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Abstract.

We consider Boussinesq convection in a plane layer restricted to a hexagonal lattice, assuming that the
trivial steady state becomes unstable to two modes of the form of rolls with spatial periods in the 2 :

√
3

ratio. For the imposed periodicity, the symmetry group of the system is D6 ⋉ T2 × Z2. We analyse the
restriction to a centre manifold parametrised by C6 and show that the normal form admits a complex
heteroclinic network involving up to eight steady states of different symmetry types. In Boussinesq
convection, due to relations between the normal form coefficients, only four types of steady states can be
involved in the network. We examine the normal form restricted to R6, a flow-invariant subspace, and
describe the dynamics near the network that has switching at the nodes.
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1. Introduction

Thermal convection, i.e., instability of fluid due to an imposed temperature gradient, has been exten-
sively studied for more than a century, in particular, from the point of pattern formation and equivariant
bifurcation theory. An interesting phenomenon, that has been detected in these investigations, is the
existence of homoclinic and heteroclinic cycles.

The best known example of heteroclinic cycle is the Busse-Heikes cycle arising in Boussinesq convection
in a rotating plane layer, when the rotation is sufficiently rapid. The cycle originates from the instability of
rolls to perturbations of the form of rolls rotated by a finite angle with respect to the perturbed state (the
Küppers-Lortz instability [15]). If the angle between the perturbed rolls and the perturbation is 2π/3, a
cycle connecting three roll flows is formed [7, 5]. Other types of instability can also result in the formation
of heteroclinic cycles, for instance, emergence of smaller fundamental scales in the flow. Heteroclinic cycles
related to the 1 : 2 spatial resonance (i.e., emergence of a twice finer characteristic spatial scale) can
emerge in the two-layer thermal convection [22] and in a single layer in a non-Boussinesq convection (see
[21, 16] and references therein). In Rayleigh-Bénard convection with the midplane reflection symmetry
the 1 : 3 resonance plays an important role [17] (see, for instance, Porter and Knobloch [20]). A complex

heteroclinic network in a normal form corresponding to the 1 :
√

2 spatial resonance (the irrationality is
due to the change of orientation of rolls, rotated by π/4) in Boussinesq convection was investigated by
Podvigina and Ashwin [19].

In this paper we consider a heteroclinic network emerging in Boussinesq convection in a plane layer with
an imposed hexagonal periodicity lattice, assuming that the trivial steady state of fluid at rest becomes
unstable to two modes of the form of rolls with spatial periods in the 2 :

√
3 ratio. The symmetry group

of the system is D6 ⋉ T2 × Z2 and the centre eigenspace is C6. We derive a general third-order ODE
commuting with the action of the group on the centre eigenspace (a normal form of degree 3), with some
fifth order terms included to resolve degeneracies. In each of the pure-mode subspaces, four symmetry
types of steady state bifurcate when the trivial steady state becomes unstable. For this normal form we
prove the existence of structuraly stable heteroclinic connections which can form a heteroclinic network
involving all eight types of primary steady states. In Boussinesq convection the network cannot involve
more than four types of steady states because of inequalities satisfied by the normal form coefficients.
However, the complete network can exist in another planar systems which has the same symmetry group.

Even with four types of steady states involved, the network is still difficult to study. Hence, we consider
the system restricted to the flow-invariant subspace R6 and part of the network persisting there. We do
not claim to have exhaustively studied all the features of the network but, given its complexity, settle
for describing some of the interesting behaviour that may be observed in its vicinity. The dynamics near
the heteroclinic network is determined by the existence of switching at nodes, by the stability of cycles
in the network and by what we call railroad switches. The latter is a phenomenon that depends on the
magnitude of some parameters. The existence of railroad switches means that, when two connections
start at a node, trajectories near this node will follow one or the other of the connections, according
to the relative magnitude of some parameters (two, in this case). Switching at a node guarantees the
existence of trajectories near a node, from which two connections start, that follow both connections.
The stability of a given cycle in the network makes it more easily observable in numerical simulations or
experiments.

Our approach is one based on symmetry. We therefore make intensive use of the existence of flow-
invariant spaces as a consequence of the symmetry. In fact, we study the dynamics near the heteroclinic
network by restricting the equations to a 6-dimensional real flow-invariant vector space. This approach
guarantees that the network and nearby dynamics persist for the original 12-dimensional real space. The
connections that make up the network are also established by restriction to convenient invariant spaces,
2-dimensional this time. Symmetry is also used to describe the network itself in that we identify some
motifs which, when iterated by symmetry, will produce the whole network. Finally, we show that under
some conditions one of the cycles in the network is essentially asimptotically stable and for this symmetry
is extensively used, again.

The text proceeds as follows: in the next section, we describe Boussinesq convection in a plane layer,
introducing the symmetries of the problem as well as a normal form, its steady states and stability which
are relevant for our work. Then, after some preliminary results in Section 3, we obtain normal forms
for the dynamics in the 12-dimensional centre manifold (parametrised by C6) for the two-mode problem
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and discuss some previous results on a single mode (the restriction to C3). Section 6 is devoted to the
description of the heteroclinic network in the restriction to a flow-invariant submanifold of dimension 6
(parametrised by R6). We prove the existence of all connections, and describe the network using the
notions of cycles and motifs and we present the results of numerical simulations that illustrate well the
behaviour along the network. In section 7 we study the dynamics near the network. We address the issue
of switching at a node of the network and prove the existence of switching at the two types of nodes: rolls
and pathwork quilts. We show that although there is switching, at some nodes there is a connection that
is preferred by nearby trajectories. We also look at the stability of cycles in the network. The appendix
contains the technical information concerning eigenvalues and eigenspaces near single-mode steady states.

2. Boussinesq convection in a plane layer

2.1. Equations. Consider the non-dimensional equations for Boussinesq convection in a plane layer
0 < z < 1 uniformly heated from below. The flow v and pressure p satisfy the Navier-Stokes equation

(1)
∂v

∂t
= v × (∇× v) + P∆v + PRθez −∇p

and the incompressibility condition

(2) ∇ · v = 0.

The heat transfer equation

(3)
∂θ

∂t
= −(v · ∇)θ + vz + ∆θ

determines the evolution of θ, the difference between the temperature in the flow and the linear temper-
ature profile. The parameters R and P are the Rayleigh and Prandtl numbers, respectively. We assume
stress-free boundary conditions for the flow and fixed temperature on horizontal boundaries:

(4)
∂vx

∂z
=
∂vy

∂z
= vz = 0, θ = 0 at z = 0, 1.

Flows defined in a hexagonal cell are invariant under translations by

(5) e1 = L(1, 0), e2 = L(
1

2
,

√
3

2
)

in the (x, y)-plane (see [10]), i.e.

(6) v(x, y, z) = v((x, y) + pe1 + qe2, z) and θ(x, y, z) = θ((x, y) + pe1 + qe2, z)

for any (p, q) ∈ Z2.
The system Eq. (1)-Eq. (4) admits the trivial solution v = 0, θ = 0 describing pure thermal conduction.

The steady state becomes unstable to perturbations with a wavenumber k at R = (k2 + π2)3k−2; the
perturbation mode is

(7) V(k) =




−πk−1 cosπz sinkx
0

sinπz cos kx
(k2 + π2)−1 sinπz cos kx


 .

(More eigenmodes are obtained by application of symmetries of the system.) The critical Rayleigh number

for the onset of convection is R = 27
4 π

4 ≈ 657.5, and the critical wavenumber is kc = π/
√

2.

Modes with wave numbers k and 2k/
√

3 become unstable simultaneously at Rm = π42−4/33−2/3(24/3−
32/3)−2(22/3 − 31/3)−1 ≈ 662.1, the critical wavenumber is km = π31/32−1/3(22/3 + 31/3)−1/2 ≈ 2.07.

Consider the mode with the wavenumber 2k/
√

3

(8) W(k) =




0

−π(2k/
√

3)−1 cosπz sin 2k/
√

3y

sinπz cos 2k/
√

3y

(4k2/3 + π2)−1 sinπz cos 2k/
√

3y


 .

The modes (7) and (8) are both periodic on the hexagonal lattice (5) with L = 4πk−1
m .
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2.2. Symmetries. The symmetry group of the convective system Eq. (1)-Eq. (3) with the boundary
conditions Eq. (4,6) is Γ = D6 ⋉ T2 × Z2. The group D6 is the 12-element group of symmetries of the
hexagonal cell, including the cyclic group of rotations generated by

ρ : (x, y, z) 7→ (
1

2
x+

√
3

2
y,

√
3

2
x− 1

2
y, z),

and reflections, in particular,

s1 : (x, y, z) 7→ (x,−y, z),
s2 : (x, y, z) 7→ (−x, y, z),
s3 : (x, y, z) 7→ (−x,−y, z).

The groups T1 and T2 are the groups of translations by along the e1 and e2 directions, respectively:

γ1
α : (x, y, z) 7→ (x + αL(2π)−1, y, z)

and

γ2
α : (x, y, z) 7→ (x− 1

2
αL(2π)−1, y +

√
3

2
αL(2π)−1, z)

where 0 ≤ α < 2π (so that γ1
2π = γ2

2π = e). The group Z2 is generated by the so-called Boussinesq
symmetry, which is a reflection about the horizontal midplane:

r : (x, y, z) 7→ (x, y, 1 − z).

Consider the centre eigenspace spanned by rolls, Eq. (7,8), and their symmetric images

(9)
X1 = V, Y1 = γ2

π/2V, X2,3 = ρ2,4V, Y2,3 = ρ2,4Y1,

X4 = W, Y4 = γ2
π/4W, X5,6 = ρ2,4W and Y5,6 = ρ2,4Y4.

We identify this 12-dimensional subspace to C6 and use these coordinates to parametrise the centre
manifold. The coordinates (z1, z2, z3, w1, w2, w3) ∈ C6 on the centre manifold, that we introduce, are
projections in the directions Xj and Yj for zj and Xj+3 and Yj+3 for wj , j = 1, 2, 3.

The symmetries of the system transform the coordinates in the following way:

ρ : (z,w) 7→ (z̄2, z̄3, z̄1, w̄2, w̄3, w̄1),

ρ2 : (z,w) 7→ (z3, z1, z2, w3, w1, w2),

s1 : (z,w) 7→ (z1, z3, z2, w̄1, w̄3, w̄2),

s2 : (z,w) 7→ (z̄1, z̄3, z̄2, w1, w3, w2),

s3 : (z,w) 7→ (z̄1, z̄2, z̄3, w̄1, w̄2, w̄3),

γ1
α : (z,w) 7→ (e2iαz1, e

−iαz2, e
−iαz3, w1, e

−2iαw2, e
2iαw3),

γ2
α : (z,w) 7→ (eiαz1, e

iαz2, e
−2iαz3, e

2iαw1, e
−2iαw2, w3),

γ3
α = γ1

αγ
2
−2α : (z,w) 7→ (z1, e

−3iαz2, e
3iαz3, e

−4iαw1, e
2iαw2, e

2iαw3),

r : (z,w) 7→ (−z,−w).

From now on we study the restriction to the centre manifold, where the system reduces to an ordinary
differential equation with these symmetries in 12 dimensions.

3. Definitions and preliminary results

Let f be a smooth vector field in Rn. Given two equilibrium points A and B of ẋ = f(x), a heteroclinic
connection from A to B, denoted A → B, is a trajectory contained in the unstable manifold Wu(A) of
A and in the stable manifold W s(B) of B. A heteroclinic cycle is a finite ordered set of equilibria
{Aj : j = 1, . . . , k} together with connections Aj → Aj+1 with Ak+1 = A1. We refer to the equilibria
defining the heteroclinic cycle as nodes. A heteroclinic network is a connected set that is a finite union
of heteroclinic cycles.

A heteroclinic connection A → B where Wu(A) and W s(B) are not transverse may be easily broken
by an arbitrarily small perturbation of the vector field. A simple calculation of dimensions shows that it
is not possible to have a heteroclinic cycle in Rn with all connections arising at transverse intersections.
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Thus, for general vector fields, heteroclinic cycles are not a robust feature. The situation changes when
there is some underlying symmetry, as we proceed to discuss.

Let G be a compact Lie group acting linearly on Rn. The vector field f is G−equivariant if for all
γ ∈ G and x ∈ Rn, we have f(γx) = γf(x). In this case γ ∈ G is said to be a symmetry of f . We refer
the reader to Golubitsky, Stewart and Schaeffer [10] for more information on differential equations with
symmetry.

The G-orbit of A ∈ Rn is the set [A] = {γA, γ ∈ G} that is invariant under the flow of G-equivariant
vector fields f . In particular, if A and B are equilibria of ẋ = f(x), so are the elements in their G-orbits
and if there is a trajectory ϕ(t) making a connection A → B, then for γ ∈ G the trajectory γϕ(t) is a
connection γA → γB. We refer to this G-orbit of connections as a quotient connection and we indicate
this with the notation [A] → [B]. The reader should be warned that this does not mean there is a
connection γA → δB for any γ, δ ∈ G even though γA ∈ [A], δB ∈ [B]. We use a similar notation for
quotient cycle and quotient network.

The isotropy subgroup of x ∈ Rn is Gx = {γ ∈ G, γx = x}. For an isotropy subgroup S of G, its
fixed-point subspace is

Fix(S) = {x ∈ Rn : ∀γ ∈ S, γx = x}.
If f is G-equivariant then Fix(S) is flow-invariant.

For a differential equation in a plane with two equilibria A and B, if A is a saddle and B is a sink
then a connection A → B is a transverse intersection of Wu(A) and W s(B) and thus persists under
small perturbations of the equations. If f is G-equivariant and the plane is the fixed-point subspace of
an isotropy subgroup of G, then both the flow-invariance of the plane and the existence of the connection
persist under small perturbations that preserve the symmetry. This is the reason for the robustness of
heteroclinic cycles and networks in symmetric dynamics.

To prove the existence of heteroclinic connections in invariant planes we use a theorem from [18]. For
completness of the presentation the statement of the theorem is given below.

Consider a system of the form

(10)
ẋ = (λ+ b1x

2 + b2y
2)x,

ẏ = (µ+ c1y
2 + c2x

2)y,

assuming

(11) λ > 0, µ > 0, b1 < 0, c1 < 0.

then for arbitrary b2 and c2 there exist steady states S1 = (x1, 0) = (±
√
−λ/b1, 0) and S2 = (0, y2) =

(0,±
√
−µ/c1), which are stable along the directions (x, 0) and (0, y), respectively.

Theorem 3.1 (Podvigina,[18]). The system (10),(11) can exhibit the following four generic types of
behavior:

(i). If λ − µb2
c1

< 0, µ − λc2
b1

< 0, then the steady states S1 and S2 are stable, there exist an unstable

steady state S3 = (x3, y3), x3y3 6= 0, and heteroclinic connections from S3 to S1 and S2.

(ii). If λ− µb2
c1

< 0, µ− λc2
b1

> 0, then the only steady states of the system are S0 = (0, 0), S1 and S2,

S1 is unstable and S2 is stable, and there exists a heteroclinic connection from S1 to S2.

(ii′). If λ− µb2
c1

> 0, µ− λc2
b1

< 0, then the only steady states of the system are S0 = (0, 0), S1 and S2,

S1 is stable and S2 is unstable, and there exists a heteroclinic connection from S2 to S1.

(iii). If λ − µb2
c1

> 0, µ − λc2
b1

> 0, b1c1 − b2c2 > 0, then the steady states S1 and S2 are unstable,

there exist a stable steady state S3 = (x3, y3), x3y3 6= 0, and heteroclinic connections from S1 and S2 to
S3.

(iv). If λ − µb2
c1

> 0, µ − λc2
b1

> 0, b1c1 − b2c2 < 0, then the only steady states of the system are

S0 = (0, 0), S1 and S2, all the three are unstable. Any trajectory (x(x0, y0, t), y(x0, y0, t)) starting at any
point (x0, y0), x0y0 6= 0, escapes to infinity, i.e. limt→∞ x(x0, y0, t) = ∞, limt→∞ y(x0, y0, t) = ∞.
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4. Dynamics in C6

4.1. Normal form. The normal form on C6 for the considered action of the symmetry group Γ =
D6⋉T2×Z2 truncated at cubic order (with one fifth-order term determining relative stability of triangles
and hexagons included) is:

(12)

ż1 = λ1z1 + z1
[
A1|z1|2 +A2(|z2|2 + |z3|2) + C1|w1|2 + C2(|w2|2 + |w3|2)

]
+

+A3z̄1z̄2
2z̄3

2 + C3z̄1w̄2w3,
ẇ1 = λ2w1 + w1

[
B1|w1|2 +B2(|w2|2 + |w3|2) + C4|z1|2 + C5(|z2|2 + |z3|2)

]
+

+B3w̄1w̄2
2w̄3

2 + C6(w2z̄3
2 + w3z

2
2),

where Ai, Bi and Ci are real numbers (the normal form coefficients). The equations for żj and ẇj ,
j = 2, 3, are obtained by applying the symmetry ρ2.

4.2. Single-mode steady states in C3. Heteroclinic connections. In this section we highlight
some of the patterns, and heteroclinic connections among them, occurring in single-mode in a system
with D6 ⋉ T2 × Z2-symmetry in C3. These will persist when a second mode is introduced and become
part of a heteroclinic network with connections between different modes. The subspaces (z;0) and (0;w)
are invariant, because they are fixed-point subspaces for the groups Z3 (generated by γ3

2π/3) and D2

(generated by γ1
π and γ2

π), respectively. The system (12) restricted to (z;0) or (0;w) has the form

(13)
ż1 = λz1 + z1(a1|z1|2 + a2(|z2|2 + |z3|2)) + a3z̄1z̄2

2z̄3
2,

ż2 = λz2 + z2(a1|z2|2 + a2(|z1|2 + |z3|2)) + a3z̄2z̄1
2z̄3

2,
ż3 = λz3 + z3(a1|z3|2 + a2(|z1|2 + |z2|2)) + a3z̄3z̄1

2z̄2
2.

Bifurcations in the system (13) with the action of D6 ⋉ T2 × Z2 generated by

ρ̃ : (z) 7→ (z̄2, z̄3, z̄1),

s̃1 : (z) 7→ (z1, z3, z2),

γ̃1
α : (z) 7→ (eiαz1, e

−iαz2, z3),

γ̃2
α : (z) 7→ (z1, e

−iαz2, e
iαz3),

r̃ : (z,w) 7→ (−z,−w).

were studied in [11], in particular, four types of steady states bifurcating at λ = 0 were found (see
Table 1). One type of steady state is stable if all four bifurcate supercritically, which takes place if

(14) a1 < 0 and a1 + 2a2 < 0.

Rolls (R) are stable if a1 − a2 > 0, hexagons (H) if a1 − a2 < 0 and a3 > 0 and triangles (RT ) if
a1 − a2 < 0 and a3 < 0. Note that the sign of a3 can be reversed by the change of variables z 7→ iz.
Patchwork quilts (PQ) are always unstable.

If all branches bifurcate supercritically, the system (13) admits heteroclinc connection, which is proven
in the following theorem. Some of the connections are displayed in Figure 1.

Theorem 4.1. Consider the system (13),(14) where

(15) 0 < λ < max

(
(a1 + 2a2)

2

4a3
,

∣∣∣∣
2a1a2

a3

∣∣∣∣ ,
∣∣∣∣
a2
1 − a2

2

a3

∣∣∣∣
)
.

then:
(i). If

(16) a1 − a2 > 0,

the following heteroclinic connections exist: PQ→R, RT→R, H→R, H→PQ and RT→PQ.
(ii). If

(17) a1 − a2 < 0,

the following connections exist: R→PQ, R→RT, R→H, PQ→H and PQ→RT.
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Proof. (i) Consider the system (13) resticted to the subspace (x1, x2, 0) which is invariant, because it
is a fixed point subspace for the group D2 generated by ρ̃3 and r̃γ̃1

π. The conditions (14) and (15)
imply existence of PQ= (x1 = xPQ, x2 = xPQ) and R= (x1 = xR, 0), (16) implies stability of R and
ρR= (0, xR). Therefore, by Theorem 3.1 there exist heteroclinic connections from PQ to R and ρR.

Assume a3 > 0. If (15) is satisfied, there exist two types of hexagons (x+
H , x

+
H , x

+
H) and (x−H , x

−

H , x
−

H)
where

x±H =
−(a1 + 2a2) ± ((a1 + 2a2)

2 − 4λa3)
1/2

2a3
,

(x−H , x
−

H , x
−

H) bifurcates from 0 when λ becomes positive. There exists one type of triangles (ixT , ixT , ixT )with

xT =
(a1 + 2a2) + ((a1 + 2a2)

2 + 4λa3)
1/2

2a3
.

Consider the system (13) restricted to the subspaces (x1, x2, x2), which is a fixed point subspace for
the group D2 generated by ρ̃3 and s̃1

(18)
ẋ1 = λx1 + x1(a1x

2
1 + 2a2x

2
2) + a3x1x

4
2,

ẋ2 = λx2 + x2(a1x
2
2 + a2(x

2
1 + x2

2)) + a3x
3
2x

2
1.

Theorem 3.1 is not applicable to the system, because it contains fifth order terms. The condition (15)
implies that any steady state in the subspace satisfied either x1x2 = 0 or x1 = x2. The steady states
R= (xR, 0) and PQ= (0, xPQ) are stable, the steady state H= (x−H , x

−

H , x
−

H) is unstable in the (q,−q)
direction (see Table 1). Consider the triangle bounded by the lines x1 = 0, x1 = x2 and x2 = x̃2, where
xPQ < x̃2 < x+

H . ( (15) implies that xPQ < x+
H .) The lines x1 = 0 and x1 = x2 are invariant subspaces

of (13), ẋ2 is negative in the interval (x2 = x̃2, 0 ≤ x1 ≤ x̃2) because it is negative at both endpoints of
the interval. Therefore, no trajectories escape from the triangle and hence the unstable manifold of H
approaches PQ. Existence of connection from H to R is proven by considering the triangle bounded by
the lines x2 = 0, x1 = x2 and x1 = x̃1, where xR < x̃1 < x+

H .
The subspace (ix1, ix2, ix2) is a fixed point subspace for the group D2 generated by r̃ρ̃3 and s̃1, the

restriction of (13) to the subspace is

(19)
ẋ1 = λx1 + x1(a1x

2
1 + 2a2x

2
2) − a3x1x

4
2,

ẋ2 = λx2 + x2(a1x
2
2 + a2(x

2
1 + x2

2)) − a3x
3
2x

2
1.

The steady states R= (ixR, 0) and PQ= (0, ixPQ) are stable, T=(ixT , ixT , ixT ) is unstable in the (q,−q)
direction. Similarly to above, trajectories are trapped in the triangle bounded by x1 = 0, x1 = x2 and
x2 = x̃2, where x̃2 > xPQ and hence there exists a heteroclinic connection from T to PQ. Existence of the
connection T→R is proven because trajectories are trapped in the triangle x2 = 0, x1 = x2 and x1 = x̃1,
where x̃1 > xR.

The case a3 < 0 is treated similarly to the case a3 > 0. For the case (ii) the proof is identical to the
case (i). �

Note that near the bifurcation point λ is small and therefore (15) is satisfied.

The dynamics in (x + iy, x + iy, x + iy) is more complex, compared to the 2-dimensional subspaces
considered in Theorem 4.1. The subspace (x+ iy, x+ iy, x+ iy) is a fixed point subspace for the group
Z3 generated by ρ̃2. The system (13) restricted onto this subspace is

(20)
ẋ = λx + x(a1 + 2a2)(x

2 + y2) + a3x(x
4 + 5y4 − 10x2y2),

ẏ = λy + y(a1 + 2a2)(x
2 + y2) − a3y(y

4 + 5x4 − 10x2y2).

Assume a3 > 0 (the case a3 < 0 is identical).
In addition to the steady states x = x±H and y = xT , the system admits steady states (x±u , y

±
u ), where

3(x±u )2 = (y±u )2, (x±u )2 + (y±u )2 = (x±H)2 and (xl, yl), where x2
l = 3y2

l , x
2
l + y2

l = x2
T .

Consider a domain in the first quadrant of the subspace, x ≤ 0, y ≤ 0, bounded by the x and y axes
and a circular arc E = x2 +y2. No trajectories can leave the domain, except possibly through the circular
arc. The time derivative of E is

Ė/2 = λr2 + (a1 + 2a2)r
4 + a3(x

6 − y6 − 15x4y2 + 15x2y4) < λr2 + (a1 + 2a2)r
4 + 6a3r

6,
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where r2 = x2 + y2. For E = r̃2 where

r̃ =
−(a1 + 2a2) + ((a1 + 2a2)

2 + 24λa3)
1/2

12a3

the derivative Ė in non-positive, hence trajectories are trapped in the domain. For small λ the steady
states (x−H , 0), (0, xT ), (x−u , y

−
u ) and (xl, yl) are inside the domain and therefore heteroclinic connections

between some of the steady states can possibly exist.

R

R

R

H

PQ

Figure 1. Some heteroclinic connections existing in the system (13) restricted to R3 =
(x1, x2, x3) for λ > 0, a1 < 0 and a2 < a1.

Below we assume that in (12) all branches bifurcate supercritically, in both the z and w subspaces,
when the λ’s become positive.

Name Typical point Amplitude Eigenvalues

R (x, 0, 0) x2 = −λ/a1 0, 2a1x
2, (a2 − a1)x

2 (4 times)
H (x, x, x) λ + (a1 + 2a2)x

2 + a3x
4 = 0 0, 0, 2(a1 + a2)x

2, 2(a1 − a2)x
2 (2 times),−5a3x

4

RT (ix, ix, ix) λ + (a1 + 2a2)x
2
− a3x

4 = 0 0, 0, 2(a1 + a2)x
2, 2(a1 − a2)x

2 (2 times), 5a3x
4

PQ (x, x, 0) x2 = −λ/(a1 + a2) 0, 0, 2(a1 + a2)x
2, 2(a1 − a2)x

2, (a2 − a1)x
2 (2 times)

Table 1. Steady states of the normal form (13).

4.3. Heteroclinic network in C6. The symmetry groups of single mode steady-states are given in
Table 2. For each of these steady states C6 splits into a direct sum of isotypic components for the action
of its symmetry group. Each of these components is an eigenspace of the linearisation of (12) near the
steady state. The isotypic components and eigenvalues are presented in Tables 9 and 10. in Appendix A.

Name Typical point Group Generators

Rz (x, 0, 0; 0, 0, 0) O(2) ⋉ (Z4 × Z2) γ3, s3; rγ
1

π/2
; s1

PQz (0, x, x; 0, 0, 0) D2 ⋉ Z6 s1, s3; rγ
3

π/3

Hz (x, x, x; 0, 0, 0) D6 ⋉ Z3 ρ, s1; γ
3

2π/3

Tz (ix, ix, ix; 0, 0, 0) D6 ⋉ Z3 rρ, s1; γ
3

2π/3

Rw (0, 0, 0; y, 0, 0) O(2) ⋉ D4 γ1, s3; rγ
3

π/4
, s1

PQw (0, 0, 0; 0, y, y) D2 ⋉ (Z4 × Z2) s1, s3; rγ
1

π/2
, γ2

π

Hw (0, 0, 0; y, y, y) D6 ⋉ Z2 ρ, s1; γ
1

π

Tw (0, 0, 0; iy, iy, iy) D6 ⋉ Z2 rρ, rs1; γ
1

π

Table 2. Symmetry groups of the steady states of the normal form (12).

From Tables 2, 9 and 10 we find 2-dimensional subspaces which are fixed by some subgroups of
D6 ⋉ T2 × Z2, they are listed in Table 3. If two steady states in a 2-dimensional subspace satisfy one
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[R   ]z

[PQ   ]z

[H   ]z

[T   ]z

[R    ]w

[PQ    ]w

[H    ]w

[T    ]w

Figure 2. Heteroclinic connections that may exist in (12). The orientation depends on
further choices in the parameters.

of the conditions (i− −iii) of Theorem 3.1, there exists a connection between the steady states. In this
way, each one of the 2-dimensional subspaces in Tables 9 and 10 gives rise to conditions for existence of
a heteroclinic connection.

In subsection 4.2 connections which can exist in a single mode subspace are listed. Table 3 gives
conditions for existence of connections between steady states in (z) and (w) subspaces. The complete
heteroclinic network which may exist in the system is shown in Figure 2. We do not draw arrows showing
directions of connections, because they may go either way.

Subspace Group (generators) Steady state Eigenvalue

(x, 0, 0; y, 0, 0) D2 ⋉ Z4 (s1, s3; γ
3

π/2
) Rz λ2 + C4x

2

R

Rw λ1 + C1y
2

R

(x, 0, 0; 0, y, y) D2 ⋉ Z4 (s1, s3; rγ
1

π/2
) Rz λ2 + (C5 + C6)x

2

R

PQw λ1 + (2C2 + C3)y
2

PQ

(x, 0, 0; 0, y,−y) D2 × Z4 (s3, γ
3

π/2
s2; rγ

1

π/2
) Rz λ2 + (C5 − C6)x

2

R

PQw λ1 + (2C2 − C3)y
2

PQ

(0, x, x; 0, y,−y) D2 (s3, rγ
1

πs1) PQz λ2 + (C4 + C5)x
2

PQ

PQw λ1 + (C1 + C2)y
2

PQ

(x, x, x; y, y, y) D6 (ρ, s1) Hz λ2 + (C4 + 2C5 + C6)x
2

H

Hw λ1 + (C1 + 2C2 + C3)y
2

H

(ix, ix, ix; iy, iy, iy) D6 (rρ, rs1) Tz λ2 + (C4 + 2C5 − C6)x
2

T

Tw λ1 + (C1 + 2C2 + C3)y
2

T

Table 3. 2-dimensional fixed-point subspaces for subgroups of D6 ⋉ T2 × Z2.

5. Restriction to R6

5.1. Normal form. In what follows, we restrict our interest to R6 = Fix(< s3 >). Since it is a fixed-
point subspace, it is flow-invariant. Its Γ-orbit is a 8-dimensional subspace of C6. The action of Γ on R6

is generated by

ρ.(x1, x2, x3; y1, y2, y3) = (x2, x3, x1; y2, y3, y1)

s1.(x1, x2, x3; y1, y2, y3) = (x1, x3, x2; y1, y3, y2)

r.(x1, x2, x3; y1, y2, y3) = −(x1, x2, x3; y1, y2, y3)

γ1
π.(x1, x2, x3; y1, y2, y3) = (x1,−x2,−x3; y1, y2, y3)

γ2
π.(x1, x2, x3; y1, y2, y3) = (−x1,−x2, x3; y1, y2, y3).

The group action in R6 is that of Γ̃ = D3 × Z2 × Z2 = N(〈s3〉)/〈s3〉, where the element of order 3 is
ρ. The action of D6 ⋉ T2 reduces to D3 × Z2 since the γi

α, with α 6= π do not map the space to itself,
s2 acts as s1, s3 acts as the identity and ρ2γ2

πρ = γ1
π.

The restriction to R6 has the advantage that Γ̃ is a discrete group. However, this leads to hidden
symmetries: elements of Γ that do not map R6 into itself but that map some point in R6 back into R6.

This creates additional invariant subspaces, fixed by hidden symmetries but not by elements of Γ̃. It also
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creates additional symmetries in some subspaces: for instance, in certain fixed-point subspaces we have
γ1
2π/4 or γ2

2π/4 as additional symmetries, and in other subspaces we have the symmetries

γ3
α ≡ γ1

αγ
2
−2α.(x1, x2, x3; y1, y2, y3) = (x1, e

−3iαx2, e
3iαx3; e

−4iαy1, e
2iαy2, e

2iαy3)

with α one of 0, π/3, π/5, π/6, etc. These are not elements of Γ̃, but have to be taken into account in
the analysis.

The vector field restricted to R6 is as follows:

(21)





ẋ1 = x1[λ1 +A1x
2
1 +A2(x

2
2 + x2

3) + C1y
2
1 + C2(y

2
2 + y2

3)] +A3x1x
2
2x

2
3 + C3x1y2y3

ẋ2 = x2[λ1 +A1x
2
2 +A2(x

2
1 + x2

3) + C1y
2
2 + C2(y

2
1 + y2

3)] +A3x
2
1x2x

2
3 + C3x2y1y3

ẋ3 = x3[λ1 +A1x
2
3 +A2(x

2
1 + x2

2) + C1y
2
3 + C2(y

2
1 + y2

2)] +A3x
2
1x

2
2x3 + C3x3y1y2

ẏ1 = y1[λ2 +B1y
2
1 +B2(y

2
2 + y2

3) + C4x
2
1 + C5(x

2
2 + x2

3)] +B3y1y
2
2y

2
3 + C6(y2x

2
3 + y3x

2
2)

ẏ2 = y2[λ2 +B1y
2
2 +B2(y

2
1 + y2

3) + C4x
2
2 + C5(x

2
1 + x2

3)] +B3y
2
1y2y

2
3 + C6(y3x

2
1 + y1x

2
3)

ẏ3 = y3[λ2 +B1y
2
3 +B2(y

2
1 + y2

2) + C4x
2
3 + C5(x

2
1 + x2

2)] +B3y
2
1y

2
2y3 + C6(y1x

2
2 + y2x

2
1).

In Boussinesq convection with rigid or stress-free horizontal boundaries stable rolls exist at the onset
of convection [9]. Respectively, in what follows we assume λ1 > 0, λ2 > 0, A1 < 0, B1 < 0, A2 < A1 and
B2 < B1. Under this assumption only two types of equilibria may be involved in a heteroclinic network.
These are rolls (R) and patchwork quilts (PQ). (A trajectory can not reach hexagons or triangles, see
sections 4.1, 4.2 and Figures 1 and 2) Alternative representations for these patterns that do not lie in the

same Γ̃-orbit are indicated with a tilde. We shall need

P̃Qw = (0, 0, 0; y,−y, 0) = γ3
π/2 · PQw

where γ3
π/2 is a hidden symmetry acting on the space {(x1, 0, 0; y1, y2, y3)} = Fix(〈γ1

π〉).

6. Network in R6

The aim of this section is to establish the conditions for existence of a heteroclinic network in R6

involving rolls and patchwork quilts in the two modes. The network is persistent under small perturbations
that preserve the underlying symmetries.

In general a connection X → Y is persistent if the two invariant manifolds meet transversely. In
equations with symmetry there is another source of persistence: a saddle-sink connection inside a 2-
dimensional fixed-point subspace cannot be broken by perturbations that preserve the symmetry, as will
be the case here.

6.1. Quotient network. In the next result, [X ] denotes the group orbit class of X under the action of

Γ̃ = D3 × Z2 × Z2. We show the existence of a quotient heteroclinic network.

Theorem 6.1. There is an open set of parameters for which the equations (21 ) have a persistent
heteroclinic network with the following architecture:

(4)

(3)

(2)

(1)

[R  ]   z

 w[R  ]

  w[PQ  ]  w[PQ   ]
 ~

 z[PQ  ]

The open set of parameters is given by the conditions of Table 4 below.

The quotient heteroclinic network of Theorem 6.1 is made of three heteroclinic cycles. Cycle C12

involving equilibria [Rz], [Rw] and [PQw], cycle C23 involving equilibria [Rz ], [Rw] and [P̃Qw], and cycle

C34 involving equilibria [Rz], [PQz] and [P̃Qw]. Note that cycles C12 and C23 constitute a subnetwork
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Aj Bj Cj λ1 > 0 and λ2 > 0

A2 < A1 < 0 B2 < B1 < 0 C4 < 0 λ1/λ2 > A1/C4

λ1/λ2 > C1/B1

2C2 + C3 < 0 λ1/λ2 < (2C2 + C3)/(B1 +B2)
2C2 − C3 < 0 λ1/λ2 < (2C2 − C3)/(B1 +B2)

λ2/λ1 > (C5 + C6)/A1

λ2/λ1 > (C5 − C6)/A1

Table 4. Conditions on parameters for existence of the network of Theorem 6.1.
Reversing some of the inequalities will produce connections in the opposite direction.

which we shall denote by Σ123. Another subnetwork, denoted Σ234, is made of cycles C23 and C34. These
two subnetworks have cycle C23 in common.

The existence of a network for the equations in C6 follows immediately from Theorem 6.1. Denoting
by [[X ]] the equivalence class of X under the action of Γ = D6 ⋉ T2 × Z2 we have:

Corollary 6.2. There is an open set of parameters for which the equations (12 ) have a heteroclinic
network with the following architecture:

(4)

(3)

(2)

  [[R  ]]    z

   w  [[R  ]]

   w  [[PQ   ]]=[
 

   z
  [[PQ  ]]

 w[PQ   ]]
 ~

The open set of parameters is given by the conditions of Table 4.

With the additional assumptions C5 + C6 < 0 and C5 − C6 < 0 the conditions in Table 4 take the
simpler form of Table 5.

Aj Bj Cj λ1/λ2 λ1 > 0, λ2 > 0

A2 < A1 < 0 B2 < B1 < 0 C4 < 0 λ1/λ2 > A1/C4

λ1/λ2 > C1/B1

2C2 + C3 < 0 λ1/λ2 < (2C2 + C3)/(B1 +B2)
2C2 − C3 < 0 λ1/λ2 < (2C2 − C3)/(B1 +B2)
C5 + C6 < 0 λ1/λ2 < A1/(C5 + C6)
C5 − C6 < 0 λ1/λ2 < A1/(C5 − C6)

Table 5. Simpler conditions on parameters for existence of the network of Theorem 6.1.

The proof of Theorem 6.1 consists of exhibiting conditions on the parameters and representatives of
the nodes for which the connections exist. The nodes are written with the convention x > 0, y > 0 as:

Rz = (x, 0, 0; 0, 0, 0) ρRz = (0, 0, x; 0, 0, 0) ρ2Rz = (0, x, 0; 0, 0, 0)
PQz = (x, x, 0; 0, 0, 0) ρPQz = (x, 0, x; 0, 0, 0) ρ2PQz = (0, x, x; 0, 0, 0)
Rw = (0, 0, 0; y, 0, 0) ρRw = (0, 0, 0; 0, 0, y) ρ2Rw = (0, 0, 0; 0, y, 0)
PQw = (0, 0, 0; y, y, 0) ρPQw = (0, 0, 0; y, 0, y) ρ2PQw = (0, 0, 0; 0, y, y)

P̃Qw = (0, 0, 0; y,−y, 0) ρP̃Qw = (0, 0, 0;−y, 0, y) ρ2P̃Qw = (0, 0, 0; 0, y,−y).
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Some of their r-conjugates, indicated as −PQw, −ρP̃Qw, etc, correspond to the choices x < 0 or y < 0.
The proof of Theorem 6.1 consists in finding or each connection a two-dimensional fixed-point subspace

that contain representatives of the two equilibria involved, as was indicated in subsection 4.2 plus an
application of one of the cases of Theorem 3.1, and checking the conditions it imposes on the coefficients.
For the single-mode connections listed in Table 6 the necessary conditions are λ1 > 0 and λ2 > 0,
A2 < A1 < 0 and B2 < B1 < 0.

connection representative subspace isotropy s3 and

[PQz] → [Rz] PQz → Rz, PQz → ρ2Rz (x1, x2, 0; 0, 0, 0) rγ2
π

[PQw] → [Rw] PQw → Rw, PQw → ρ2Rw (0, 0, 0; y1, y2, 0) γ1
π, rγ

2
π/2, rγ

2
3π/2

[P̃Qw] → [Rw] P̃Qw → Rw, P̃Qw → −ρ2Rw

Table 6. Fixed-point subspaces and representatives for single mode connections in
Theorem 6.1 and subsection 4.2.

Connections between patterns of different modes are listed in Table 7 the necessary conditions are
λ1 > 0 and λ2 > 0, and for Aj , Bj , Cj either the conditions of Table 4 or those of Table 5.

connection representative subspace isotropy s3 and

[Rw] → [Rz ] Rw → ±Rz (x1, 0, 0; y1, 0, 0) γ1
π, s1, γ

3
π/2

[Rz ] → [PQw] Rz → ±ρ2PQw (x1, 0, 0; 0, y2, y2) γ1
π, s1, rγ

1
π/2

[Rz ] → [P̃Qw] Rz → ±ρ2P̃Qw (x1, 0, 0; 0, y2,−y2) γ1
π, s1rγ

2
π

[P̃Qw] → [PQz] ρ2P̃Qw → ±ρ2PQz (0, x2, x2; 0, y2,−y2) s1rγ
1
π

Table 7. Fixed-point subspaces and representatives for mixed mode connections in
Theorem 6.1 and subsection 4.2.

6.2. Motifs and cycles. We are interested in heteroclinic cycles formed by primary connections — those
taking place as a saddle-to-sink connection inside an invariant plane. In order to recover the cycles in
R6 from the network architecture of Theorem 6.1 we need some additional information. This is because
when we indicate a connection [X ] → [Y ], in the quotient network, it does not mean that there is a
primary connection from all representatives of X to all representatives of Y . The complete information is
encoded in motifs that show all the primary connections effectively followed along a cycle in the quotient
network for a given starting point. Since Rz is a representative of the node shared by the three cycles,
we write all motifs starting at Rz and ending at a conjugate of Rz, for simplicity. Cycles in R6 may then

be formed by concatenating a path in a motif to a path in the motif’s image by a suitable element of Γ̃.

Proposition 6.3. Complete motifs in R6 for the quotient cycles C12, C23 and C34 starting at Rz and
containing all the primary connections, are the following:

C12 motif:

R  z

w
ρ  PQ

2

w
ρ  R

2

w
−ρ R

w
−ρ  PQ

2 w
−ρ  R

2

z
±ρ  R

2

w
  ρ R

z
±ρ R
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C23 motif:

R  z

w
ρ  PQ

2

w
ρ  R

2

w
ρ R

w
−ρ  PQ

2 w
−ρ  R

2

z
±ρ  R

2

w
−ρ R

z
±ρ R

 ~

 ~

C34 motif:

R  z

w
ρ  PQ

2

w
−ρ  PQ

2

 ~ z
ρ  PQ

2

z
ρ  R

2

z
ρ R

 ~

z
−ρ  PQ

2
z

−ρ  R
2

z
−ρ R

Moreover, all the paths in the motif for C12 are conjugated by Γ̃, all those in the motif for C23 are

conjugated by Γ̃ plus a hidden symmetry. The paths in the motif for C34 lie in two different Γ orbits.

Proof. The connections in the motifs are those in Tables 6 and 7. It remains to see, for each node and each
motif, that there are no other primary connections following that cycle. In the case of C12, for instance,
there are three planes containing Rz that also intersect the orbit [PQw]. The planes (x1, 0, 0; y1, 0, y1)
and (x1, 0, 0; y1, y1, 0) are not flow-invariant, so the only primary connections starting at Rz and of the
form [Rz ] → [PQw] are those in Fix(s3, γ

1
π, s1, rγ

1
π/2) = {(x1, 0, 0; 0, y1, y1)}. Similar arguments may be

used for the other nodes in C12 and for the other cycles.

Finally, the subgroup of Γ̃ generated by s1, γ
1
π and rγ2

π maps the path Rz → ρ2PQw → ρ2Rw → ρ2Rz

into the other paths in the motif for C12. The paths in the motif for C23 are interchanged by the same
subgroup. Symmetries mapping the motif for C34 into itself are s1 and γ1

π. �

To generate a heteroclinic cycle in R6 we start with a path in one of the motifs ending at δRz, then
we concatenate it to a path in the δ image of the motif. Note that no motif starting at Rz ends at ±Rz.

Corollary 6.4. There is an open set of parameters for which the equations (21) have a heteroclinic
network of primary connections. For all cycles in the network the number of nodes is a multiple of 3,
with a minimum of 6.

Examples of cycles generated by paths in the motifs in Proposition 6.3 are given in Figures 3–6 below.

6.3. Cycles in the network. Consider the path

Rz → ρ2PQw → ρRw → ρRz

in the motif for C12 in Proposition 6.3. In order to build a cycle from it, we must take now a path in the
ρ-conjugate of the motif. One choice is to take the ρ-conjugate of the same path, that will end with ρ2Rz

and then the ρ2-conjugate of the path that will close the cycle. This yields a 9-node cycle that is mapped
into itself by ρ, shown in Figure 3, together with a numerical simulation of a trajectory that follows thi
cycle.

Figure A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C5 C6

3 -1.5 -2.2 0.015 -2. -2.6 0.02 10.5 -15. -2.8 -5.5 -2.9 0.05

4 -1.5 -2.2 0.015 -2. -2.6 0.02 10.5 -15. -2.8 -5.5 -2.9 -0.05

5 -2.5 -4.2 0.015 -2. -2.6 0.02 1.7 -2.5 0.4 -25.5 -11.7 -9.5

6 -2.5 -4.2 0.015 -2. -2.2 0.02 1.8 -2.5 0.2 -35. -37. -47.

Table 8. Parameter values for Figures 3, 4, 5 and 6, λ1 = 1, λ2 = 2 in all.
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zR

PQ
w

wR

zRρzRρ2

wRρPQ
w

ρ

wRρ2

PQ
wρ2

Figure 3. Left: time series for x1, x2, x3; y1, y2, y3 (from top to bottom) for numerical
simulations of solutions following the quotient cycle C12. Parameter values in Table 8.
Initial condition (.63, .00002, .000012, .00001, .000005, .000015). Right: The trajectory
follows this 9-node cycle, generated by the ρ-orbit of a path (thicker arrows) in the motif
for C12.

If we take ρ-conjugates of the path

Rz → ρ2P̃Qw → −ρRw → ρRz

in the motif for C23 in Proposition 6.3, we generate a 9-node cycle. An 18-node cycle may be created by
concatenating the path to the ρ-conjugate of another path in the same motif, like the rγ2

π-conjugate:

Rz → −ρ2P̃Qw → ρRw → ρRz.

Since ρrγ2
π has order 6, when we add to the end of each path its ρrγ2

π-conjugate we obtain the 18-node
cycle shown in Figure 4 with a numerical simulation of a trajectory following the cycle. Note that the
cycle goes twice through each node in the ρ-orbit of Rz, since Rz is fixed by rγ2

π.
The two cycles in Figures 3 and 4 share the nodes Rz , Rw and their ρ- and ρ2-conjugates, forming a

subnetwork. Conjugating the cycle in Figure 4 by rγ2
π we obtain another 9-node cycle that shares the

nodes ρjRz with the first two cycles, and −ρjRw with the 18-node cycle.
A minimal cycle, as in Corollary 6.4, may be obtained concatenating

Rz → ρ2P̃Qw → −ρRw → ρRz

to its ρs1-conjugate. This is the same path in the quotient cycle C23 used to generate the 18-node cycle
in Figure 4, but this time it generates a 6-node cycle, using a symmetry of order 2. The 6-node cycle is

shown in Figure 5, where it should be noted that s1P̃Qw = −P̃Qw and s1ρRw = Rw. The trajectory in
the numerical simulation goes round this cycle twice in the time series shown.

A more irregular cycle is generated from the motif for C23 as follows: start with the path

Rz → ρ2P̃Qw → ρRw → ρ2Rz

and add its conjugate by rρ2γ2
π to form a 6-node path starting with Rz and ending with ρRz. Then add

the ρ and ρ2 conjugates of the 6-node path to form an 18-node cycle. The cycle and a trajectory that
follows it are shown in Figure 6.

In section 7 we discuss how nearby trajectories follow these cycles, as in the numerics shown here.
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zR

PQ
~
w

wR

zRρ

zRρ2

wRρ PQ
~
w

ρ

wR−ρ

wRρ2

PQ
~
wρ2

zRρ

zRρ2

zR

PQ
~
w

−

PQ
~
w

ρ2−

wRρ2−

PQ
~
w

ρ−

wR−

Figure 4. Left: time series for x1, x2, x3; y1, y2, y3 (from top to bottom) for numerical
simulations of solutions following the quotient cycle C23. Parameter values in Table 8.
All parameters and also the initial condition are the same as in Figure 3, except for C6

that changes sign. Right: The trajectory follows this 18-node cycle. The generating
path and its rγ2

π-conjugate are shown with thicker arrows.

7. Dynamics near the network

In this section we describe the behaviour of trajectories starting close to the network of Section 6. Our
aim is to predict what might be observed numerically or in an experiment modelled by these equations.
We start by the local behaviour near a branch point: a node XB where two connections go out. We show
there is always switching at branch points: there are trajectories following each connection going away
from XB. For some branch points there are more initial conditions following one of the connections. This
is controlled by the parameters in the equation in a way similar to railroad switches: the parameters
choose which track is going to be used.

7.1. Switching at a node. Consider a splitting of Rn+m = En ⊕ Em into vector subspaces En and
Em of dimensions n and m and let Bn(ε) denote a ball of radius ε in En. An n-dimensional disk Dn

ε of
radius ε is the graph of a smooth map h : Bn(ε) −→ Bm(ε). In particular, at a hyperbolic equilibrium
the local stable and unstable manifolds W s

loc and Wu
loc are disks. When the reference to the radius ε is

irrelevant we write Dn for the disk.
Let X , Y be equilibria of a vector field with flow ϕ(t, p). Given a neighbourhood VX of X we say a

point p ∈ VX follows the connection X → Y in VX with distance ε > 0 if there is a τ > 0 such that
ϕ(t, p) ∈ VX for all t ∈ [0, τ ] and such that ϕ(τ, p) lies at a distance less than ε to the connection X → Y .

Consider the following connections for a vector field in Rm:

(22)

X1

ր
X0 → XB

ց
X2

We say there is switching at the node XB if given a neighbourhood VXB of XB, for any ε > 0, and for
any disk Dn−1 that meets the connection X0 → XB transverselly at a point in VXB there are points in
Dn−1 that follow each of the connections XB → X1 and XB → X2 in VXB with distance ε.
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zR

wR−ρ

PQ
~
wρ2

zRρ

PQ
~
w

−

wR−

Figure 5. Left: time series for x1, x2, x3; y1, y2, y3 (from top to bottom) for numerical
simulations of solutions following the quotient cycle C23. Parameter values in Table 8.
The peaks in the x2 time series are transients and do not correspond to any equilibrium
in the equations, as may be seen by noting that their size is the same as the tiny peaks
in the time series for y1 and y3, occurring at the same times. Right: The trajectory
goes twice around this minimal 6-node cycle, generated by the path in thicker arrows
and its conjugate by a symmetry of order 2.

Proposition 7.1. In a motif containing the connections (22) between hyperbolic nodes, there is always
switching at the node XB.

Proof. Let m be the dimension of the stable manifold ofXB, let Dn−1 be a disk that meets the connection
X0 → XB transverselly and let VXB be a neighbourhod of XB. By the flow-box theorem, Dn−1 contains
a lower dimensional disk that is mapped by the flow, after a sufficient time t > 0, into a disk Dn−m

contained in VXB and transverse to W s
loc(XB). Thus, it is sufficient to establish that points in Dn−m

follow the two connections. By the λ-Lemma for flows (Corollary 3.2 in [8]), there are constants τ > 0
and C > 0 such that for every t ≥ τ the image ϕ(t,Dn−m) is Ck exponentially close to Wu

loc(XB) by
Ce−λt. Therefore it contains points close to both connections. �

All the nodes in the motifs of Proposition 6.3 are branch points. They are hyperbolic for most values
of the parameters for which the connections exist: lack of hyperbolicity means that the parameters satisfy
some extra equalities, defining subsets of codimension 1 in parameter space. Therefore we have:

Corollary 7.2. There is switching at all nodes in the motifs of Proposition 6.3 and their conjugates, for
almost every parameter value for which the connections exist.

7.2. Railroad switches. In general, when the connections at a branch point take place in non conjugate
fixed-point subspaces one of them is preferred by most nearby trajectories. We make this statement precise
in this section.

If the two connections leaving the branch point XB in the motif (22) take place in non conjugate fixed-
point subspaces, then generically they will correspond to different positive eigenvalues of the linearisation
at XB of the vector field. Suppose also that the linearisation of the vector field may be represented by
a diagonal matrix after a linear change of coordinates. When this happens and moreover all the other
eigenvalues are real and negative, we say there is a railroad switch at the branch point XB.
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Figure 6. Left: time series for x1, x2, x3; y1, y2, y3 (from top to bottom) for numerical
simulations of solutions following the quotient cycle C23. Parameter values in Table 8.
Right: The trajectory follows this 18-node cycle, generated by the third order symmetry
ρ applied to the path in thicker arrows and its rρ2γ2

π conjugate.

We will denote the eigenvalues at the branch point XB as

(23) −ν4 ≤ −ν3 ≤ −ν2 ≤ −ν1 < 0 < µ1 < µ2

where µj is the eigenvalue in the subspace containing the connection XB → Xj .
Given a diskD2 transverse to the stable manifold of XB we want to describe the set of initial conditions

in D2 that follow each of the connections starting at such a branch point. Using Proposition 7.1, we may
assume that D2 is already very close to the unstable manifold of XB.

Consider the linear equations:

(24)

{
v̇l = µlvl l = 1, 2
u̇j = −νjuj j = 1, . . . , 4

By Samovol’s theorem [23] (see also Section 6.4, Ch 3, Part I of [4]) there is a C1 change of coordinates
mapping the flow in a neighbourhood VB of XB into that of (24). In the new coordinates the point XB

is the origin, W s
loc(XB) is the subspace {v1 = v2 = 0}, the unstable manifold Wu

loc(XB) is the plane
{uj = 0, j = 1, . . . , 4} and the connections XB → Xl, l = 1, 2 take place along the vl axes.

v
1

v
2

v
1

v
2

α

α

ε

ε

Figure 7. Trajectories starting on the shadowed areas on the left follow the connections
XB → X1 and XB → X2, going through the ε-neighbourhoods of the axes on the square
(right). Points in the light grey area are mapped close to the v2 axes, those in the darker
area stay near the v1 axis.
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Let Q be a square {|vl| ≤ α, l = 1, 2, uj = 0, j = 1, . . . , 4}, contained in VB and let v1(t), v2(t) be
the first two coordinates of a trajectory that starts at a disk D2 transverse to W s

loc(XB). Trajectories
that follow the connection XB → X1 at a distance ε > 0 pass the boundary of Q close to the v1-axis
(Figure 7). These trajectories satisfy |v2(t)| < ε at the time t when v1(t) = ±α. For v1(0) = v0

1 > 0,
v2(0) = v0

2 > 0 this means v0
2 < ε(v0

1/α)µ2/µ1 , a cusp-shaped region bounded by the v1 axis and by a
curve tangent to it. Similarly, trajectories following XB → X2 at a distance ε > 0 close to the boundary
of Q have initial conditions v0

1 > 0, v0
2 > 0 in a larger region v0

2 > α(v0
1/ε)

µ2/µ1 bounded by the v2 axis
and a curve tangent to the v1 axis (Figure 7). The picture in the other quadrants may be obtained by
reflection on the axes. We have proved:

Proposition 7.3. Consider a motif of the form (22) with a railroad switch at XB. Then most nearby
trajectories will follow the connection that corresponds to the largest eigenvalue.

Consider the square Qη = {0 ≤ vl ≤ η, l = 1, 2} in D2
η and inside it the region Sη containing initial

conditions that follow the connection XB → X2 and arrive at the segment v2 = α at a distance ε to
the v2 axis, as in the construction above (light grey area in Figure 7). From the expressions used for
Proposition 7.3, it follows that the ratio of the areas of Sη to Qη satisfies

L (Sη)

L (Qη)
= 1 − µ1

µ1 + µ2
αε−µ2/µ1η−1+µ2/µ1 =⇒ lim

η→0

L (Sη)

L (Qη)
= 1

where L is the Lebesgue measure on D2
η. In this sense, finding trajectories that follow the connection

XB → X2 is a lot more probable than finding those that follow XB → X1 and we say then that there is
essentially no switching at XB.

This property is preserved if the change of coordinates guaranteed by Samovol’s theorem is of class
C2, but this requires the fulfilment of some non-resonance conditions that may be difficult to obtain in
equations with symmetry. The non-resonance conditions for a C1 change of coordinates are automatically
satisfied with the eigenvalues in (23). Incorporating the second order non-resonance conditions, all of
which concern the negative eigenvalues νl, l = 1, . . . , 4, we have:

Proposition 7.4. Suppose that at the branch point XB in the motif (22), with a railroad switch at XB,
the eigenvalues (23) do not have any of the following resonances:

ν2 = 2ν1 ν3 = 2ν1 ν4 = 2ν1

ν1 = ν2 and ν4 = 2ν3

ν1 = ν2 and ν4 = ν3 + ν2

Then there is essentially no branching at XB.

Railroad switches appear in many previous articles, in particular, Kirk and Silber [12], Brannath [6]
and Aguiar and Castro [1]. The preferred connection may be controlled by parameters in the equations
that change the relative size of the eigenvalues. In our case this will arise at branch points of the following
types

[PQw]
ր

[Rz]
ց

[P̃Qw]

and

[PQz]
ր

[P̃Qw]
ց

[Rw]

where connections take place in different subspaces. At all other branch points in the motifs of Propo-
sition 6.3 the pairs of connections take place along the same eigenspace, so there is no railroad switch
there. Nearby trajectories may be equally distributed between the two connections.

A railroad switch accounts for the differences in Figures 3 and 4 that show numerical plots of two
trajectories with the same initial condition, where the only difference is a change in sign of a parameter
that controls the relative size of the eigenvalues at the branch point. The trajectory in Figure 3 follows

consistently the connections [Rz] → [PQw], while that of Figure 4 follows [Rz ] → [P̃Qw].
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7.3. Stability of cycles. Given a quotient cycle, the union of all the cycles that may be obtained by
concatenating paths in the corresponding motif and in its conjugates, forms a subnetwork that we will also
call a heteroclinic cycle. These cycles cannot be asymptotically stable, since at some of their nodes there
are connections that move away from them, but they may still attract a large set of nearby trajectories.

The Krupa-Melbourne [13, 14] criteria for asymptotic stability of heteroclinic cycles are not applicable
here. This is not surprising, since the criteria imply asymptotic stability and this is not possible in a
network. Note that the criterium in [13] needs one-dimensional unstable manifolds at the nodes, and for
the criterium in [14] it is asked that the unstable manifold of each node is contained in the group orbit of
the stable manifold of the next node in the cycle. We adapt the Krupa-Melbourne [?, 14] and Brannath
[6] proofs to obtain a weaker form of stability.

Given a disk Dη transverse to a connection X0 → XB in a cycle where there is a railroad switch at XB,
consider the set Sη ⊂ Dη of points whose trajectories follow the connections in the cycle with distance

ε > 0 up to another connection γX0 → δXB, for some γ, δ ∈ Γ̃. We say that the cycle is essentially stable
if for small ε > 0 we have

lim
η→0

L (Sη)

L (Dη)
= 1

where L is the Lebesgue measure. The cycle is essentially asymptotically stable if a similar property also
holds for the set of points in Dη whose trajectories approach the cycle as t→ ∞.

Theorem 7.5. The cycle C12 is essentially asymptotically stable in R6 for a non empty open set of
parameter values for which the cycles C12 and C23 coexist.

Proof. We will impose conditions on the parameters to ensure the coexistence of the cycles and the
essential stability of C12. First we state the conditions and explain why they hold on a non empty open
set, then we show how they imply the stability.

We start with the conditions of Section 6 for existence of the connections in C12 and C23. To these we

add the condition that all the eigenvalues at the nodes [Rz], [Rw], [PQw] and [P̃Qw] are negative, except
for those guaranteeing the connections (the eigenvalues at each node are listed in Tables 9 and 10). In
order to have essentially no branching at [Rz] with trajectories following the connections [Rz] → [PQw] we
impose the non-resonance conditions in Proposition 7.4 and the condition C6 > 0 to have the eigenvector
in the [PQw] direction corresponding to the largest eigenvalue at [PQz].

Then, following the notation of [13], at each node Xj of the quotient cycle consider the eigenvalues of
the derivative of the vector field at Xj and let Pj be the plane that contains the connection Xj → Xj+1.
The eigenvalue in the invariant line Pj1 ∩ Pj that contains Xj is called radial. Let ej be the maximum
positive eigenvalue, −cj be the non-radial eigenvalue in Pj and let tj be the maximum eigenvalue whose
eigenvector is not contained in Pj1 + Pj , the weakest transverse eigenvalue. We require that the Krupa-
Melbourne [13] condition for stability is satisfied for C12:

3∏

j=1

min(cj , ej − tj) >

3∏

j=1

ej.

These conditions define an open set of parameters, since all of them are given by inequalities. We
know the open set is not empty, because the conditions are satisfied by the parameter values used for the
simulation in Figure 3, given in the first row of Table 8.

Consider a neighbourhood of Rz where there is a C2 change of coordinates transforming the differential
equations into the linear form (24), where the positive half-axis v2 corresponds to the connection Rz →
ρ2PQw. In these coordinates, let P2 be the plane uj = u0

j =constant, j = 1, . . . , 4, transverse to W s
loc(Rz)

and let Pα be the hyperplane v2 = α, transverse to Rz → ρ2PQw. As in Proposition 7.4 we look at the
square Qη = {0 ≤ vl ≤ η, l = 1, 2} in P2 and inside it the region Sη containing initial conditions that
follow the connection Rz → ρ2PQw arriving at Pα at distance ε to the connection. Trajectories starting
at Sη at a point (u0

1, . . . , u
0
4, v

0
1 , v

0
2) , with (x, y) = (v0

2 , v
0
1), are mapped into Pα by the transition map

ψ(x, y) = (u1, . . . , u4, v1, α) given by:

ul = u0
lα

νl/µ2x−νl/µ2 , l = 1, . . . , 4 v1 = αµ1/µ2yx−µ1/µ2 .

Recalling that the u0
l are constant in Qη it follows that Sη is mapped into a ruled surface in Pα generated

by a curve ul = hl(x), l = 1, . . . , 4 and containing lines through this curve and parallel to the v1 axis.
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We claim that Wu(Rw) meets W s(ρ2PQw) transversely. From this, it follows that the v1 axis is
transverse to W s(ρ2PQw), since in these coordinates Wu(Rw) is the plane ul = 0 and W s(ρ2PQw)
contains the v2 half-axis (the connection Rz → ρ2PQw). Therefore the ruled surface ψ(Sη) is transverse
to the codimension 1 manifold W s(ρ2PQw).

To establish the claim, note that in the original coordinates the connection Rz → ρ2PQw takes place
in the invariant plane

Ṽ = Fix(s1, γ
1
π, rγ

1
π/2) = {(x1, 0, 0; 0, y, y), x, y ∈ R}

and this plane Ṽ is contained in the invariant subspace

V = Fix(γ1
π, rγ

1
π/2) = {(x1, 0, 0; 0, y2, y3)}

that also contains the nodes ρ2Rw, ρRw, ρ2P̃Qw and their r-conjugates, as well as the corresponding

connections. Moreover, W s(ρ2PQw) ∩ V ⊂ Ṽ , actually W s(ρ2PQw) ∩ V consists of an open set in Ṽ
containing the two connections ±Rz → ρ2PQw. The complementary direction to W s(ρ2PQw) ∩ V in
V is Wu(ρ2PQw) ∩ V = Wu(ρ2PQw), given by the connections ρ2PQw → ρ2Rw and ρ2PQw → ρRw,
so this direction is transverse to W s(ρ2PQw). Thus the two-dimensional Wu(Rz) ⊂ V is transverse to
W s(ρ2PQw), as claimed.

We have obtained a subset of a disk transverse to the W s
loc(Rz) that follows the connection Rz →

ρ2PQw. Any one-dimensional disk through W s
loc(Rz) contained in this subset will accumulate, after

some time, in Wu(ρ2PQw), by the λ-lemma. Now the arguments of the proof of the Krupa-Melbourne
criterium (Theorem 2.7 in [13]) may be used without further adaptation to establish the stability of
C12. �

A similar result holds for the cycle C23 but not for C34. We had to exclude the cycle C34 from the
hypothesis in order to obtain stability of C12 —it is not possible to get parameters where the 3 cycles
exist and all other eigenvalues are negative.

7.4. Discussion. The stability results here are mainly for subnetwork Σ123, which looks is like the one
described by Kirk and Silber [12]. However, the dynamics is not the same. In this section we discuss this
point. We start with the similarities.

Most of the motif for subnetwork Σ123 is contained in

Fix(γ1
π) = {(x, 0, 0, y1, y2, y3) : x, y1, y2, y3 ∈ R},

which we identify with R4 and where we have the symmetry group Z4
2, as in the Kirk and Silber case,

generated by the full symmetries in Γ̃:

κ1 = γ2
π κ4 = s1

and the hidden symmetries in Γ:

κ2 = rγ1
π/2 κ3 = s1γ

3
π/2.

The first problem is that these symmetries do not work for the equations in R6 and if we change to
C6 we start having 1- and 2-dimensional group orbits of connections.

The second problem is that this reduction has a lot more symmetries than the Kirk and Silber case.
In particular,

Fix(〈ρ, ρ2, s1, γ
1
π, γ

2
π〉) = {(0, 0, 0; y, y, y) ∈ R6} ≡ {(0, ; y, y, y) ∈ R4}

is an invariant subspace (hexagons) that, together with some of its conjugates, prevents the connections

ρ2PQw → Rw or ρ2P̃Qw → Rw. So, we do not get connections ρ2PQw → Rw or ρ2P̃Qw → Rw inside
this space, because hexagons are on the way.

The third problem is that since inside this subspace we do not get the connections that close the cycle,
then we cannot do a direct application of the results of Kirk and Silber here. We could try to work on

the quotient R6/Γ̃ but this is a complicated object, due to all the isotropy subgroups. More important,
its regular part has dimension 6, so the global results obtained in 4 dimensions cannot be used.
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The behaviour of trajectories near a railroad switch is in strong contrast to switching with complete
freedom, as found in [2, 3]. The main difference is that here all eigenvalues are real, and this precludes
global switching even with one transverse intersection of invariant manifolds.

Acknowledgements: The first two authors acknowledge support from Centro de Matemática da Uni-
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Appendix A. Eigenspaces and eigenvalues near single-mode steady states

.

Name Subspace Kernel (generators) Action Eigenvalues

Rz (q, 0, 0; 0, 0, 0) all trivial 2a1x2

(iq, 0, 0; 0, 0, 0) O(2) ⋉ Z4 (γ3, s1; rγ1

π/2
) Z2 0

(0, u2, u3; 0, 0, 0) Z3(γ
3

2π/3
) O(2) ⋉ (Z4 × Z2) (a2 − a1)x2

(0, 0, 0; u, 0, 0) D2 × Z4 (s2, γ1

π; γ3

π/2
) O(2) × Z2 λ2 + C4x2

(0, 0, 0; 0, u, u) D2 × Z4 (s2, γ3

π; rγ1

π/2
) O(2) λ2 + (C5 + C6)x

2

(0, 0, 0; 0, u,−u) Z2 × Z4 (γ3

π/2
s2; rγ1

π/2
) O(2) × Z2 λ2 + (C5 − C6)x

2

PQz (q, 0, 0; 0, 0, 0) D3 × Z2 (s1, γ3

2π/3
; s2) D2 (a2 − a1)x2

(iq, 0, 0; 0, 0, 0) D3 × Z2 (s1, γ3

2π/3
; s2rγ3

π/3
) D2 (a2 − a1)x2

(0, q, q; 0, 0, 0) all trivial (a1 + a2)x
2

(0, q, −q; 0, 0, 0) D6 (s3, rγ3

π/3
) Z2 2(a1 − a2)x

2

(0, iq, iq; 0, 0, 0) D6 (s1, rγ3

π/3
) Z2 0

(0, iq, −iq; 0, 0, 0) D6 (s2, rγ3

π/3
) Z2 0

(0, 0, 0; u1, u2, u2) Z2 (s1) D6 µ1 + µ2 = 2λ2 + (C4 + 3C5)x
2

µ1µ2 = (λ2 + 2C5)×
(λ2 + (C4 + 3C5)x

2) − 2C6x2

(0, 0, 0; 0, u2,−u2) Z2 (s1rγ3

π) D3 × Z2 2λ2 + (C4 + 3C5)x2

Hz (q, q, q; 0, 0, 0) all trivial 2(a1 + a2)x
2

(iq, iq, iq; 0, 0, 0) D3 × Z3(ρ
2, s1; γ3

2π/3
) Z2 −5a3x4

(q1, q2, q3; 0, 0, 0), D3(s3, γ3

2π/3
) D3 2(a1 − a2)x

2

q1 + q2 + q3 = 0
(iq1, iq2, iq3), ; 0, 0, 0) Z3(γ

3

2π/3
) D6 0

q1 + q2 + q3 = 0
(0, 0, 0; u, u, u) D3(ρ2, s2) D3 λ2 + (C4 + 2C5 + 2C6)x

2

(0, 0, 0; u1, u2,−(u1 + u2)) empty D6 × Z3 λ2 + (C4 + 2C5 − C6)x
2

Tz (iq, iq, iq; 0, 0, 0) all trivial 2(a1 + a2)x
2

(q, q, q; 0, 0, 0) D3 × Z3(ρ
2, s1; γ3

2π/3
) Z2 5a3x4

(iq1, iq2, iq3); 0, 0, 0), D3(rs3, γ3

2π/3
) D3 2(a1 − a2)x

2

q1 + q2 + q3 = 0
(q1, q2, q3; 0, 0, 0), Z3(γ

3

2π/3
) D6 0

q1 + q2 + q3 = 0
(0, 0, 0; u, u, u) Z3(ρ

2) D3 × Z2 λ2 + (C4 + 2C5 + 2C6)x
2

(0, 0, 0; u1, u2,−(u1 + u2)) empty D6 × Z3 λ2 + (C4 + 2C5 − C6)x
2

Table 9. Eigenspaces and associated eigenvalues for (12) linearised near single-mode
steady states for z modes.
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Name Subspace Kernel (generators) Action Eigenvalues

Rw (0, 0, 0; q, 0, 0) all trivial 2B1y2

(0, 0, 0; iq, 0, 0) O(2) ⋉ Z4 (γ1, s2; rγ3

π/4
) Z2 0

(0, 0, 0; 0, u2, u3) Z2 (γ3

π) O(2) ⋉ D2 (B2 − B1)y
2

(u, 0, 0; 0, 0, 0) D2 ⋉ Z4 (s1, γ1

π; γ3

π/2
) O(2) × Z2 λ1 + C1y2

(0, u2, u3; 0, 0, 0) empty O(2) ⋉ D4 λ1 + C2y2

PQw (0, 0, 0; u, 0, 0) D2 (s2, γ1

π) D2 (B2 − B1)y
2

(0, 0, 0; 0, q, q) all trivial (B1 + B2)y2

(0, 0, 0; 0, q, −q) D4 (s3, rγ3

π/2
) Z2 (B1 − B2)y

2

(0, 0, 0; 0, iq, iq) D4 (s1, rγ3

π/2
) Z2 0

(0, 0, 0; 0, iq, −iq) D4 (s2, rγ3

π/2
) Z2 0

(q, 0, 0; 0, 0, 0) D2 ⋉ Z4 (s1, s3; rγ3

π/2
) Z2 λ1 + (2C2 + C3)y

2

(iq, 0, 0; 0, 0, 0) D2 ⋉ Z4 (s1, rγ1

π/2
s3; rγ3

π/2
s3) Z2 λ1 + (2C2 − C3)y

2

(0, u2, u3; 0, 0, 0) empty D2 ⋉ Z4 λ1 + (C1 + C2)y
2

Hw (0, 0, 0; q, q, q) all trivial 2(B1 + B2)y
2

(0, 0, 0; iq, iq, iq) D6 ⋉ Z2 (ρ2, s1; γ1

π) Z2 −5B3y4

(0, 0, 0; q1, q2, q3), D2 (s3, γ1

π) D3 2(B1 − B2)y2

q1 + q2 + q3 = 0
(0, 0, 0; iq1, iq2, iq3), Z2 (γ1

π) D6 0
q1 + q2 + q3 = 0
(q1, q2, q3; 0, 0, 0) Z2 (s3) D6 λ1 + (C1 + 2C2 + C3)y

2

(iq1, iq2, iq3; 0, 0, 0) empty D6 λ1 + (C1 + 2C2 − C3)y
2

Tw (0, 0, 0; iq, iq, iq) all trivial 2(B1 + B2)y
2

(0, 0, 0; q, q, q) D3 ⋉ Z2 (ρ2, rs1; γ1

π) Z2 −5B3y4

(0, 0, 0; iq1, iq2, iq3), D2 (rs3, γ1

π) D3 2(B1 − B2)y2

q1 + q2 + q3 = 0
(0, 0, 0; q1, q2, q3), Z2 (γ1

π) D6 0
q1 + q2 + q3 = 0

(iq1, iq2, iq3; 0, 0, 0) Z2 (rs3) D6 λ1 + (C1 + 2C2 + C3)y
2

(q1, q2, q3; 0, 0, 0) empty D6 λ1 + (C1 + 2C2 − C3)y
2

Table 10. Eigenspaces and associated eigenvalues for (12) linearised near single-mode
steady states for w modes.


