ N∗, the k-jet projection from Diff (C, 0) to Ck defined by

g 7−→ (g(1)(0), g(2)(0), . . . , g(k)(0))

is continuous in the analytic topology as an easy consequence of Cauchy estimates. Con-
versely, this projection admits a natural section T (Taylor polynomial) defined by

(a1, . . . , ak) 7−→ a1z +
a2

2
z2 + · · ·+ ak

k!
zk

which is also continuous for the topologies in question. This simple remark will often be
used in the course of this work.

Following [T] let us show that the set Diff (C, 0), endowed with the analytic topology, is
a Baire space.

Lemma 2.2. The group Diff (C, 0) equipped with the analytic topology is a Baire space,
namely the countable intersection of open dense sets is dense.

Proof. For every i ∈ N, let Ui denote an open and dense subset of Diff (C, 0). Given a
nonempty open set V ⊆ Diff (C, 0), we must check that V ∩ (

⋂
i∈N Ui) 6= ∅. Clearly it suffices

to show this when V is an open set of the form V = (f + U εr ), for certain r, ε > 0 and
f ∈ Diff (C, 0).

To do this, let us construct a sequence of triplets (fi, ri, εi) verifying the following condi-
tions:

(1) (f0, r0, ε0) = (f, r, ε).
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(2) fi ∈ (fi−1 + U εi−1/2
ri−1 ) ∩ Ui, (ε0 = ε).

(3) (fi + U εi
ri

) ⊆ (fi−1 + U εi−1/2
ri−1 ) ∩ Ui.

(4) {εi} decreases monotonically to zero while {ri} increases monotonically to +∞.

The existence of a sequence as above is clear and, thanks to the convergence criterion stated
above, it follows that {fi} converges in the analytic topology to a certain f∞ ∈ Diff (C, 0).
We claim that f∞ belongs to V ∩ (

⋂
i∈N Ui). Indeed, chosen i0 ∈ N, the diffeomorphism fj

belongs to (fi0+U εi0
/2

ri0
) for all j > i0. Therefore the limit f∞ belongs to (fi0+U εi0

/2
ri0

) ⊆ V ∩Ui0 .
Since i0 ∈ N was arbitrarily chosen, the statement follows at once. �

Remark 2.3. Note that Diff (C, 0) endowed with the analytic topology is not a topological
group. This happens because the mapping from Diff (C, 0) to Diff (C, 0) that associates to
a chosen h ∈ Diff (C, 0) the element f ◦ h, where f ∈ Diff (C, 0) is fixed, is not continuous in
general. In fact, a sequence {hi} ⊂ Diff (C, 0) converges in the analytic topology to h if and
only if hi = h+ ri where ri ∈ U εr for every fixed r, ε > 0 and sufficiently large i. However, if
f has a bounded domain of definition, this does not guarantee that f ◦ (h+ri)−f ◦h admits
a holomorphic extension to arbitrarily large discs. This remark was once communicated to
the second author by L. Lempert to whom we wish to thank.

Let us now turn to the central point of this section. Let f, g ∈ Diff (C, 0) (resp. f̂ , ĝ ∈
D̂iff (C, 0)) be two holomorphic diffeomorphisms (resp. formal series) fixing the origin and

assume that both f, g (resp. f̂ , ĝ) are distinct from the identity map. Denote by G (resp. Ĝ)

the subgroup of Diff (C, 0) (resp. D̂iff (C, 0)) generated by f, g (resp. by f̂ , ĝ). Naturally

every reduced word W (a, b) in the letters a, a−1, b, b−1 represents an element of G (resp. Ĝ)

by means of the substitutions a = f and b = g (resp a = f̂ and b = ĝ). It is understood that

the group law of G (resp. Ĝ) becomes identified with the composition of the holomorphic
diffeomorphisms (resp. formal series).

The problem we are considering is the following one. Assume we are given two holomorphic
diffeomorphisms f, g (resp. formal series f̂ , ĝ) that satisfy a non-trivial relation in the sense

that there exists a nontrivial reduced word W (a, b) such that W (f, g) = id (resp. W (f̂ , ĝ) =

id). We want to know if there exists h ∈ Diff (C, 0) (resp. ĥ ∈ D̂iff (C, 0)) very close to the
identity map such that f, h−1 ◦ g ◦ h does not satisfy any non-trivial relation.

Definition 2.4. Consider a pair f, g of holomorphic diffeomorphisms in Diff (C, 0) and
consider also a reduced word W (a, b) such that W (f, g) = id in Diff (C, 0). The word W (a, b)

is said to be a universal relation if for every ĥ ∈ D̂iff (C, 0) we still have W (f, ĥ−1◦g◦ĥ) = id.

In the above statement W (f, g) stands for the element of Diff (C, 0) obtained by the
substitution a = f , a−1 = f−1, b = g and b−1 = g−1 on W (a, b) and by considering
the group law as being the composition of formal series. An analogous remark applies to
W (f, ĥ−1 ◦ g ◦ ĥ).

We can finally state the main result of this section.

Theorem 2.5. Let f, g ∈ Diff (C, 0) be two non-trivial holomorphic diffeomorphisms fixing
the origin and let W (a, b) be a non-trivial reduced word in f, g and their inverses. If W (a, b)

is not a universal relation, i.e. if there exists ĥ ∈ D̂iff (C, 0) such that W (f, ĥ−1 ◦ g ◦ ĥ) 6= id
then there also exists h ∈ Diff (C, 0) such that W (f, h−1 ◦ g ◦ h) 6= id. In fact the set of
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elements h ∈ Diff (C, 0) such that W (f, h−1 ◦ g ◦ h) 6= id is open and dense for the analytic
topology.

The theorem above allows us to prove also the following result:

Theorem 2.6. Suppose we are given f, g satisfying no universal relation. Then there exists
a set U ⊆ Diff (C, 0), dense for the analytic topology, such that if h ∈ U then f, h−1 ◦ g ◦ h
generates a free subgroup of Diff (C, 0).

Note that the theorem above assumes that “relations can be broken” in the category of
formal series to conclude the existence of no relations in the category of convergent power
series in Diff (C, 0).

Proof of Theorem 2.6. Consider a non-trivial reduced word in f, g and their inverses. By
assumption there is no universal relation W for the pair f, g. This means that for every

word W there exists ĥW ∈ D̂iff (C, 0) such that W (f, ĥW ◦ g ◦ ĥW
−1

) 6= id. According to
Theorem 2.5 there exists an open dense set UW ⊆ Diff (C, 0) in the analytic topology whose
elements h satisfy W (f, h◦ g ◦h−1) 6= id. Since there are only countably many words W and
since the analytic topology is a Baire space, the set

U =
⋂
W∈G

UW

is dense in Diff (C, 0). It is immediate to check that the elements h in U have the property
that f, h−1 ◦ g ◦ h generates a free subgroup of Diff (C, 0). �

To prove Theorem 2.5 let us begin by considering holomorphic diffeomorphisms f, g ∈
Diff (C, 0) such that W (f, g) = id for a fixed non-trivial reduced word W . Consider also a

formal series ĥ ∈ D̂iff (C, 0) such that W (f, ĝ) 6= id, where ĝ = ĥ−1 ◦ g ◦ ĥ ∈ D̂iff (C, 0).
Assume that W (f, ĝ) =

∑
i≥1 aiz

i. Since W (f, ĝ) 6= id then there exists K ≥ 2 such that

aK 6= 0. Denote by ĥK the polynomial of degree K obtained by truncating ĥ in the obvious
way and let ĝK = ĥ−1

K ◦ g ◦ ĥK . Since W (f, ĝ) coincides with W (f, ĝK) to the order K, it
immediately follows that W (f, ĝK) 6= id as well.

Fix K as above and let us identify the coefficients of ĥK to a point PK in CK . Next note
that the coefficients of ĥ−1 are entirely determined by those of ĥ through explicit algebraic
formulas. In particular the coefficients of ĥ−1

K are algebraic functions of the coefficients of

ĥK and so are the coefficients of ĥ−1
K ◦ g ◦ ĥK . Note however that ĥ−1

K is not a polynomial in
general. All this can be summarized by saying that, with the preceding identifications, we
have a natural affine algebraic map

Jr ◦W : CK −→ Cr ,

for a suitable r ∈ N, whose value at a given point consists of the r-tuple formed by the
coefficients of the resulting word until degree r. In other words, for a chosen r, Jr ◦W (PK)
is the r-jet of the formal seriesW (f, ĝK). The preimage of (1, 0, . . . , 0) ∈ Cr is by construction
a Zariski-closed affine subset of CK . This is a properly contained subset for r ≥ K since
W (f, ĝK) 6= id or, more precisely, since the coefficient of zK in the series expansion of
W (f, ĝK) is different from zero. Therefore we have proved:
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Lemma 2.7. With the preceding identifications, there is a non-empty Zariski open subset
OW of CK whose points, thought of as polynomials ĝK, satisfy Jr ◦W (PK) 6= id. �

Note that the lemma above holds for every sufficiently large value of K and r(≥ K).
Furthermore for r = K if W (f, ĝ) = id so does Jr ◦W (f, ĝK). We are finally ready to prove
Theorem 2.5.

Proof of Theorem 2.5. Recall that W is a non-trivial reduced word that does not constitute

a universal relation. Therefore there is ĥ ∈ D̂iff (C, 0) such that W (f, ĥ ◦ g ◦ ĥ−1) 6= id. In
turn Lemma 2.7 asserts that for sufficiently large K and r ≥ K there exists a non-empty
Zariski open subset of CK , denoted by OW , whose points, thought of as polynomials, satisfy
Jr ◦ W (PK) 6= 0. Being Zariski open and non-empty, OW is in particular dense for the
ordinary topology of CK . We can take r = K.

Let UW ⊂ Diff (C, 0) be the open set in the analytic topology of elements h satisfying
W (f, h ◦ g ◦ h−1) 6= id. Our purpose is to show that the set UW is not only non-empty but
also dense in the analytic topology of Diff (C, 0).

Fix an element h of Diff (C, 0) and let us assume that W (f, h ◦ g ◦ h−1) = id. We shall

prove the existence of elements h̃ arbitrarily close to h in the analytic topology and satisfying
W (f, h̃◦g◦h̃−1) 6= id. Let K be as above and denote by gh (resp. gh,K) the element h◦g◦h−1

(resp. hK ◦ g ◦ h−1
K ). Then the coefficients of gh,K depend only on the first K coefficients of

h. Moreover this dependence is given by algebraic functions. Assume that

h =
∑
k≥1

aiz
i = a1x+ · · ·+ aKx

K + · · ·

is the Taylor’s expansion of h at the origin. Since W (f, gh) = id and since W (f, gh,K)
coincides with W (f, gh) = id to order K, it follows that JK ◦W (f, gh,K) = id as well. This
means that (a1, . . . , aK) ∈ CK \ OW . However OW is a non-empty Zariski open set of CK

so that there exists (ã1, . . . , ãK) ∈ OW that is arbitrarily close to (a1, . . . , aK). Now let h̃ be
the formal series given by

h̃ =
∑
i≥1

biz
i

where bi = ãi if 1 ≤ i ≤ K and bi = ai for i > K. We claim the following holds:

(1) h̃ is convergent so that it defines an element of Diff (C, 0)
(2) W (f, gh̃) 6= id

(3) h̃ can be made arbitrarily close to h in the analytic topology. In other words, given

a neighborhood of h, there exists h̃ ∈ Diff (C, 0) lying in this neighborhood and
fulfilling conditions (1) and (2) above.

The fact that h̃ is convergent follows from observing that the power series of h̃ coincides
with the power series of h up to a finite number of terms. Condition (2) is an immediate
consequence of the fact that W (f, gh̃) coincides with W (f, gh̃) to order K where hK is
obtained from the point (ã1, . . . , ãK) ∈ OW .

Finally, to check condition (3) let a neighborhood U of h in the analytic topology be fixed.
Without loss of generality we can assume that U = h+U εr for some ε, r > 0. Next note that

h− h̃ is a polynomial of degree K. More precisely we have

(h− h̃)(z) = (a1 − b1)z + · · ·+ (aK − bK)zK .
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with ai and bi as above. As a polynomial, it admits a holomorphic extension to B(r). In

fact h − h̃ it is defined on all of C. Since OW is dense in the ordinary topology of CK we
can choose bi arbitrarily close to ai. In particular, we can choose bi such that ‖h− h̃‖r < ε.
This concludes the proof of the theorem. �

3. Destroying relations

From now on we shall limit ourselves to proving our main theorems in the case of two
(germs of) diffeomorphisms. This will help us to avoid cumbersome notations and make the
proof more transparent. The required adaptations to deal with the general case are more
than straightforward.

The purpose of this section is to guarantee the non-existence of universal relations under
the preceding conditions. The proof is based on the study of the convergence of a suitable
sequence of Riemann mappings. The non-existence of universal relations will quickly lead
to the proofs of our main results. It should also be pointed out that we shall “destroy non-
trivial relations” by considering only convergent power series, though it would be enough
to destroy them in the category of formal series as shown in the previous section. Yet we
cannot dispense with the discussion carried out in Section 2 since we must show that the
set of diffeomorphisms “h” that “breaks a given relation” is open and dense in a suitable
topology possessing Baire property.

In any event the main result of this section is as follows:

Theorem 3.1. With the notations of Section 2, there is no universal relation consisting of
a reduced word that is not of the form fk or gl with k, l ∈ Z.

Before proving Theorem 3.1 let us explain the role that Riemann mappings are going to
play in the proof. To do this let us give a brief sketch of the proof of Theorem 3.1. To begin
with recall that a holomorphic map is said to be univalent on a domain U if it is one-to-one
on U , i.e. if it provides a holomorphic diffeomorphism from U onto its image.

Now fix a pair of elements f, g ∈ Diff (C, 0) and a reduced non-trivial word W (a, b) on a, b
and their inverses. Suppose that W (f, g) = id with the natural substitutions a = f , b = g.
Then for every z in a small neighborhood of the origin we have that W (f, g)(z) = z, where
W (f, g) is naturally identified to a local diffeomorphism fixing 0 ∈ C. We need to find an

element ĥW ∈ D̂iff (C, 0) such that the formal series at the origin arising from the formal

composition W (f, ĥ−1 ◦ g ◦ ĥ) is not reduced to z. In fact, we shall construct an element h
belonging to Diff (C, 0), i.e. a convergent power series, satisfying this requirement. The idea
to obtain the desired element h ∈ Diff (C, 0) is as follows. Let z 6= 0 be a point sufficiently
close to 0 ∈ C so that its itinerary z0, z1, . . . , zk with respect to the word W is well-defined.
By the itinerary of z it is meant the sequence of points obtained in the following way: set
W (f, g) = ◦ki=1ai where ai ∈ {fk, (f−1)k, gj, (g−1)j, j ∈ N}, where f j, (f−1)j (resp. gj, (g−1)j)
stands for f ◦ · · · ◦ f , f−1 ◦ · · · ◦ f−1 (resp. g ◦ · · · ◦ g, g−1 ◦ · · · ◦ g−1) j times. Note that
every subsequence of consecutive f ’s and/or of f−1’s (resp. g’s and/or of g−1’s) are grouped
to be considered as a unique element. The reason to do this will become clear below. The
itinerary of z is then given by the sequence z0 = z, zi = ai(zi−1), for all i = 1, . . . , k. The
assumption that W (f, g) = id then implies that zk = z provided that z is sufficiently close
to 0 ∈ C. Naturally the formal series at 0 ∈ C associated to W (f, h−1 ◦ g ◦ h) coincides with
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the Taylor of the local diffeomorphism ◦ki=1bi at the origin, where bi is defined by

bi = ai if ai = f j or ai = (f−1)j for some j ∈ N
bi = h−1 ◦ ai ◦ h otherwise .

Thus it suffices to construct h fulfilling the following condition: there exists a connected
open neighborhood U of 0 ∈ C where all maps bi are defined, as well as their compositions
appearing in the writing of W (f, h−1◦g◦h), and a point z ∈ U such that W (f, h−1◦g◦h)(z) 6=
z. To construct a local diffeomorphism h satisfying this last condition, we proceed as follows.

Let us denote by r the maximum of the distances from {zi}i=1,...,k to the origin. Modulo
performing a change of coordinates, we can assume without loss of generality that r is
attained by a unique index i0. Besides we have:

(1) 0 < i0 < k
(2) ai0+1 ∈ {gj, (g−1)j, j ∈ N)}

As to condition (2), observe that it does not affect the generality of the discussion since the
group generated by f and h−1 ◦g ◦h is conjugate to the group generated by h◦f ◦h−1 and g.
In other words, we can permute the roles of f and g if necessary. Concerning condition (1)
we should first note that W (f, g) = ak ◦ · · · ◦ a2 ◦ a1 is the identity map if and only if so is
W̄ (f, g) = a1 ◦ ak ◦ · · · ◦ a2. Now take w = z1. The itinerary of w with respect to the new
word W̄ (f, g) coincides with the itinerary of z with respect to W (f, g). Indeed the sequence
of points involved in these itineraries are such that wi = zi+1 for all 0 ≤ i < k and wk = z1.
Now the set of points belonging to the itinerary of w is such that the maximum of their
distance to the origin occurs at wi0−1. Summarizing condition (1) can be assumed without
loss of generality. Indeed the argument allows us to assume in the sequel that i0 = k − 1.

Let 0 < ρ < r be such that the disk of radius ρ, Bρ, contains all {zi}i=1,...,k with exception
of zi0 = zk−1. The idea is to construct a univalent function h that is “very close” to the
identity map in Bρ and sends zk−1 to a point wk−1 sufficiently far from zk−1 so that ak(zk−1)
and ak(wk−1) are “far” from each other, but not “too far” in the sense that ak(wk−1) must
still belong to Bρ. Since h, and consequently h−1, are “close to the identity” in Bρ it follows
that the sequence of points formed by the itinerary of z0 w.r.t. W (f, h−1◦g◦h) will no longer
be closed. Besides the diffeomorphism (univalent function) h will be so that all the relevant
maps will still be defined on Bρ. The construction of h will be carried out with the help of a
sequence of Riemann mappings for appropriate simply connected domains. These domains
are going to be chosen so that the convergence on Bρ to the identity of the corresponding
Riemann mappings will follow from the classical theorem due to Caratheodory.

Now let us start to turn the above ideas into accurate statements. Up to a rotation
and a re-scaling of coordinates we can assume the following: the point zk−1, i.e. the point
of the sequence {zi}1≤i≤k with greatest absolute value, is equal to 1. Besides both f, g
are defined on a disk of radius strictly greater than 1. Fix δ > 1, 0 < ε < 1 and let
D = {z ∈ C : |z| < 1} ∪ {z ∈ R : 1 ≤ z ≤ δ}. We shall first prove:

Proposition 3.2. There exists a sequence of (holomorphic) univalent functions Hm defined
on a small neighborhood of the closed unit disk and satisfying the following:

(1) Hm converges uniformly to the identity map on the disk of radius 1− ε.
(2) Hm(1) = δ.
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Proof. Let δ and ε be constants as above and consider also the previously defined set D.
Let {αm}m∈N be a decreasing sequence of positive reals converging to zero as m goes to
infinity and denote by Dm the neighborhood of D constituted by those points of C whose
distance to D is at most αm. Since Dm is a simply connected domain there exists a unique
univalent function hm mapping Dm conformally onto the unit disc and satisfying hm(0) = 0
and h′m(0) = 1. We are going to prove that the sequence of functions hm converge uniformly
to the identity map on the disc of radius 1 − ε and that hm(δ) = pm where pm is a real
number and {pm} converges to 1 as m goes to infinity. This is going to be sufficient to
derive the statement of the proposition. In fact, let B1/pm be the disk of radius 1/pm(> 1)
and let λm denote the homothety of ratio pm. The homothety λm maps B1/pm conformally
onto the unit disk and satisfies λm(1) = pm. Now it can easily be checked that Hm given by
Hm = h−1

m ◦ λm satisfies all the required properties.
Thus the proof of our proposition is reduced to checking that the Riemann maps hm fulfils

the mentioned conditions. Namely hm(δ) = pm where pm → 1 as m→∞ and hm converges
uniformly to the identity on the disc of radius 1 − ε. For this we shall be led to consider
Riemann’s original argument which is slightly more quantitative than the standard modern
proof. This quantitative aspect will be important to show that hm(δ) converges to 1 (whereas
this convergence is highly intuitive). Thus, following Riemann, denote z by x + iy, where
x, y ∈ R, and consider the boundary value problem{

∂2u
∂x2 + ∂2u

∂y2
= 0

u(x, y) = log|x+ iy| , (x, y) ∈ ∂Dn

The elementary theory of the Dirichlet problem ensures the existence of a unique solution for
this boundary value problem that, in addition, is bounded on Dm (see for example [G-T]).
On the other hand, since u satisfies the Laplace equation, it follows the existence of a unique
function v defined on Dm and satisfying

(1)
∂v

∂x
= −∂u

∂y
,

∂v

∂y
=
∂u

∂x
, v(0, 0) = 0 .

Next set

hm(x+ iy) = (x+ iy)e−u(x,y)−iv(x,y) ,

and note that it satisfies the Cauchy-Riemann equations (Equation 1) so that hm is a holo-
morphic function on Dm. Moreover hm can be written in the form

hm(x+ iy) = e−p(x,y)−iq(x,y) ,

where p(x, y) = u(x, y) − log|x + iy| and q(x, y) = v(x, y) − arg(x + iy) are defined away
from the origin. Riemann then proves that hm maps conformally Dm into the unit disc. It
follows, in particular, that the level curves of p are taken one-to-one into the circles of center
at the origin. Moreover the level of p increases as the radius of its image decreases. The
boundary of Dm is in particular sent to the boundary of the unit disk.

To prove that the sequence of Riemann mappings hm satisfies the conditions mentioned
above, we first note that Dm is symmetric with respect to the real axis. Besides the boundary
condition is also symmetric with respect to the real axis. It then follows that the solution u to
the Dirichlet problem in question is symmetric to the real axis as well. As a consequence hm
leaves this axis invariant (for every m ∈ N). As already mentioned the levels of p increases
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whereas the radius of its image decreases. We note however that the levels of p grows as
we approach the origin (0, 0) ∈ R2. This means that the segment contained in the real axis
joining 0 to δ + αm is taken to the unit interval [0, 1] (contained in the real axis) by an
one-to-one monotone increasing real function. To conclude that hm(δ) converges to 1 is now
sufficient to show the maps hm converges uniformly to the identity on every compact subset
of the unit disk.

The uniform convergence will be derived from the statement of the classical Caratheodory
convergence theorem concerning convergence of univalent functions, cf. for example [Du].
Consider the above sequence of simply connected domains {Dm}m∈N. Each Dm is a proper
domain of C containing the origin and (hm)−1 maps conformally the unit disk into Dm.
Moreover (hm)−1(0) = 0 and h′m(0) = 1. It is immediate to check that D = {z ∈ Z : |z| < 1}
corresponds to the Kernel of {Dm}m∈N. Furthermore every subsequence of {Dm}m∈N has
the same Kernel which means that {Dm} converges to D. In particular (hm)−1 converges
uniformly to a holomorphic function g on each compact subset of D. Now note that g maps
D conformally onto D, i.e. g is an automorphism of the unit disk. Moreover g(0) = 0 and
g′(0) = 1 since so does (hm)−1 for all m ∈ N. This ensures that g is the identity map. It is
also part of the statement of Caratheodory’s theorem that hm converges uniformly on each
compact subset of D to the inverse of g, g−1, i.e. it also converges to the identity map. In
particular hm is close to identity on the disk of radius 1− ε for all m ≥ N . This completes
the proof. �

Remark 3.3. The contents of this remark will only be needed in Section 5 in connection
with the use of Krull topology in the statement of Theorem C. Fixed N ∈ N∗, we want to
point out that the sequence Hm constructed in the preceding proposition can be supposed,
in addition, to satisfy the following condition:

• Each Hm is tangent to the identity to order N at 0 ∈ C.
To justify our claim, let Hm be the sequence given by the proposition in question. In
particular Hm(0) = 0 and H ′m(0) = 1. Since N is fixed, we set

Hm(z) = z + cm2 z
2 + cm3 z

3 + · · ·+ cmNz
N + · · · .

For every j ∈ {2, . . . , N} the sequence of coefficients {cmj }m∈N∗ converges to zero as an
immediate consequence of Cauchy formula since Hm converges to the identity on the disc of
radius 1 − ε < 1. Let then Rm be the polynomial Rm(z) = z + cm2 z

2 + cm3 z
3 + · · · + cmNz

N

and denote by Sm its inverse map. It is clear that both Rm, Sm converge to the identity on
(fixed) arbitrarily large discs about 0 ∈ C. Hence the new sequence of maps H̃m defined by

H̃m = Sm ◦Hm

is tangent to the identity to order N at 0 ∈ C. Besides this sequence clearly converges to
the identity on the disc of radius 1 − ε. Finally, though we cannot ensure that H̃m(1) = δ,
we know that H̃m(1)→ δ and this will suffice for our purposes.

We are now ready to prove the main result of this section. Let us however mention that
the proof given below makes use of the possibility of choosing a point z arbitrarily close to
the origin. This will be used to guarantee that the domains of definitions of certain maps
are connected and do contain the origin. A more general argument will be supplied in the
next section.
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Proof of Theorem 3.1. Fix a pair of holomorphic diffeomorphisms f, g ∈ Diff (C, 0). We
shall prove that for every non-trivial reduced word W (a, ) (different from ak and from bl,

k, l ∈ Z), there exists a formal series ĥW ∈ D̂iff (C, 0) such that the element of D̂iff (C, 0)

corresponding to W (f, ĥ−1
W ◦ g ◦ ĥW ) does not coincide with the identity. So, from now on,

let as assume that a word as above W is fixed and that W (f, g) = id. Indeed ĥW will be
realized as the Taylor series of a convenient local diffeomorphism hW .

To prove the existence of the diffeomorphism hW let us follow the scheme described above.
Fix a point z in a neighborhood of the origin and let {zi}i=0,...,k be the sequence of points
formed by its itinerary (z = (z0)). Let i0 denote the index for which {|zi|}i=0,...,k attains its
strict maximum, i.e. |zi| < |zi0 | provided that i 6= i0. As already mentioned, there is no loss
of generality in assuming that i0 = k − 1 and that a “power” of g or of g−1 will be applied
next. Moreover, up to rotating and re-scaling coordinates we can also suppose that zk−1 is
equal to 1 and that both f, g are defined on a disk of radius greater than 1. Finally let
0 < ρ < 1, close to 1, be such that all {zi}i=0,...,k but zk−1 are contained in Dρ.

Let Uk−1 be a small disc centered at zk−1 satisfying the following conditions:

• ak(Uk−1) ⊆ Dρ

• Uj = ◦ji=k−1a
−1
i (Uk−1) is contained in Dρ for all 1 ≤ j ≤ k − 1.

• The sets {Uj}j=1,...,k−1 are pairwise disjoint.

By assumption |zi| < ρ for every i 6= k−1 implying that Uk−1 can be chosen as a non-empty
open set. Next fix δ ∈ R (δ > 1) as “lying almost in the boundary of Uk−1” in the sense that
(δ − 1)/r is close to 1, where r stands for the radius of Uk−1. Next consider the elements
defined in the following way: δk−1 = δ and δk = ak(δk−1). Naturally we have that δk belongs
to Uk but it is “far” from zk in the sense that its distance is bounded from below by a positive
constant.

Let δ be as above and choose ε to be equal to (1− ρ)/2. Now Proposition 3.2 guarantees
the existence of a sequence of univalent functions Hm, whose domains of definitions contain
the unit disc, which converges uniformly to the identity map on B1−ε and satisfies Hm(1) = δ
for every m.

For m sufficiently large, let us consider the elements in Diff (C, 0) given by

bi = ai if ai = f j or ai = (f−1)j for some j ∈ N
bi = H−1

m ◦ ai ◦Hm otherwise .

Note that although the domain of definition of Hm is the disc of radius 1/pm the same does
not apply to the map bi, in the case that ai = gj or ai = (g−1)j for some j ∈ N∗. In fact Hm

maps B1/pm conformally onto Dm (the neighborhood of D whose distance to D is at most
αm) which means that the domain of definition of H−1

m is Dm. However the image of Dm by
ai is not necessarily contained in Dm. Let Wi,m = {z ∈ Dm ; ai(z) ∈ Dm}. The domain of
definition of bi is therefore Ui,m = H−1

m (Wi,m).
Whereas the open set Ui,m contains the origin, it is important to realize that it may be

disconnected, i.e. ai(Dm) ∩ Dm may admit two or more connected components. However,
in our case, this possibility can be ruled out. Indeed, modulo re-scaling coordinates again
(i.e. modulo working sufficiently near the origin), we may assume that gj is defined on
a neighborhood of the unit disc D. Besides, g being a local diffeomorphism of (C, 0), a
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sufficiently small disc V about the origin is automatically taken by gj (or by g−j) to a star-
shaped set gj(V ). From this it follows that Wi,m must be connected so that the construction
of Hm detailed in Proposition 3.2 implies that Ui,m is connected as well. Next set Um =
∩i∈IUi,m where I denote the set of 1 ≤ i ≤ k as above, i.e. of i such that ai = gj or
ai = (g−1)j for some j. The open set Um is also a connected neighborhood of the origin. We
define hm as being the restriction of Hm to Um.

Since Hm converges to the identity map as m increases, it is easy to check that wk, defined
by wk = bk(zk−1), becomes arbitrarily close to δk. In particular there exists m ∈ N so that
wk is distinct from zk.

To finish the proof we just need to make some further comments. So far only the last point
in the itinerary of the initial point w.r.t. the word W (f,H−1

m ◦ g ◦Hm) has been taken into
consideration. In fact, we only kept track of the part of this itinerary coming after the point
of index i0, i.e. of index k− 1. However the set {ai}1≤i≤k−2 may already contain elements of
the form gj or (g−1)j for some j ∈ N. This means that taking w0 = z = z0, the element wk−1

of the sequence defined by wi+1 = bi+1(wi) does not necessarily coincides (and generically
does not coincide) with the complex number 1. The element wk−1 is not far from 1 but we
have no total control on its image by Hm or better by hm. The easiest way to deal with this
difficulty is by “slightly perturbing the departing point” as follows: assuming that wk−1 = 1
we go backwards by following b−1

i to find out which point must be w0. Observe that ak−1 is
given by a “power” of f or of f−1, by construction. This guarantees that wk−2 belongs to
Bρ. Furthermore it also shows that wk−2 coincides with zk−2. Since hm is very close to the
identity map on B1−ε, and therefore in Bρ, it follows that wi is “very close” to zi for every
i ∈ {0, . . . , k − 3} In fact, they can be made arbitrarily close modulo taking m sufficiently
large. We then consider z = w0 instead of z0 as departing point and the theorem follows. It
only remains to ensure that all the wi, 0 ≤ i ≤ k − 2, constructed as above belong to the
domain of definition of bi+1. This is equivalent to ensuring that all the zi belong to the same
domain since zi and wi become close to each other as hm converges to the identity map on
Bρ.

Fix i ∈ N and consider the element zi on the itinerary of z0. It is sufficient to consider the
case where ai = gj or ai = (g−1)j for some j. Assume for a contradiction that zi does not
belong to the domain of definition of bi+1. This is equivalent to saying that (gj ◦Hm)(zi) (or
((g−1)j ◦Hm)(zi)) does not belong to Dm. Hence neither does the point zi+1 = gj(zi) since
Hm is close to the identity map on Bρ. In particular zi+1 does not belong to the unit disc
D. This contradicts the assumption that zk−1 = 1 is the point of the itinerary of z0 having
greatest distance to the origin. The proof of the theorem is completed. �

As already pointed out, the preceding proof depends on the connectedness of the set Um
what, in turn, can easily be ensured modulo working “very close to 0 ∈ C”. However the
possibility of “reducing the neighborhood of 0 ∈ C will no longer be available in the proof of,
for example, Theorem A. Thus in the next section we shall provide a more general argument
that dispenses with the connectedness of sets playing a role analogous to the role of Um in
the discussion above.
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4. Proofs for Theorems A and B

Again let W (f, g) be a reduced word on f, g that is not of the forms fk or gl with k, l ∈ Z.
The combination of Theorem 2.5 with Theorem 3.1 implies the existence of an open dense
set HW ⊂ Diff (C, 0) such that, whenever h ∈ HW , the composition W (f, h−1 ◦ g ◦h) defines
a local holomorphic diffeomorphism on a neighborhood of 0 ∈ C which does not coincide
with the identity (on a neighborhood of the origin itself).

We say that f (resp. g) is a diffeomorphism of period k ∈ N∗ (resp. l ∈ N∗) if fk = id
(resp. gl = id) on a neighborhood of 0 ∈ C. Similarly f is said to be of infinite order if fk

does not coincide with the identity on a neighborhood of 0 ∈ C for every k ∈ N∗. In other
words, the germ induced by fk at 0 ∈ C is not the identity. Naturally a similar definition
applies to g. With this terminology, the above mentioned results immediately yield the
following theorems:

Theorem 4.1. Suppose that f, g as above are local diffeomorphism of infinite order and
consider Diff (C, 0) as the group of germs of local diffeomorphisms. Then there exists a Gδ-
dense set H ⊂ Diff (C, 0) such that, whenever h ∈ H, the group generated by the elements
f, h−1 ◦ g ◦ h is free in Diff (C, 0). In other words, every reduced non-trivial word W (f, g)
defines a local diffeomorphism that does not coincide with the identity on a neighborhood of
0 ∈ C.

Theorem 4.2. Suppose that f, g as above have periods respectively k, l ∈ N∗. Then, for
h belonging to some Gδ-dense set H ⊂ Diff (C, 0), the group generated by f, h−1 ◦ g ◦ h in
the group of germs of diffeomorphisms Diff (C, 0) is isomorphic to the group defined by the
presentation

〈a, b ; ak = bl = id〉 .

The preceding theorems however fall short to imply the statements given in the Introduc-
tion. To explain the difference between the corresponding statements, and also to prepare
the way for the proofs of the latter, let us briefly recall the notion of pseudogroup. Consider
local diffeomorphisms f, f−1, g, g−1 as above that are defined on an open neighborhood V
of 0 ∈ C. We want to consider the pseudogroup Γ = Γ(f, g, V ) generated by f, f−1, g, g−1

on V (in the sequel we shall only say the pseudogroup generated by f, g and their inverses
or simply by f, g when no confusion is possible). Let us make the definition of Γ precise.
Consider a reduced word W (f, g) (in f, g and in their inverses) having the form Fs ◦ · · · ◦F1

where each Fi, i ∈ {1, . . . , s}, belongs to the set {f±1, g±1}. The domain of definition of
W (f, g) as an element of Γ consists of those points z ∈ V such that for every 1 ≤ l < s,
the point Fl ◦ · · · ◦ F1(z) belongs to V . Since 0 ∈ C is fixed by f, g, it follows that every
word has a non-empty domain of definition as element of Γ. By construction the domain of
definition, besides non-empty, is also an open set. It may however be disconnected. Therefore
the preceding theorems only have a bear in the connected components of these domains that
contain 0 ∈ C. More precisely, suppose for example that f, g are as in Theorem 4.1. Then,
modulo conjugating g by a generic element h, we can assume that all non-trivial reduced
words W (f, g) as above are different from the identity on the connected component contain-
ing 0 ∈ C of their domains of definitions. Since the domain of definition of W (f, g) may have
more than one connected component, the preceding results do not exclude the possibility of
having the element W (f, g) of Γ coinciding with the identity on a non-empty open subset of
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V . In particular if Γ is the pseudogroup associated to a foliation, we cannot yet derive the
conclusions about the topology of the leaves stated in Theorem C. In fact, to complete the
proof of Theorems A and B we need a non-trivial strengthening of the results obtained in
Sections 2 and 3.

To state the desired strengthened version of the mentioned results require however a little
technical detour. For this let f, g and V be as above so that the pseudogroup generated by
f, g (and their inverses) acts on V . Consider also a non-trivial reduced word W (f, g) and
denote by DomW (V ) its domain of definition. To be able to take advantage of Baire property,
we would like to have a statement of type “for an open dense set of local diffeomorphisms
h ∈ Diff (C, 0), the element W (f, h−1◦g◦h) of the pseudogroup generated by f, h−1◦g◦h does
not coincide with the identity on any connected component of DomW (V )”. This statement
however makes no sense since the domain of definition of a given local diffeomorphism h may
be smaller than V so that the pseudogroup generated by f, h−1 ◦ g ◦ h will not be defined
on the whole V . This is the main reason explaining why a more careful formulation of our
statements is needed.

Let us begin by fixing an open disc D about 0 ∈ C such that f, g, f−1, g−1 are defined and
univalent on a neighborhood of D. As usual D will stand for the closure of D while ∂D will
denote the boundary of D.

Next we choose and fix once and for all a sequence {pn}n∈N ⊂ C dense in C and such that
no point pn lies in ∂D. Fixed n and given a word W (f, g) in f, g and their inverses, let Un,W
denote the set formed by those local diffeomorphisms h at 0 ∈ C for which one of the two
possibilities below is verified:

(1) pn does not belong to the domain of definition of W (f, h−1 ◦ g ◦ h) viewed as an
element of the pseudogroup generated by f, g on the closed disc D.

(2) pn belongs to the domain of definition of W (f, h−1 ◦ g ◦ h) viewed as an element
of the pseudogroup generated by f, h−1 ◦ g ◦ h on the open disc D. Furthermore
W (f, h−1 ◦ g ◦ h) is required not to coincide with the identity on a neighborhood of
pn.

As always we suppose that W (f, g) is not reduced to an integral power of f or g (or of
their inverses). With this standard assumption we shall prove the following:

Proposition 4.3. The set Un,W ⊂ Diff (C, 0) is open and dense for the analytic topology.

Note that the set Un,W is clearly open since pn ∈ C \ ∂D. Thus the non-trivial part of
the proof of Proposition 4.3 consists of showing that Un,W is dense in the analytic topology.
Assuming for the time being that the statement of this proposition holds and recalling
that a countable union of countable sets is itself countable, we can define a Gδ-dense set
U ⊆ Diff (C, 0) by setting

U =
⋂

W (f,g)

∞⋂
n=1

Un,W .

Now suppose we are given h ∈ U and consider a neighborhood V ⊂ D of 0 ∈ C where
f, h−1 ◦ g ◦ h are defined. In a more accurate way, let us require that V ⊂ D is such that all
the sets f(V ), h(V ), g◦h(V ) and h−1◦g◦h(V ) are defined and contained in D. The next step
is to consider the pseudogroup generated on V by f, h−1◦g◦h. Given a word W (f, h−1◦g◦h)
not reduced to either fk or to h−1 ◦ gl ◦ h (k, l ∈ Z), let DomW (V ) denote its domain of
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definition when the word is regarded as an element of the mentioned pseudogroup. Now note
that DomW (V ) is clearly an open set so that all its connected components are open as well.
Let V1 be one of these connected components. Since {pn} is dense in C, there exists n1 such
that pn1 ∈ V1. Since V ⊆ D, pn1 belongs to the domain of definition of W (f, h−1 ◦ g ◦ h)
viewed, this time, as belonging to the pseudogroup generated on D by f, h−1 ◦g◦h. Because
h belongs to U and, in particular, to Un1,W , it follows that W (f, h−1 ◦g ◦h) does not coincide
with the identity on a neighborhood of pn1 . Therefore W (f, h−1 ◦ g ◦ h) does not coincide
with the identity on V1. Since V1 is an arbitrary connected component of DomW (V ), we
have proved the following:

Theorem 4.4. There exists a Gδ-dense set U of Diff (C, 0) and a neighborhood V ⊂ C of
0 ∈ C such that, whenever h ∈ U , the following holds: every word W (a, b) different from ak

or bl for which the element W (f, h−1 ◦ g ◦ h) of the pseudogroup generated by f, h−1 ◦ g ◦ h
on V coincides with the identity on some connected component of its domain of definition
must be the identity in the free group generated by a, b (and their inverses).

Now we can go back to the proof of Proposition 4.3. Hence pn and W (f, g) are fixed. Let
h ∈ Diff (C, 0) be given. We need to prove that every neighborhood of h in the analytic

topology contains some element h̃ belonging to Un,W . Naturally we assume that h 6∈ Un,W
for otherwise there is nothing to be proved. Since h 6∈ Un,W , it follows from the construction
of Un,W that pn belongs to the domain of definition of W (f, h−1 ◦ g ◦h) viewed as an element
of the pseudogroup generated on the closed disc D by f, h−1 ◦ g ◦ h. Furthermore we have
the alternative:

• There is at least one point in the itinerary of pn by W (f, h−1 ◦ g ◦ h) that lies in the
boundary ∂D of D.
• pn belongs to the domain of definition of W (f, h−1 ◦ g ◦ h) viewed as an element of

the pseudogroup generated on the open disc D and, in addition, W (f, h−1 ◦ g ◦ h)
coincides with the identity on a neighborhood of pn.

When the first alternative holds, it is clear that the local diffeomorphism h can be approx-
imated in the analytic topology by a sequence {hi} of local diffeomorphisms such that the
itinerary of pn by W (f, h−1

i ◦ g ◦ hi) is not contained in D. In other words, pn does not lie in
the domain of definition of W (f, h−1

i ◦ g ◦ hi) considered as an element of the pseudogroup
generated by f, h−1

i ◦ g ◦ hi on D. Therefore hi ∈ Un,W for every i and hence h is a limit of
elements in Un,W .

Summarizing what precedes, to prove the denseness of Un,W it suffices to check that a local
diffeomorphism h as in the second possibility above can also be approximated by elements
of Un,W . Thus from now on let us suppose that h satisfies the corresponding conditions.
Namely the itinerary of pn by W (f, h−1 ◦ g ◦ h) is contained in D and W (f, h−1 ◦ g ◦ h)
coincides with the identity on a neighborhood of pn.

Let U ⊂ D be a domain with C1-boundary (or real analytic boundary) ∂U which still
contains the itinerary of pn by W (f, h−1 ◦ g ◦ h). By resorting to standard transverse in-
tersection constructions, the domain U can be selected so that ∂U intersects transversally
the boundary of each connected component Uj, j = 1, 2, . . ., of the domain of definition
DomW (U) of W (f, h−1 ◦ g ◦h) now regarded as an element of the pseudogroup generated on
U by f, h−1 ◦ g ◦ h. To check this claim note that the boundaries ∂Uj of the components Uj
are essentially determined by the preimage of ∂U under sub-words of W (f, h−1 ◦ g ◦ h). In
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fact, if z ∈ ∂Uj then there is a point y in the itinerary of z by W (f, h−1 ◦ g ◦ h) lying in the
boundary of U or, equivalently, there is a sub-word w(f, h−1 ◦ g ◦ h) of W (f, h−1 ◦ g ◦ h) (as
in Section 3) such that w(f, h−1 ◦ g ◦ h)(z) = y ∈ ∂U . Next since U ⊂ D, it follows that
w(f, h−1 ◦ g ◦ h) is defined on a neighborhood of z. Thus, about z, the neighborhood of ∂Uj
is identified to the preimage under w(f, h−1 ◦ g ◦ h) of ∂U on a neighborhood of y (or rather
to a finite union of these preimages). It is now easy to carry over standard constructions to
ensure that the above indicated transverse intersection takes place. Next standard results
on “semi-analytic sets” apply to ensure that the number of connected components Uj is,
indeed, finite. The set of these connected components will then be denoted by U1, . . . , Ur.

At this point it is useful to state some simple “stability” properties of the previous con-
struction with respect to deformations of the local diffeomorphism h. These go as follows.

Lemma 4.5. If h̃ is another element of Diff (C, 0) sufficiently close to h in the analytic

topology then (the maps f and h̃−1 ◦ g ◦ h̃ are defined on some neighborhood of U and) the
following holds:

(1) The domain of definition of W (f, h̃−1 ◦g ◦ h̃) as element of the pseudogroup generated

on U by f, h̃−1 ◦g ◦ h̃ contains exactly r connected components denoted by Ũ1, . . . , Ũr.
Besides the boundaries of these components still transversally intersects ∂U .

(2) Each of the connected components Ũj converges (in Hausdorff topology) towards Uj
as h̃ converges to h.

Proof. The proof amounts to standard continuity arguments. Details are left to the reader.
�

Recalling that the itinerary of pn under W (f, h−1◦g◦h) is contained in U , we can suppose,
modulo renumbering the components Uj, that pn ∈ U1.

Note that, by assumption, the Taylor series of W (f, h−1 ◦ g ◦ h) centered at pn is reduced
to the identity. On the other hand, the itinerary of pn under W (f, h−1 ◦ g ◦ h) is entirely
contained in U ⊂ D by construction. In particular U is contained in a disc where the Taylor
series of both f, h−1 ◦ g ◦ h converge. Note however that the coefficients of the Taylor series
of W (f, h−1 ◦ g ◦ h) at pn are obtained as functions in all the coefficients of the Taylor series
of f, h−1 ◦ g ◦ h at 0 ∈ C. For example (W (f, h−1 ◦ g ◦ h))′(pn) is not an algebraic function
of finitely many coefficients of f, h−1 ◦ g ◦ h at 0 ∈ C as in the Section 3. In fact, the
computation of the coefficient in question involves all (or infinitely many) Taylor coefficients
of f, h−1 ◦ g ◦ h at 0 ∈ C. To remedy for this new difficulty, we shall modify the structure of
the proof given in the previous section.

Proof of Proposition 4.3. As mentioned we need to find, arbitrarily near h, a local diffeomor-
phism h̃ such that W (f, h̃−1◦g◦h̃) will no longer coincide with the identity on a neighborhood

of pn. Actually note that W (f, h̃−1 ◦ g ◦ h̃) is clearly defined about pn modulo choosing h̃

close enough to h. The desired element h̃ will be constructed in three different steps.
Step 1. Construction of a first perturbation.
First we are going to construct a local diffeomorphism h as in the proof of Theorem 3.1 (see
also Proposition 3.2). By construction of h (noted hW in the proof of Theorem 3.1), it is clear

that the itinerary of pn under W (f, h
−1 ◦ g ◦ h) is well-defined. In other words, pn belongs

to the domain of definition of W (f, h
−1 ◦ g ◦ h) considered as element of the pseudogroup
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generated by f, h
−1 ◦ g ◦ h on a suitable domain contained in V ⊂ D ⊂ C. Note however

that this time we have no information concerning the “size” of the connected component of

the domain of definition of W (f, h
−1 ◦ g ◦ h) that contains pn. Similarly we cannot resort to

arguments involving convexity as done in Section 3.
In any case, we keep the information that the itinerary of pn is well-defined and, besides,

we have W (f, h
−1◦g◦h)(pn) 6= pn. Next let us resume the setting and the notations employed

in the proof of Theorem 3.1. Thus “pn” is identified with the point “z” of the mentioned
proof. The itinerary of pn through W (f, h−1 ◦ g ◦ h) is going to be denoted by {pin}i=1,...,l

where pn = p1
n. Without loss of generality we can suppose that pl−1

n is the unique point of
this itinerary having a maximal absolute value. Consider now a family of maps Hm similar
to the corresponding family considered in Theorem 3.1. In particular we have:

(1) Each Hm is defined on an open disc of radius slightly larger than ‖pl−1
n ‖ and the

resulting sequence converges uniformly to the identity on compact parts of B(‖pl−1
n ‖)

(the open disc of radius ‖pl−1
n ‖ about the origin).

(2) ‖Hm(pl−1
n ) − pl−1

n ‖ = τ > 0 where τ is such that Hm(pl−1
n ) has properties similar to

the properties of “δ > 1” in the mentioned proof.
(3) The point pln of the itinerary of pn is given by pln = h−1 ◦ gj ◦ h(pl−1

n ). Besides
h−1 ◦ gj ◦ h(Hm(pl−1

n )) lies in a compact part of the disc B(‖pl−1
n ‖). In particular, for

m very large, H−1
m is defined and close to the identity around h−1 ◦ gj ◦ h(Hm(pl−1

n )).

As already observed, for m very large W (f,H−1
m ◦ h−1 ◦ g ◦ h ◦Hm)(pn) 6= pn. Set h = Hm

for very large m to be fixed later on.
In view of Remark 3.3, the sequence Hm can be constructed so that, in addition to the

preceding conditions, each Hm is tangent to the identity at 0 ∈ C to an arbitrary order fixed
from the beginning. This information will be used to provide a variant of Theorem 4.4 well
adapted for the discussion carried out in Section 5.
Step 2. Perturbing the Taylor series of Hm.
To guarantee convergence in the analytic topology it is necessary to be able to perform a
number of operations with the Taylor series of Hm. For example, if h were the identity,
then it would be important to replace Hm by suitable polynomials somehow as already
done in Section 2. Here a slightly more elaborated construction is going to be needed. To
begin with, we would like to replace Hm by some polynomial R with R(0) = 0. In other
words, we want to find a polynomial R arbitrarily close to Hm on discs of radius less than
‖pl−1

n ‖ for which W (f,R−1 ◦ h−1 ◦ gj ◦ h ◦ R) is defined about pn and, in fact, verifies
W (f,R−1 ◦ h−1 ◦ g ◦ h ◦ R)(pn) 6= pn. The main reason why the existence of R cannot be
ensured by merely truncating the Taylor series of Hm at a sufficiently high order lies in the
fact that the point Hm(pl−1

n ) does not belong to the convergence disc of the Taylor series of
Hm at the origin. Indeed this radius of convergence is “essentially” given by ‖pl−1

n ‖ so that
it is already unclear whether or not pl−1

n belongs to it.
To overcome the above difficulty we proceed as follows. Denote by UHm the connected

component of the domain of definition of W (f,H−1
m ◦h−1◦g◦h◦Hm), w.r.t. U , containing pn.

Note that the construction of Hm makes pn to be close to the boundary of UHm when m is
large. Also recall that U1 stands for the component of the domain of W (f, h−1 ◦ g ◦h), w.r.t.
the set U that contains pn. We are going to show the existence of another point qn ∈ UHm

whose corresponding iterations by the elements f, h−1 ◦ g ◦ h, Hm and H−1
m as they appear
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listed in W (f,H−1
m ◦ h−1 ◦ g ◦ h ◦Hm) are all contained in a compact part of B(‖pl−1

n ‖). Let
then l denote the segment of straight line delimited by 0 ∈ C and by pl−1

n . Let l′ be the line
issued from pn corresponding to the pre-image of l by the derivative of the diffeomorphism
F̃m given as the sub-word of W (f,H−1

m ◦h−1 ◦ g ◦h◦Hm) taking pn to pl−1
n . Note that all the

maps f, h−1 ◦ g ◦ h and Hm, H
−1
m involved in the constitution of F̃m have bounded C2-norms

on a neighborhood of the points where they appear in the composition in question. In other
words, the following holds: as we move from pn to ptn over l′, the image F̃m(ptn) moves inward
B(‖pl−1

n ‖). Besides this movement is uniform in the following sense: if qn is a given point
“close to pn” over l′, then

(2) ‖F̃m(qn)‖ < ‖pl−1
n ‖ − ε

for some small ε > 0 where the constants in question do not depend on m. In fact, as m
increases, Hm converges to the identity around the relevant points appearing in the definition
of F̃m(qn). In particular it follows that qn belongs to UHm . Finally since Hm converges
uniformly to the identity on compact parts of B(‖pl−1

n ‖), Estimate (2) allows us to conclude
that Hm(F̃m(qn)) lies in B(‖pl−1

n ‖) for m large. The same then applies to gj(Hm(F̃m(qn))).
Summarizing what precedes, the following lemma was proved:

Lemma 4.6. There is a point qn in U1∩UHm whose itinerary by W (f,H−1
m ◦h−1◦g◦h◦Hm)

is entirely contained in a compact part of the convergence discs of the Taylor series at 0 ∈ C
of f, h−1 ◦ g ◦ h and Hm, H

−1
m . In addition W (f,H−1

m ◦ h−1 ◦ g ◦ h ◦Hm)(qn) 6= qn. �

Now modulo truncating the Taylor series of the elements Hm at large orders d(m), it
follows the existence of polynomials Rm satisfying the conditions below.

(1) The itineraries of qn under W (f,H−1
m ◦ h−1 ◦ g ◦ h ◦Hm) and under W (f,R−1

m ◦ h−1 ◦
g ◦ h ◦Rm) are well-defined. Furthermore W (f,R−1

m ◦ h−1 ◦ g ◦ h ◦Rm)(qn) 6= qn.
(2) Both pn, qn belong to the same connected component U1 (resp. UHm) of the domain

of definition of W (f, h−1 ◦ g ◦ h) (resp. W (f,H−1
m ◦ h−1 ◦ g ◦ h ◦Hm)).

The contents of item 2 may not hold for W (f,R−1
m ◦h−1◦g◦h◦Rm), i.e. pn and qn may not

belong to the same connected component of the domain of definition of W (f,R−1
m ◦ h−1 ◦ g ◦

h ◦Rm). In fact, whereas Rm is close to Hm on a suitable disc (not containing the itinerary
of pn), we have no control of the degree d(m) of Rm. Hence we cannot conclude that all its
coefficients are simultaneously “small”. In other words Rm may become “far” from the Hm

on a disc of radius slightly larger than the above mentioned disc. Since Hm converges to the
identity on both discs, the preceding can be re-stated by saying that Rm may be close to the
identity on the smaller disc but far from the identity on the larger disc. This explains why,
in principle, it is unclear even whether W (f,R−1

m ◦ h−1 ◦ g ◦ h ◦Rm) is defined at pn.
Step 3. Adjusting perturbations.
The preceding construction has still one additional property. Namely the existence of a
uniform disc B containing the itinerary of qn under W (f,R−1

m ◦h−1 ◦g ◦h◦Rm). Here B was
called uniform in the sense that it does not depend on either m or d(m). Besides the radius
of B is smaller than the convergence radii of the Taylor series of f, h−1 ◦ g ◦ h,Hm. Finally
Hm (resp Rm) converges uniformly to the identity on B when m→∞. In particular B also
contains the itineraries of qn under W (f,H−1

m ◦h−1 ◦ g ◦h ◦Hm) and under W (f, h−1 ◦ g ◦h).
Next let h ◦ Rm be truncated at large orders N(m) so as to have the following condition

verified: the series formed by the components of degree higher than N(m) of the Taylor
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series of both h◦Rm and h converge uniformly to zero on B. Next we add to the truncation
of h ◦Rm the terms having degree greater than N(m) of the Taylor series of h. The result of
these operations is a new sequence of local diffeomorphisms Sm with the properties indicated
below:

(a): Sm (is defined and) converges uniformly to h on B when m → ∞. In particular
the itinerary of qn under W (f, S−1

m ◦ g ◦ Sm) is well-defined and contained in B.
Furthermore W (f, S−1

m ◦ g ◦ Sm)(qn) 6= qn.
(b): The Taylor series of Sm and h centered at 0 ∈ C differ only by finitely many

coefficients.

In other words, the difference Sm − h is represented on B by a polynomial denoted by Qm.
Moreover Qm converges uniformly to zero since Sm → h uniformly on B.

Now let us fix τ > 0 small enough to ensure that the following condition holds: whenever
ξ is a univalent map on B whose distance to h is less than τ , the itinerary of qn under
W (f, ξ−1 ◦ g ◦ ξ) is well-defined and contained in B. Finally we fix m so large that Sm, in
addition to verify all the previously determined conditions, is also τ -close to h on B. The
degree N(m) of the corresponding polynomial Qm is going to be denoted simply by N . As
already pointed out above, though Qm is close to zero on B, we cannot conclude that its
coefficients are “small” since we have little control on its degree N .

Since Sm(0) = h(0) = 0, we have Qm = c1z + c2z
2 + · · ·+ cNz

N . The quantity W (f, S−1
m ◦

g ◦ Sm)(qn) − qn can then be regarded as an analytic function on the coefficients c1, . . . , cN
of Qn through the identification Sm = h + Qm. In principle this function is defined on a
neighborhood of (c1, . . . , cN). Setting however Stm(z) = h + tc1z + · · · + tcNz

N = h + tQm

it follows that the function is question is well-defined at (tc1, . . . , tcN) for every t ∈ [0, 1]
since the distance from Stm to h is less than τ for every t ∈ [0, 1]. Indeed this distance is
nothing but t sup ‖Qm‖ ≤ sup ‖Qm‖ ≤ τ . Thus the analytic function in question is defined
on some small neighborhood of the segment of line given by t 7→ (tc1, . . . , tcN), t ∈ [0, 1].
The resulting function of variable “t” however is not identically zero since for t = 1 we have
W (f, S−1

m ◦g ◦Sm)(qn) 6= qn, cf. item (a) above. Therefore we can find N -tuples (ct1, . . . , c
t
N),

cti = tci, arbitrarily close to (0, . . . , 0) such that W (f, (Stm)−1 ◦g ◦Stm)(qn) 6= qn. To complete
the proof it suffices to check that Stm fulfils all the conditions of the statement provided that
t is close enough to 0.

For this note first that Stm clearly converges to h in the analytic topology when t → 0.
In particular Stm converges uniformly to h on the whole U . Thus for t small enough, Stm
satisfies the conditions of Lemma 4.5. Hence the domain of definition of W (f, (Stm)−1◦g◦Stm)
as element of the pseudogroup generated on U by f, (Stm)−1 ◦ g ◦ Stm contains exactly r
connected components Ũ t

1, . . . , Ũ
t
r in natural correspondence with the components U1, . . . , Ur

of the domain of definition of W (f, h−1 ◦ g ◦ h) as element of the analogous pseudogroup.
Besides the domain Ũ t

1 converges suitably to U1 when t→ 0. Since pn, qn belong to the same
connected component of the domain of W (f, h−1 ◦ g ◦ h), cf. item 2 above, we conclude that
qn belongs to U1. Therefore, modulo choosing t very small, it follows that both pn, qn belong
also to Ũ t

1. Therefore the restriction of W (f, (Stm)−1 ◦ g ◦ Stm) to Ũ t
1 does not coincide with

the identity since W (f, (Stm)−1 ◦g ◦Stm)(qn) 6= qn. Because this is an analytic map defined on
Ũ t

1 it follows that W (f, (Stm)−1 ◦g ◦Stm) cannot coincide with the identity on a neighborhood
of pn. This completes the proof of Proposition 4.3 �



22 J.-F. MATTEI, J. C. REBELO & H. REIS

The preceding proof also yields the following variant of Theorem 4.4 which is necessary to
be able to turn generic statements about local diffeomorphisms equipped with the analytic
topology into generic statements about foliations with respect to the Krull topology. For this
let N ∈ N∗ be fixed and consider the subgroup Diff (C, 0)N ⊂ Diff (C, 0) consisting of those
elements that are tangent to the identity at 0 ∈ C to an order at least N . Cauchy Formula
shows that Diff (C, 0)N is closed with respect to the analytic topology. It is also clear that
Diff (C, 0)N endowed with the restriction of the analytic topology still is a Baire space. Now
we have: Consider elements f, g in Diff (C, 0) of finite order respectively equal to k, l ≥ 1.
Through the substitutions a±1 7→ f±1 and b±1 7→ g±1, words W (a, b) representing elements
of the group Z/kZ ∗ Z/lZ can be identified to the holomorphic maps W (f, g).

Theorem 4.7. Consider elements f, g in Diff (C, 0) or finite orders respectively equal to
k, l ≥ 1. Then there exists a Gδ-dense set UN of Diff (C, 0)N and a neighborhood V ⊂ C
of 0 ∈ C such that, whenever h ∈ UN , the following holds: every word W (a, b) for which
the element W (f, h−1 ◦ g ◦ h) of the pseudogroup generated by f, h−1 ◦ g ◦ h on V coincides
with the identity os some connected component of its domain of definition must represent the
identity Z/kZ ∗ Z/lZ.

Proof. Consider a non-trivial reduced word in W (f, g) and let it be further reduced through
the identities fk = gl = id. The new word is still denoted by W (f, g) and we can suppose
that it is not reduced to a integral power of either f or g. We just need to prove a version of
Proposition 4.3 relative to Diff (C, 0)N . We repeat the same structure of proof, in particular
we have “relative” sets Un,W which are still open. It is then enough to check that these sets
are also dense in Diff (C, 0)N . For this we resume the argument given in the steps 1, 2 and 3
of the proof of Proposition 4.3. As to Step 1, Remark 3.3 allows us to construct the sequence
Hm so that each Hm is tangent to the identity at 0 ∈ C to order N . The truncations of
Taylor series performed in Step 2, in particular the one used to define the polynomials Rm

can equally well be performed in Diff (C, 0)N . Finally, concerning Step 3, the additional
truncations of Taylors series can also be carried out in Diff (C, 0)N , in particular the local
diffeomorphism Sm and the polynomial Qm may be supposed to belong to Diff (C, 0)N . The
rest of the proof carries over automatically to the present context. �

We are finally able to prove the first two theorems stated in the Introduction.

Proof of Theorems A and B. The first two parts of these statements are contained in The-
orems 4.1 and 4.2 and in Theorem 4.4. It only remains to prove the last part of these
statements. Namely we need to show the existence of infinitely many points {zi} in the
neighborhood V of 0 ∈ C given by Theorem 4.4 satisfying the following conditions:

(1) Each zi is fixed by an element Wi(f, g) (whose domain of definition contains zi) which
does not coincide with the identity on any neighborhood of zi.

(2) If i 6= j then zi and zj possess disjoint orbits under the pseudogroup generated by
f, g on V .

The construction of these points goes through ideas already appearing in [BLL-1], [BLL-2]
(the reference [Re] might also be useful). We sketch the argument in the sequel. A generic
choice of h allows us to suppose that the pseudogroup generated by f, g verifies the conclusion
of Theorem 4.4. In particular its germ at 0 ∈ C is a non-solvable group. Secondly, by using
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again our perturbation techniques, the following claim can be proved (details are left to the
reader):
Claim 1. For a generic choice of h (and substitution of g by h−1 ◦ g ◦ h) we can suppose
that every point z ∈ V \ {0} has centralizer either trivial or infinite cyclic. In other words, if
W1(f, g), W2(f, g) are such that W1(f, g)(z) = W2(f, g)(z) = z, then there is another element
W1,2, defined about z and verifying such that W1(f, g) = (W1,2(f, g))k1 and W2(f, g) =
(W1,2(f, g))k2 for suitable integers k1, k2. �

Similarly we can also suppose that the following “non-commutative condition” is satisfied:
Claim 2. Suppose that W1(f, g), W2(f, g) are elements of the pseudogroup generated on V by
f, g that are defined about a point z ∈ V . Suppose also that (W1(f, g))−1◦W2(f, g)◦W1(f, g)
is defined about z and, in a neighborhood of z, satisfies (W1(f, g))−1 ◦W2(f, g) ◦W1(f, g) =
W2(f, g). Then we must have W1(f, g) = (W1,2(f, g))k1 and W2(f, g) = (W1,2(f, g))k2 for
some element W1,2 and certain integers k1, k2. �

After [BLL-1], we are ensured of the existence of z1 as above which, in fact, is a hyperbolic
fixed point for some element W1(f, g). We shall construct points z′1, z

′
2 (z′1 6= z′2) with similar

properties and such that z′1, z
′
2 have disjoint orbits. The proof will then easily follow by an

inductive argument. For this note that, according to the mentioned works and thanks to
the contractive character of W1(f, g) at z1, there exists a neighborhood U1 of z1 such that
any holomorphic map F from U1 to F (U1) ⊆ V can be approximated on compact sets of U1

by actual elements w1(f, g),w2(f, g), . . ., defined on U1 and belonging to the pseudogroup
generated by f, g on V . In particular F can be chosen so as to have two (hyperbolic) fixed
points, namely z1 and another point z2 both lying in U1. Thus for K sufficiently large, the
element wK(f, g) of Γ has at least two distinct fixed points in U1. These points are denoted
by z′1, z

′
2. It remains only to show that the orbits of z′1, z

′
2 under the pseudogroup in question

are disjoint. Suppose for a contradiction this is not the case. Then there exists an element
W (f, g) such that

(W (f, g))−1 ◦wK(f, g) ◦W (f, g)(z′1) = z′1 .

In particular (W (f, g))−1 ◦wK(f, g) ◦W (f, g) is defined on a neighborhood of z′1. In view of
the conditions about stabilizers of points in V , it follows that (W (f, g))−1◦wK(f, g)◦W (f, g)
must coincide with a power of wK(f, g). Therefore W (f, g) is itself a power of wK(f, g) (on a
neighborhood of z′1) by virtue of Claim 2. This is however impossible since wK(f, g)(z′1) = z′1
and W (f, g)(z′′1) = z′2 6= z′1. The proofs of Theorems A and B are now complete. �

5. An application to nilpotent foliations

As indicated in the Introduction, the problem of perturbing the generators of a subgroup
of Diff (C, 0) inside their conjugacy classes arises naturally in the study of germs of singular
foliations at the origin of C2. Probably the most typical example where this situation can
be found corresponds to the class of nilpotent foliations of type A2k+1. More precisely, these
are local foliations Fω defined by a (germ of) 1-form ω having nilpotent linear part, i.e.
ω = ydy+ · · · , and a unique separatrix S that happens to be a curve analytically equivalent
to {y2 − x2k+1 = 0}. In other words, there are local coordinates where S is given by the
equation {y2 − x2k+1 = 0}. For this type of foliation the desingularization of the separatrix
“coincides” with the reduction of the foliation itself. In other words, the map associated
to the desingularization of the separatrix ΠS : M → C2 reduces also the foliation Fω. The
exceptional divisor consists of a string of k + 2 rational curves whose dual graph is
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-2 -2 -3 -2-1

c1 c2 ck ck+1 ck+2

Figure 1. The desingularization diagram of the foliation

The vertices of this graph correspond to the irreducible components of the exceptional
divisor D = E−1

S (0). The weight of each irreducible component corresponds to its self-
intersection. In turn the edges correspond to the intersection of two irreducible components
and, finally, the arrow corresponds to the intersection point of the (unique) component
Ck+1 of self-intersection −1 with the transform S̃ of S. The component Ck+1 contains three
singular points s0, s1 and s2 where s0 corresponds to the point determined by the intersection
of Ck+1 with S̃. Finally s1 (resp. s2) is the intersection point of Ck+1 with Ck+2 (resp. Ck).

Denote by F̃ the transform of Fω. Note that the holonomy associated to the component

Ck+2, i.e. the holonomy map associated to the regular leaf Ck+2 \ {s1} of F̃ , coincides

with the identity since this leaf is simply connected. It then follows that the germ of F̃
at s1 admits a holomorphic first integral. Since the corresponding eigenvalues are 1, 2 we
conclude that the local holonomy map g associated to a small loop around s1 and contained
in Ck+1 has order equal to 2. A similar discussion applies to the component C1 and leads
to the conclusion that the local holonomy map f associated to a small loop around s2 and

contained in Ck+1 has order equal to k + 1. Since Ck+1 \ {s0, s1, s2} is a regular leaf of F̃ ,
we conclude that the (image of the) holonomy representation of the fundamental group of
Ck+1 \ {s0, s1, s2} in Diff (C, 0) is nothing but the group generated by f, g. Note that this
conclusion depends only on the configuration of the reduction tree. In turn this configuration
depends only on a jet of finite order of ω. Therefore every perturbation of the coefficients of
ω affecting only those of sufficiently high order will give rise to perturbations of the above
indicated generators preserving their fixed (finite) orders. Since every local diffeomorphism
of finite order is conjugate to the corresponding rotation, it follows that the mentioned
perturbations are made inside the conjugacy classes of f and g. This also justifies the fact
that in Theorems A and B, only perturbations of local diffeomorphisms that do not alter
the corresponding conjugation classes were considered.

Conversely given two local diffeomorphism f̃ , g̃ of orders respectively 2, k + 1, these dif-
feomorphism can be realized (up to simultaneous conjugation) as the holonomy of the cor-

responding component Ck+1 for some local foliation Fω (or F̃). This is done through a
well-known gluing procedure for which precise references will be provided later. Therefore
the set of all foliations Fω, up to conjugation, can also be parameterized by the pair of
elements f̃ an h−1 ◦ tildeg ◦ h for some h ∈ Diff (C, 0).

We can now state a sharper version of Theorem C.

Theorem 5.1. Let ω ∈ Λ(C2,0) be a 1-form with an isolated singularity at the origin and
defining a germ of a nilpotent foliation F of type A2k+1. Then for each N ∈ N there exists a
1-form ω′ ∈ Λ(C2,0) defining a germ of a foliation F ′ and satisfying the following conditions:

(a) JN0 ω
′ = JN0 ω.

(b) F and F ′ have S as a common separatrix.



PSEUDOGROUPS AND TOPOLOGY OF LEAVES 25

(c) there exists a fundamental system of open neighborhoods {Un}n∈N of S, inside a closed
ball B̄(0, R), such that for all n ∈ N
(c1) The leaves of the restriction of F ′ to Un\S, F ′|(Un\S) are simply connected except

for a countable number of them.
(c2) all leaves of F ′|(Un\S) are incompressible, i.e. their fundamental groups inject in

the fundamental group of Un \ S.
(c3) the morphism Π1(Un \ S, .)→ Π1(B̄(0, R) \ S, .) induced by the inclusion map is

an isomorphism.

To begin with we are going to describe the construction of the system of neighborhoods
{Un}. In fact, we are going to construct a single neighborhood, denoted by U , that can be
thought of as being U1. The remaining neighborhoods are obtained by the same procedure.
Let us then fix a tubular neighborhood T of Ck+1 equipped with a locally trivial (C∞)
fibration ξ : T 7→ Ck+1 whose fibers are discs and such that Ck, Ck+2 and the transform of
S are all contained in fibers of ξ.

Given a path α : [0, 1]→ Ck+1, let |α| denote its image (or trace) in Ck+1. Concerning the
component Ck+1, we define the following:

• Three simple loops δ0, δ1, δ2 about s0, s1, s2 defining three closed discs D0, D1, D2

contained in Ck+1 and such that Di ∩Dj = ∅ for i 6= j.
• Two disjoint simple paths σ1, σ2 in Ck+1 \ (D0 ∪D1 ∪D2) such that σ1(0), σ2(0) lie

in δ0 and σ1(1) = δ1(0), σ2(1) = δ2(0). Here Di stands for the interior of Di.
• A base point s̃ in the simply connected open set

C∗k+1 = Ck+1 \ (D0 ∪D1 ∪D2 ∪ |σ1| ∪ |σ2|) .
• A conformal disc Ω in ξ−1(s̃) with center identified to s̃.

Figure 2 summarizes these definitions. Modulo choosing Ω sufficiently small, its saturated

by the restriction of F̃ to ξ−1(C∗k+1) is homeomorphic to the product Ω×C∗k+1 endowed with

the horizontal foliation. Set V0 to be the closure of ξ−1(C∗k+1) in ξ−1(Ck+1 \ (D0∪D1∪D2)).

s
1 s

2

s
0

δ0
δ1 δ2s~

σ1
σ2

α1
α2

D0

Ω

Ck+1

Ck+1

Figure 2

The foliation induced on ξ−1(δi), i = 1, 2, is the suspension over δi of the holonomy map

of F̃ associated to the loop δi and realized at a transverse section Ωi = ξ−1(δi(0)). Next fix
two simple paths αi : [0, 1]→ Ck+1, i = 1, 2, such that α1(0) = α2(0) = s̃ and αi(1) = σi(0),
cf. Figure 2. Set

γi = αiσiδiσ
−1
i α−1

i , i = 1, 2 and ∆ = |γ1| ∪ |γ2| .
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Using a suitably chosen (real) vector field, we can construct a deformation retraction from
Ck+1 \ (D0 ∪D1 ∪D2) to ∆. This deformation can naturally be lifted to a retraction from
V0 to V0 ∩ ξ−1(∆) obtained through leafwise homotopy. Therefore we have:

Lemma 5.2. The following holds:

(1) Every loop with base point in Ω contained in a leaf of the restriction of F̃ to V0 is
homotopic inside the same leaf to a loop contained in ξ−1(∆).

(2) ξ−1(∆) is a real 3-manifold with boundary and corners and the restriction F̃|ξ−1(∆) of

F̃ to ξ−1(∆) is a singular real foliation of (real) dimension 1. Every loop c, with base
point in Ω, contained in a leaf of this real foliation projects onto a loop contained in
∆ = |γ1| ∪ |γ2|, with base point s̃, defining (through homotopy) a word

W (f, g) = F1 ◦ · · · ◦ Fr, Fi ∈ {f±j, g±j},
in the pseudogroup generated by f, g on Ω (with the appropriate identifications). �

In fact, concerning item (2) above, it is clear that the base point c(0) of the loop c belongs to
some connected component of the domain of definition of the element W (f, g) = F1 ◦· · ·◦Fr,
where Fi is as above. Here W (f, g) = F1 ◦ · · · ◦Fr is viewed as belonging to the pseudogroup
generated on Ω by f, g again with the natural identifications.

So far we have described V0 that accounts for a neighborhood of C∗k+1. The next step is to
define a neighborhood V1 of Ck+2 and a neighborhood V2 of the divisor constituted by the
string of rational curves going from C1 to Ck so as to satisfy the conditions of the lemma
below.

Lemma 5.3. There exists neighborhoods V1 and V2 as above such that V = V0 ∪ V1 ∪ V2

fulfils the following conditions:

a: The union of V with a neighborhood of s0 provides a neighborhood of the (total)
exceptional divisor. Besides this neighborhood coincides with the saturated of Ω by

F̃ .
b: Every loop with base point in Ω and contained in a leaf L of F̃|V (the restriction of

F̃ to V ) is homotopic in L to a loop contained in V0.

c: Every loop Λ contained in a leaf of F̃|ξ−1(∆) projecting onto a loop that is a power of

either γ2
1 or γk+1

2 in homotopically trivial in the leaf of F̃V containing Λ.

Proof. To construct V1 (resp. V2) first note that every connected component of the intersec-

tion between a leaf of F̃|V0 and ξ−1(|δ1|) (resp. ξ−1(|δ2|)) is either a segment (i.e. a simple
open path) or a circle. In the latter case, this circle bounds a disc in the corresponding leaf.

In the case of δ1 this is particularly immediate since s1 is the unique singularity of F̃ in Ck+2

so that the holonomy associated to its regular part is trivial. A similar argument applies to

δ2 and to the component C1. As already mentioned this forces all singularities of F̃ lying

in some of the components C1, . . . , Ck to be linearizable. In particular the restriction of F̃
to some neighborhood V ′k+2 (resp. V ′0,k) of Ck+2 (resp. of the divisor consisting of the com-

ponents C1, . . . , Ck) possesses a non-constant holomorphic first integral F k+2 (resp. F 0,k).
Indeed, F k+2 maps V ′k+2 to a neighborhood Bk+2 of 0 ∈ C sending Ck+2 to 0 ∈ C. Similarly
F 0,k maps V ′0,k to a neighborhood B0,k of 0 ∈ C and takes the divisor consisting of the com-

ponents C0, . . . , Ck to 0 ∈ C. Thus F k+2 (resp. F 0,k) defines a locally trivial fibration over
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the corresponding punctured neighborhood of 0 ∈ C. Furthermore it is immediate to check
that the fibers of both fibrations are discs. This establishes the claim.

Now we shall define V1 (resp. V2) as the union of all the discs bounded by the above
mentioned circles. In fact, we set V1 = (F k+2)−1(Kk+2) where

Kk+2 = {z ∈ Bk+2 \ {0} ; (F k+2)−1(z) ∩ ξ−1(|δ1|) is a circle } ∪ {0} .

Similarly V2 = (F 0,k)−1(K0,k) where

K0,k = {z ∈ B0,k \ {0} ; (F 0,k)−1(z) ∩ ξ−1(|δ2|) is a circle } ∪ {0} .

It is now clear that V = V0∪V1∪V2 satisfies the conditions (a), (b) and (c) in the statement.
�

Proof of Theorem 5.1. Consider a reduced non-trivial word W (f, g) in f, g and their inverses.
Here is regarded as an element of the pseudogroup generated by f, g on Ω. Modulo reducing
Ω we suppose that, if W (f, g) as above coincides with the identity on some connected com-
ponent of its domain of definition (itself contained in Ω), then W (f, g) can be written as a
word in g2, fk+1 and their inverses. According to Theorem B, this can always be achieved
by conjugating g by some element h. Furthermore h can also be supposed arbitrarily close
to the identity in the analytic topology and, in view of Theorem 4.7, h can also be supposed
tangent to the identity to a given fixed order N .

Next consider a loop Λ in a leaf L of F̃|V with V as in Lemma 5.3. The item (a) of this
lemma allows us to assume that Λ(0) = Λ(1) ∈ Ω. Furthermore, by virtue of item 1 of
Lemma 5.2 and of item (b) of Lemma 5.3, Λ is homotopic in L to a loop Λ′ contained in
ξ−1(∆). Now we have:

• If ξ ◦ Λ′ is homotopic to an element (loop) contained in the subgroup of the funda-
mental group of Ck+1\{s0, s1, s2} generated by γ2

1 , γ
k+1
2 . Then item (c) of Lemma 5.3

guarantees that Λ′, and thus Λ itself, is homotopically trivial in L.
• If ξ ◦ Λ′ is not homotopic to an element (loop) contained in the subgroup of the

fundamental group of Ck+1 \ {s0, s1, s2} generated by γ2
1 , γ

k+1
2 . Then the holonomy

map associated to Λ′ does not coincide with the identity on any connected component
of its domain of definition in Ω. Therefore the leaves that are not simply connected
intersect Ω at that, necessarily isolated, fixed points by some non-trivial element of
the pseudogroup generated on Ω by f, g. This set however is clearly countable.

The preceding discussion accounts for almost all of the statement of Theorem 5.1. It
remains only to verify item (a). This means that we are given a 1-form ω representing a
foliation F with singularity of type A2k+1. As it was seen the fact that F belongs to the
class A2k+1 is determined by the reduction of the separatrix and hence by a finite jet of
ω. Fix N ∈ N large enough to imply that every 1-form ω′ that is tangent to ω at 0 ∈ C
to order N automatically defines a foliation F ′ in A2k+1. We need to show that we can

obtain F ′ leading to a foliation F̃ ′ whose holonomy group associated to the component
Ck+1 satisfies the generic conditions of Theorem B. To obtain ω′ it suffices to construct
an “equireducible” deformation of F whose holonomy groups associated to the component
Ck+1 is as in Theorem 4.7 i.e. generic in the sense of Theorem B and obtained from the
corresponding group of the initial F by conjugating “g” by a local diffeomorphism h tangent
to the identity at 0 ∈ C to order M . Once we have chosen h as indicated, the construction
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of ω′, F ′ is carried out by resuming word-by-word the constructions presented in [LF] or in
[M-S] which, in turn, are based on the “théorème de stabilité 1.4.6” from [M-S]. This ends
the proof of Theorem 5.1. �
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