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Abstract. It is well known that under some conditions on the dependence structure we
can relate the asymptotic distribution of the partial maximum of a stationary stochastic
process with the maximum of an associated independent sequence of random variables
with the same distribution function of the dependent one. These conditions are known as
D(un) and D′(un). Although D(un) is of mixing type, when studying stochastic processes
arising from a dynamical system with good mixing properties, verifying D(un) is not
straightforward. We propose a reformulation of D(un) so that its validity may follow
easily if we have a certain decay of correlations for the dynamical system in consideration.

1. Introduction

Let (Ω,A, P ) be a probability space and X : Ω → R a random variable (r.v.) with
distribution function (d.f.) given by F (x) = P (X ≤ x). Also, let E(·) denote expectation
with respect to P so that E(X) =

∫
XdP =

∫
xdF (x). Consider a stationary stochastic

process X0, X1 . . . of r.v. defined on Ω with common d.f. F . For notational simplicity we
assume that X = X0. For every i, j, n ∈ N, set

Mi,j = max {Xi, Xi+1, . . . , Xi+j−1} and Mn = M0,n. (1.1)

The study of the limiting behavior for maxima of a stationary process can be reduced,
under adequate conditions on the dependence structure, to the Classical Extreme Value
Theory for sequences of i.i.d. r.v. Hence, to the stationary process X0, X1, . . . we associate
an independent sequence of r.v. denoted by Z1, Z2, . . . with common d.f. F . We also set
for each n ∈ N

M̂n = max {Z0, . . . , Zn−1} . (1.2)

Let us focus on the conditions that allow us to relate the asymptotic distribution of Mn

with that of M̂n. Following [LLR83] we refer to these conditions as D(un) and D′(un),
where un is a suitable sequence of thresholds converging to supω∈Ω X(ω) = 1, as n goes
to ∞, that will be defined below. D(un) imposes a certain type of distributional mixing
property. Essentially, it says that the dependence between some special type of events
fades away as they become more and more apart in the time line. D′(un) restricts the
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appearance of clusters, that is, it makes the occurrence of consecutive ‘exceedances’ of the
level un an unlikely event.

The purpose of these notes is to verify that condition D(un) can be stated in a weaker
form and the result still prevails. The advantage of having this weaker requirement is that,
in the context of Dynamical Systems, D(un) should follow from decay of correlations.

We say that an exceedance of the level un occurs at time i if Xi > un. The probability
of such an exceedance is 1 − F (un) and so the mean value of the number of exceedances
occurring up to n is n(1 − F (un)). The sequences of levels un we consider are such that
n(1−F (un)) → τ as n →∞, for some τ ≥ 0, which means that, in a time period of length
n, the expected number of exceedances is approximately τ .

Condition D(un) is a type of mixing requirement specially adapted to Extreme Value
Theory. In this context, the events of interest are those of the form {Xi ≤ u} and their
intersections. Observe that {Mn ≤ u} is just {X0 ≤ u, . . . , Xn−1 ≤ u}. Motivated by
Collet’s work [Co01], we propose:

Condition (D(un)). We say that D(un) holds for the sequence X0, X1, X2, . . . if for any
integers `, t and n

P ({X0 > un} ∩ {Mt,` ≤ un})− P ({X0 > un})P ({M` ≤ un}) ≤ γ(n, t),

where γ(n, t) is nonincreasing in t for each n and nγ(n, tn) → 0 as n → ∞ for some
sequence tn = o(n), which means that tn/n → 0 as n →∞.

We remark that the actual definition of D(un) appearing in [LLR83, Section 3.2] is, in
some sense, a stronger requirement.

The sequence un is such that the average number of exceedances in the time interval
{0, . . . , [n/k]} is approximately τ/k, which goes to zero as k → ∞. However, the ex-
ceedances may have a tendency to be concentrated in the time period following the first
exceedance at time 0. To avoid this we introduce

Condition (D′(un)). We say that D′(un) holds for the sequence X0, X1, X2, . . . if

lim
k→∞

lim sup
n→∞

n

[n/k]∑
j=1

P ({X0 > un} ∩ {Xj > un}) = 0. (1.3)

Notice that Condition 1.3 forbids the concentration of exceedances by bounding the
probability of more than one exceedance in the time interval {0, . . . , [n/k]}. This guarantees
that the exceedances should appear scattered through the time period {0, . . . , n− 1}.

Our goal is to show that Mn and M̂n have the same asymptotic distribution under D(un)
and D′(un).

Proposition 1.1. Let (un)n∈N be such that nP (X > un) = n(1−F (un)) → τ , as n →∞,
for some τ ≥ 0. Assume that conditions D(un) and D′(un) hold. Then

lim
n→∞

P (Mn ≤ un) = lim
n→∞

P (M̂n ≤ un).
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2. Extremes on Dynamical Systems

In this section, we observe that the study of the partial maximum of deterministic
processes arising from a certain dynamical system that possesses an invariant measure,
with sufficient decay of correlations, can be reduced to prove D′(un) and investigate the
domain of attraction of maximum of the associated independent process.

Let f : M → M de a smooth map on the manifold M admitting an invariant Borel
probability measure µ. Assume that there exists a nonincreasing g : N→ R such that for
all ϕ, ψ : M → R with bounded variation, there is C > 0 independent of ϕ, ψ and n such
that ∣∣∣∣

∫
ϕ · (ψ ◦ fn)dµ−

∫
ϕdµ

∫
ψdµ

∣∣∣∣ ≤ CVar(ϕ)‖ψ‖∞g(n), ∀n ≥ 0, (2.1)

where Var(ϕ) denotes the total variation of ϕ and ng(tn) → 0, as n → ∞ for some
tn = o(n).

Consider now the r.v. X : M → R of bounded variation on the probability space
(M,B, µ), where B is the Borel σ-algebra on M , with d.f. F (x) = µ({X−1(−∞, x]}).
Define the stationary stochastic process X0, X1, X2, . . . by Xi = X ◦ f i. Let

Mn = max{X0, . . . , Xn−1},
for each n ∈ N. Denote by Z0, Z1, Z2, . . . an independent sequence of r.v. with common
d.f. F and set, for each n ∈ N,

M̂n = max{Z0, . . . , Zn−1}.
Taking ϕ = 1{X>un} and ψ = 1{M`≤un}, then (2.1) implies that Condition D(un) holds

with γ(n, t) = γ(t) = CVar(1{X>un})‖1{M`≤un}‖∞g(t) ≤ C(Var(X) + 1)g(t) and for the
sequence tn such that tn/n → 0 and ng(tn) → 0 as n →∞.

This means that if we are also able to prove D′(un) for the sequence X0, X1, . . . then
the study of the limiting behavior of Mn is reduced to study the domain of attraction for
maximums of F using the usual tools of Classical Extreme Value Theory, available, for
example, in [LLR83, Section 1.6].

Remark 2.1. Observe that often decay of correlations is know for Hölder continuous func-
tions instead. In these situations one can use an Hölder continuous approximation of
1{X>un} and try to prove that the error introduced does not affect much, just as Collet did
in [Co01, Lemma 3.3 and Section 3].

3. Proof of the result

We follow closely the arguments in [Co01, Section 3] and adapt them to our needs. We
begin with by stating two abstract Lemmas.

Lemma 3.1. For any ` ∈ N and u ∈ R we have

`−1∑
j=0

P (Xj > u) ≥ P (M` > u) ≥
`−1∑
j=0

P (Xj > u)−
`−1∑
j=0

`−1∑

i6=j,i=0

P ({Xj > u} ∩ {Xi > u})
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Proof. This is a straightforward consequence of the formula for the probability of a multiple
union on events. See for example first Theorem of Chapter 4 in [Fe52]. ¤
Lemma 3.2. For any integers t, r,m, `, s ≥ 0 we have

0 ≤ P (Mr ≤ u)− P (Mr+` ≤ u) ≤ ` · P (X > u) (3.1)

and∣∣∣∣∣P (Ms+t+m ≤ u)− P (Mm ≤ u) +
s−1∑
j=0

P ({X > u} ∩ {Ms+t−j,m ≤ u})
∣∣∣∣∣

≤ 2s
s−1∑
j=1

P ({X > u} ∩ {Xj > u}) + tP (X > u). (3.2)

Proof. We have of course

0 ≤ P (Mr ≤ u)− P (Mr+` ≤ u) ≤
`−1∑
j=0

(P (Mr+j ≤ u)− P (Mr+j+1 ≤ u)) .

On the other hand, for any i ≥ 0

P (Mi ≤ u) = P (Mi+1 ≤ u) + P ({Mi ≤ u} ∩ {Xi > u}) ≤ P (Mi+1 ≤ u) + P (Xi > u)

and the first statement of the Lemma follows by stationarity.
We now observe that

{Ms+t+m ≤ u} = {Ms ≤ u} ∩ {Ms,t ≤ u} ∩ {Ms+t,m ≤ u}.
It follows easily from this identity that

({Ms ≤ u} ∩ {Ms+t,m ≤ u}) \ {Ms+t+m ≤ u} ⊂ {Ms,t > u}.
Therefore, using Lemma 3.1 we get∣∣P ({Ms ≤ u} ∩ {Ms+t,m ≤ u})− P (Ms+t+m ≤ u)

∣∣ ≤ tP (X > u) .

Using stationarity and the first inequality in Lemma 3.1 we have

P ({Ms ≤ u} ∩ {Ms+t,m ≤ u}) = P (Ms+t,m ≤ u)− P ({Ms > u} ∩ {Ms+t,m ≤ u})
= P (Mm ≤ u)− P ({Ms > u} ∩ {Ms+t,m ≤ u})

≥ P (Mm ≤ u)−
s−1∑
j=0

P ({Xj > u} ∩ {Ms+t,m ≤ u}).

Now, by the second inequality in Lemma 3.1 and stationarity we have

P ({Ms ≤ u} ∩ {Ms+t,m ≤ u}) ≤ P (Mm ≤ u)−
s−1∑
j=0

P ({Xj > u} ∩ {Ms+t,m ≤ u})

+
s−1∑
j=0

s−1∑

j 6=`,`=0

P ({Xj > u} ∩ {X` > u} ∩ {Ms+t,m ≤ u}).
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Hence, stationarity and the last three inequalities give
∣∣∣∣∣P ({Ms ≤ u} ∩ {Ms+t,m ≤ u})− P (Mm ≤ u) +

s−1∑
j=0

P ({X > u} ∩ {Ms+t−j,m ≤ u})
∣∣∣∣∣

≤ 2s
s−1∑
j=1

P ({X > u} ∩ {Xj > u}) ,

and the result follows. ¤

Proof of Proposition 1.1. Let ` = `n = [n
k
] where [n

k
] is the integer part of n

k
. We begin

by replacing P (Mn ≤ un) by P (Mk(`+t) ≤ un) for some t > 1. According to (3.1) of
Lemma 3.2, we have

∣∣P (Mn ≤ un)− P (Mk(`+t) ≤ un)
∣∣ ≤ ktP (X > un). (3.3)

We now estimate recursively P (Mi(`+t) ≤ un) for i = 0, . . . , k. Using (3.2) of Lemma 3.2
and stationarity, we have for any 1 ≤ i ≤ k

∣∣P (Mi(`+t) ≤ un)− (
1− `P (X > un)

)
P (M(i−1)(`+t) ≤ un)

∣∣ ≤ Γn,i,

where

Γn,i =

∣∣∣∣∣`P (X > un)P (M(i−1)(`+t) ≤ un)−
`−1∑
j=0

P
({Xj > un} ∩ {M`+t,(i−1)(`+t) ≤ un}

)
∣∣∣∣∣

+ tP (X > un) + 2`
`−1∑
j=1

P ({X > un} ∩ {Xj > un}) .

Using stationarity, D(un) and, in particular, that γ(n, t) is nonincreasing in t for each n
we conclude

Γn,i ≤
`−1∑
j=0

∣∣P (X0 > un)P (M(i−1)(`+t) ≤ un)− P
({X0 > un} ∩ {M`+t−j,(i−1)(`+t) ≤ un}

)∣∣

+ tP (X > un) + 2`
`−1∑
j=1

P ({X > un} ∩ {Xj > un})

≤ `γ(n, t) + tP (X > un) + 2`
`−1∑
j=1

P ({X > un} ∩ {Xj > un}) .

Define Υn = `γ(n, t) + tP (X > un) + 2`
∑`−1

j=1 P ({X > un} ∩ {Xj > un}). Then for every
1 < i ≤ k we have

∣∣P (Mi(`+t) ≤ un)− (
1− `P (X > un)

)
P (M(i−1)(`+t) ≤ un)

∣∣ ≤ Υn
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and for i = 1

∣∣P (M(`+t) ≤ un)− (
1− `P (X > un)

)∣∣ ≤ Υn.

Assume that k and n are large enough in order to have `P (X > un) < 2, which implies
that

∣∣1− `P (X > un)
∣∣ < 1. A simple inductive argument allows to conclude

∣∣∣P (Mk(`+t) ≤ un)− (
1− `P (X > un)

)k
∣∣∣ ≤ kΥn.

Recalling (3.3), we have

∣∣∣P (Mn ≤ un)− (
1− `P (X > un)

)k
∣∣∣ ≤ ktP (X > un) + kΥn. (3.4)

Since nP (X > un) = n(1− F (un)) → τ , as n →∞, for some τ ≥ 0, we have

lim
k→∞

lim
n→∞

(
1− [n

k
]P (X > un)

)k
= lim

k→∞
(1− τ

k
)k = e−τ .

Now, observe that nP (X > un) = n(1 − F (un)) → τ is equivalent to P (M̂n ≤ un) =
(F (un))n → e−τ , where the limits are taken when n →∞ and τ ≥ 0 (see [LLR83, Theorem
1.5.1] for a proof of this fact). Hence,

lim
k→∞

lim
n→∞

(1− [n
k
]P (X > un))k = lim

n→∞
P (M̂n ≤ un). (3.5)

It is now clear that, according to (3.4) and (3.5), Mn and M̂n share the same limiting
distribution if

lim
k→∞

lim
n→∞

(ktP (X > un) + kΥn = 0,

that is

lim
k→∞

lim
n→∞

2ktP (X > un) + nγ(n, t) + 2n
∑̀
j=1

P ({X > un} ∩ {Xj > un}) = 0. (3.6)

Assume that t = tn where tn = o(n) is given by Condition D(un). Then, for every k ∈ N,
we have limn→∞ ktnP (X > un) = 0, since nP (X > un) → τ ≥ 0. Finally, we use D(un)
and D′(un) to obtain that the two remaining terms in (3.6) also go to 0.

¤
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