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Abstract

Following our work in [1] we study the possibility of bringing the transverse Poisson
structure to a coadjoint orbit (on the dual of a real Lie algebra) to a normal linear
form. We conclude that, if the isotropy subgroup of the (singular) point in question is
compact, of if the isotropy subalgebra is semisimple, then there is a linear transverse
Poisson structure to the corresponding coadjoint orbit.

We proceed to study the relation between two sufficient conditions for linearity (P.
Molino’s condition in [3] and a new version of our condition in [1]).

Finally we give a necessary condition for linearity of such structures and use it to
clarify the situation on se(3)∗.

2000 Mathematics Subject Classification: 53D17, 22E60
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1 Introduction

A real Poisson manifold is a pair (M, {, }), where M is a real, finite-dimensional, smooth
manifold and {, } is a Lie algebra structure on C∞(M) satisfying the Leibniz identity:

{fg, h} = f{g, h}+ {f, h}g, ∀f, g, h ∈ C∞(M).

The simplest examples are: (a) symplectic manifolds with their induced Poisson bracket
and (b) the dual of any real Lie algebra with the Lie-Poisson structure.

The notion of symplectic leaf through a point of a Poisson manifold was introduced by A.
Weinstein in [6], together with the notion of transverse Poisson structure to the symplectic
leaf.
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In the particular case where the starting Poisson manifold is the dual of any Lie algebra
g with its Lie-Poisson structure, the symplectic leaf through a point µ ∈ g∗ is just the
coadjoint orbit of µ. In such a case the following can be taken as a transverse manifold to
the coadjoint orbit ([6], [2]):

N = µ+ h◦,

where h is any supplement of gµ in g (gµ denotes the isotropy subalgebra of µ) and h◦ stands
for the annihilator of h in g∗.

On such a transverse manifold there is a canonically defined Poisson structure ([6]) which
is precisely the so-called transverse Poisson structure to the coadjoint orbit of µ. Of course,
due to the choice involved (choice of the supplement h on which N depends), one can
obtain different transverse Poisson structures to the coadjoint orbit of µ. Nevertheless, two
transverse Poisson structures to the coadjoint orbit of µ will always be Poisson-diffeomorphic.
And this brings us to the following question: how can we choose the supplement h so that
the transverse Poisson structure to the coadjoint orbit of µ is ”as simple as possible”?

Around 1984 P. Molino gave a sufficient condition on the supplement h, so that the
transverse Poisson structure on N = µ + h◦ would be linear. Using Molino’s condition, we
gave, in [1], a sufficient condition (on the isotropy subalgebra gµ) for the linearity of the
transverse Poisson structure.

In section 2 we will use Molino’s condition and the condition for linearity that we gave
in [1] to conclude that, if: (a) g is of compact type or (b) gµ is semisimple or (c) g is
semisimple and gµ is an ideal or (d) Gµ (the isotropy subgroup of µ) is compact, then the
transverse Poisson structure on a convenient N = µ+ h◦ will be linear.

We will then ”relax” the condition for linearity that we produced in [1], and study its
relation with Molino’s sufficient condition.

We proceed to give an example showing that neither of these two sufficient conditions is
necessary.

Finally, in section 3 we will give a necessary condition for linearity of the transverse
Poisson structure. We will use it on the Poisson manifold se(3)∗ to conclude that the
transverse Poisson structure to any of its singular coadjoint orbits is not linear (for any
choice of N).

2 On sufficient conditions for linearity of the transverse
Poisson structure

Before recalling Molino’s result ([3]) and our own’s ([1]) we will go through the construction
of the transverse Poisson structure to a coadjoint orbit. We refer the reader to [6], [2] and
[1] for a more detailed exposition.

Let g be a real finite dimensional Lie algebra and consider the Lie-Poisson structure on
its dual space: (M,P ) = (g∗, L). Given µ ∈ g∗ let Oµ denote the symplectic leaf throuhg µ
(this is just coadjoint orbit of µ), and gµ denote the isotropy subalgebra of µ:

gµ = {ξ ∈ g : µ ◦ adξ = 0}.

Pick any vector subspace h such that, as vector spaces:

g = gµ ⊕ h,

(we will refer to such h as a supplement of gµ), and consider the following transverse manifold
to Oµ:

Nh = µ+ h◦.
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On such a manifold build the transverse Poisson structure to Oµ at µ and denote it by
(Nh, Ph). Recall that this Poisson structure depends on the choice of h, even though differ-
ent choices of h will produce (locally) Poisson-equivalent structures.

We are interested in finding h such that the transverse Poisson structure (Nh, Ph) is as
simple as possible, more precisely, we want to consider the problem of finding h so that
(Nh, Ph) is linear.

Recall the following theorems:

Theorem 1 ([3]) Let g be any Lie algebra and let µ ∈ g∗ be such that there is a supplement
h to gµ satisfying:

[gµ, h] ⊂ h.

Then the transverse Poisson structure (Nh, Ph) to Oµ is linear.

Theorem 2 ([1]) Let g be any Lie algebra and B be an ad-invariant symmetric bilinear
form on g. Let µ ∈ g∗ be such that:

B|gµ×gµ

is nondegenerate. Then, taking h as the B-orthogonal of gµ, the transverse Poisson structure
(Nh, Ph) to Oµ is linear.

Using these results we can prove the following:

Corollary 1 Let g be a Lie algebra of compact type. Then, for any µ ∈ g∗, there is a linear
transverse Poisson structure (Nh, Ph) to Oµ.

Proof: on a Lie algebra of compact type there is an invariant symmetric bilinear form B
which is positive definite. The restriction of B to any subalgebra will be nondegenerate and
theorem 2 can be used . �

Corollary 2 Let µ ∈ g∗ be such that gµ is semisimple. Then there is a linear transverse
Poisson structure (Nh, Ph) to Oµ.

Proof: because gµ is semisimple the adjoint representation of gµ on g is faithful. Then
the Killing form of g, K, is nondegenerate when restricted to gµ and theorem 2 can again
be used (with B = K). �

Corollary 3 Let g be a semisimple Lie algebra, and let µ ∈ g∗ be such that gµ is an ideal.
Then there is a linear transverse Poisson structure (Nh, Ph) to Oµ.

Proof: let K denote the Killing form of g. Then ([5]) taking h as the K-orthogonal of
gµ the condition of theorem 1 holds. �

In the next corollary G will denote the connected and simply-connected Lie group with
Lie algebra g, and Gµ will stand for the isotropy subgroup of µ ∈ g∗, i.e.:

Gµ = {g ∈ G : Ad∗gµ = µ}.

Corollary 4 Let µ ∈ g∗ be such that its isotropy subgroup, Gµ, is compact. Then there is
a linear transverse Poisson structure (Nh, Ph) to Oµ.

3



Proof: because Gµ is compact, every representation ρ of Gµ on a finite-dimensional
vector space V is completely reducible. To prove this, start with any inner product 〈, 〉 on
V and use a Haar integral (see for example [4]) - which exists because Gµ is compact - to
define a new inner product on V :

〈u, v〉Gµ
:=
∫

Gµ

〈ρg(u), ρg(v)〉dg.

This new inner product on V is ρ-invariant because the Haar integral is invariant under right
translations on Gµ. This is the same as saying that, with respect to 〈, 〉Gµ

, ρ is orthogonal
and therefore, completely reducible.

Now consider the adjoint representation of Gµ on g:

Adµ : Gµ −→ Aut(g)
g 7−→ d (σg)e

where σg denotes conjugation (by g) on the group G. Clearly gµ is an Adµ-invariant sub-
space. By complete reducibility of Adµ, there is an Adµ-invariant supplement, say h, to gµ.
This means that:

Adµ(g)(h) ⊂ h, ∀g ∈ Gµ

which in turn implies that:
[gµ, h] ⊂ h

and theorem 1 can be used. �

This corollary, with the necessary adaptations, was conjectured by R. Loja Fernandes for
general Poisson structures. Our proof shows that his conjecture holds in the Lie-Poisson case.

Remark: The condition “Gµ compact” cannot be weakened to “gµ of compact type”. In
subsection 3.4 we will exhibit an example of g and µ such that gµ is of compact type but
there is no supplement h such that the transverse Poisson structure (Nh, Ph) is linear.

2.1 A weaker sufficient condition for linearity

We will now prove a slightly more general version of theorem 2 by relaxing the condition of
“invariance” of B.

Definition 1 Let g be a Lie algebra and g0 be any subalgebra of g. We will say that a
symmetric bilinear form B on g is adg0-invariant if:

B([ξ, η], ζ) +B(η, [ξ, ζ]) = 0, ∀ξ ∈ g0,∀η, ζ ∈ g.

Clearly ad-invariant bilinear forms on g are also adg0-invariant, for any Lie subalgebra g0.

It’s easy to see that the following results of [1] still hold with the “relaxed invariance of
B”:

Lemma 1 Let g be a Lie algebra and g0 be any subalgebra of g. Let B : g× g −→ R be an
adg0-invariant symmetric bilinear form on g and denote by:

g⊥0 = {ξ ∈ g : B(ξ, η) = 0, ∀η ∈ g0}

the B-orthogonal complement of g0. Then:

[g0, g
⊥
0 ] ⊂ g⊥0 .

If furthermore B|g0×g0 is nondegenerate, then: g = g0 ⊕ g⊥0 .
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This new lemma is all we need to refine theorem 2 as:

Theorem 3 Let g be any Lie algebra and let µ ∈ g∗. Let B be an adgµ-invariant symmetric
bilinear form on g such that:

B|gµ×gµ

is nondegenerate. Then, taking h to be the B-orthogonal of gµ, the transverse Poisson
structure (Nh, Ph) to Oµ is linear.

2.2 On the relation between two sufficient conditions for linearity

From what we have just seen, under the conditions of either theorem 1 or theorem 3, the
conclusion is that the transverse Poisson structure to Oµ, µ ∈ g∗, is linear on Nh = µ+ h◦.

We remark that, if theorem 3 is applicable, then also theorem 1 is applicable (with h
being the B-orthogonal of gµ), so when studying the relation between theorems 1 and 3 it is
enough to see when the condition of theorem 1 implies that of theorem 3. That is precisely
the content of the next lemma.

Lemma 2 Let g be a Lie algebra and gµ denote the isotropy subalgebra of µ ∈ g∗. If gµ is
either semisimple or of compact type then the conditions of theorems 1 and 3 are equivalent.

Proof: We just need to show that if gµ is either semisimple or of compact type then the
existence of h from theorem 1 implies the existence of the required adgµ

-invariant symmetric
bilinear form.

Let:
Bµ : gµ × gµ −→ R

be a nondegenerate ad-invariant symmetric bilinear form on gµ (if gµ is semisimple take Bµ

to be its Killing form, if gµ is of compact type take a positive definite ad-invariant symmetric
bilinear form). Then:

Bµ([X,Y ], Z) +Bµ(Y, [X,Z]) = 0, ∀X,Y, Z ∈ gµ.

Now use supplement h from theorem 1 to define the projection π : g −→ gµ with kernel h
and let:

B : g× g −→ R
(X,Y ) 7−→ Bµ(π(X), π(Y ))

Clearly B is a symmetric bilinear form on g which restricts to gµ×gµ as Bµ (nondegenerate).
The only thing left to check is that B is adgµ-invariant. Now, because gµ is a subalgebra
and Molino’s condition:

[gµ, h] ⊂ h,

holds, then:
π[X,Y ] = [X,π(Y )], ∀X ∈ gµ, Y ∈ g.

So for X ∈ gµ, Y, Z ∈ g we have:

B([X,Y ], Z) +B(Y, [X,Z]) = Bµ(π[X,Y ], π(Z)) +Bµ(π(Y ), π[X,Z])
= Bµ([X,π(Y )], π(Z)) +Bµ(π(Y ), [X,π(Z)])

which vanishes by ad-invariance of Bµ. �
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2.3 Example: so(4)∗

In this subsection we show that neither of the conditions of theorems 1 or 3 is necessary for
linearity. In fact, the following example shows that the condition of theorem 1 (the weaker
of the two conditions) is not necessary.

In [1] we studied the Lie-Poisson structure on so(4)∗ at its singular points (any point
of rank 2). We recall that, on the standard basis for so(4) and identifying again elements
Xi of the basis with linear coordinates xi on so(4)∗, the Poisson matrix for the Lie-Poisson
structure is given by:

Lx =


. −x4 −x5 x2 x3 .
x4 . −x6 −x1 . x3

x5 x6 . . −x1 −x2

−x2 x1 . . −x6 x5

−x3 . x1 x6 . −x4

. −x3 x2 −x5 x4 .

 .

Any point of the form:

µ = (a, b, c,−c, b,−a) with a2 + b2 + c2 6= 0

is singular (and has rank 2). A basis for the isotropy subalgebra of such a point is, for
example:

{E1, E2, E3, E4} = {X1 +X6, X2 −X5, X3 +X4, cX4 − bX5 + aX6}.

We assume abc 6= 0 and choose, for any λ 6= 1, the following supplement to gµ:

hλ =<

E5︷ ︸︸ ︷
λc(X1 −X6) + a(X4 −X3),

E6︷ ︸︸ ︷
b(X6 −X1) + a(X5 +X2)> .

Then:

1. for any λ 6= 1 Molino’s condition does not hold. In fact:

[E4, E6] = ac(X1 −X6) + bc(X2 +X5) + (a2 + b2)(X4 −X3),

which is not in hλ (since λ 6= 1).

2. the transverse Poisson structure on:

Nhλ
' {(a+ y1, b− y2, c+ y3,−c+ y3 + λcy4, b+ y2 − by4,−a+ y1 + ay4) : y1, . . . , y4 ∈ R}

is given by the linear Poisson matrix:

Phλ
(y) =


0 −2(2y3 + λcy4) 2(−2y2 + by4) −2(cy2 + by3) + (1− λ)bcy4
∗ 0 −2(2y1 + ay4) −2(cy1 − ay3) + (λ− 1)acy4
∗ ∗ 0 2(by1 + ay2)
∗ ∗ ∗ 0

 ,

(due to lack of space we only present the upper triangular part of the matrix).

We conclude that Molino’s condition is not needed for linearity.
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3 Necessary condition for linearity of the transverse
Poisson structure

Before presenting a necessary condition for linearity of the transverse Poisson structure we
will review the notion of linear approximation to a Poisson structure at a zero-rank point.
This was introduced by Weinstein in [6] and is the key notion behind linear normal forms.

3.1 The Linear Approximation to a Poisson Structure at a Zero-
Rank Point

In this section we will briefly outline Weinstein’s construction.

We recall that a Poisson structure on a vector space is linear if the Poisson bracket of
linear functions is again linear:

Definition 2 A Poisson bracket on a real, finite-dimensional, vector space V :

{, }L : C∞(V )× C∞(V ) → C∞(V ),

is said to be linear linear if
{f, g}L ∈ V ∗,

for every f, g ∈ V ∗.

If (V, {, }L) is a linear Poisson vector space, then (V ∗, {, }L) is a (finite-dimensional) Lie
subalgebra of (C∞(V ), {, }L). Conversely, given a real finite dimensional Lie algebra g, its
dual space inherits a linear Poisson structure: the Lie-Poisson structure on V = g∗.

Being so, linear Poisson structures on a vector space V are in a one-to-one correspon-
dence with Lie algebra structures on V ∗. This fact is used in the construction of the linear
approximation to a Poisson structure at a zero rank point.

Let (M,P ) be any Poisson manifold and x0 a zero-rank point of P . Consider the following
subsets of C∞(M) :

mx0 = {f ∈ C∞(M); f(x0) = 0},
m2

x0
= {f ∈ mx0 ; dfx0 = 0}.

Because x0 has rank zero, the subsets mx0 and m2
x0

are ideals in (C∞(M), {, }). Being
so, we can form the quotient:

mx0/m
2
x0

and identify it naturally with the cotangent space, T ∗x0
M , through the isomorphism:

I : mx0/m
2
x0

−→ T ∗x0
M

[f ] 7−→ dfx0 .

Using such an isomorphism and the induced Lie algebra structure on the quotient we
obtain a Lie algebra structure on T ∗x0

M . As remarked above, this amounts to saying that
Tx0M has a linear Poisson structure. This structure is known as the linear approximation
to (M,P ) at x0 and is denoted by (Tx0M,P o) or (Tx0M, {, }o).

In local coordinates, the Poisson tensor P o is just the first order Taylor series of the
original tensor P at the point x0. Furthermore, one can easily check that:

{dfx0 , dgx0}o = d ({f, g})x0
. (1)
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3.2 Necessary condition for linearity

We start by proving the following:

Lemma 3 Let (M,P ) and (N,Q) be Poisson manifolds and let ϕ : M → N be a (local)
Poisson diffeomorphism around x0 ∈ M . Then dϕx0 is a Poisson isomorphism between
(Tx0M,P o) and (Tϕ(x0)N,Q

o).

Proof: let y0 = ϕ(x0) and denote by:

• x1, . . . , xn local coordinates in M ;

• yi = ϕi(x), i = 1, . . . , n local coordinates in N ;

• Xi = (dxi)x0 , i = 1, . . . , n linear coordinates in Tx0M ;

• Yi = (dyi)y0 , i = 1, . . . , n linear coordinates in Ty0N .

We will check that ψ = dϕx0 : Tx0M → Tϕ(x0)N is a Poisson isomorphism, i.e., that:

{Yi ◦ ψ, Yj ◦ ψ}o
P = {Yi, Yj}o

Q ◦ ψ.

First, note that:

Yi ◦ ψ = (dyi)y0
(dϕ)x0

= (dϕi)x0

and, due to the hypothesis:

{yi ◦ ϕ, yj ◦ ϕ}P = {yi, yj}Q ◦ ϕ.

Using these and identity (1) we get:

{Yi ◦Ψ, Yj ◦Ψ}o
P =

{
(dϕi)x0

, (dϕj)x0

}o

P

= d
(
{ϕi, ϕj}P

)
x0

= d
(
{yi, yj}Q

)
y0

◦ (dϕ)x0

=
{

(dyi)y0
, (dyj)y0

}o

Q
◦ (dϕ)x0

= {Yi, Yj}o
Q ◦Ψ.

This concludes the proof. �

By replacing (N,Q) by a linear Poisson vector space we obtain:

Corollary 5 If (M,P ) is (locally, around a zero-rank point x0) Poisson equivalent to a lin-
ear Poisson structure, then (M,P ) is (locally) Poisson equivalent to its linear approximation
at x0.

Note that, being Poisson equivalent to its linear approximation at the zero-rank point
x0 is the usual definition of being linearizable at x0.

We will now concentrate on transverse Poisson structures to a coadjoint orbit, keeping
the notation of section 2.
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Theorem 4 If there is a supplement ho to gµ such that (Nho
, Pho

) is linear, then for every
supplement h the Poisson structure (Nh, Ph) is linearizable at µ.

Proof: pick any supplement h. Then ([6]) (Nh, Ph) is locally Poisson-equivalent to
(Nho

, Pho
), which is linear. Using the last corollary we get the result. �

Remark: Let us note that the theorem actually implies the following:

• Pick any supplement h to gµ and compute the transverse Poisson structure Ph on
Nh. If there are obstructions to linearizability at µ, then no supplement ho will ever
produce a linear transverse Poisson structure (typical obstructions to linearizability
are: (a) “non-matching” rank or (b) “non-matching” zero-rank-set, arbitrarily close
to µ).

Furthermore, if obstructions to linearizability occur for supplement h, then the same
obstructions must appear for any other supplement.

• Conversely, if Ph is linearizable at µ, then the same will happen for any Ph′ .

So it is really indifferent which h to choose.

3.3 Example: se(3)∗

We illustrate theorem 4 with an example on the dual of se(3). This Lie algebra was used
in [2] to suggest differences between transverse Poisson structures to coadjoint orbits in the
dual of semisimple and nonsemisimple Lie algebras.

Actually such differences are more subtle than what we would expect. Due to the fact
that so(4) is semisimple, there is a choice of supplement producing a polynomial transverse
Poisson structure ([2]). But also, because so(4) is of compact type, there is a choice of
supplement producing a linear transverse Poisson structure ([1]). Nevertheless for some
choices of supplement (see again [1]) we obtained nonpolynomial transverse structure.

The situation with se(3) seemed different: all attempts to produce polynomial transverse
structure were fruitless. But this did not exclude the fact that se(3) could present similar
behaviour to that of so(4). What we want to show now, using theorem 4, is that se(3)
will never (i.e., for any choice of supplement) produce linearizable structures at µ, let alone
linear structures.

It remains open (as far as we know) whether polynomial structures can be obtained in
this example.

So let g = se(3) = so(3) ∝ R3. A possible basis for this Lie algebra is:

X1
∼=

 . . .
. . −1
. 1 .

 , (0, 0, 0)

 ,

X2
∼=

 . . 1
. . .
−1 . .

 , (0, 0, 0)

 ,

X3
∼=

 . −1 .
1 . .
. . .

 , (0, 0, 0)

 ,

X4
∼= ((0), (1, 0, 0)) ,

X5
∼= ((0), (0, 1, 0)) ,

X6
∼= ((0), (0, 0, 1)) .
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Using this basis we have computed the Lie-Poisson structure for se(3)∗ (identifying naturally
the elements Xi of the basis with linear coordinates xi on the dual space se(3)∗):

Lx =


. x3 −x2 0 x6 −x5

−x3 . x1 −x6 . x4

x2 −x1 . x5 −x4 .
. x6 −x5 . . .

−x6 . x4 . . .
x5 −x4 . . . .

 ,

(dots stand for zero).
Now we remark that points of rank 4 are regular (therefore the transverse Poisson struc-

ture is trivial at such points) and points of rank 2 are of the form:

µ = (a, b, c, 0, 0, 0),

with a2 + b2 + c2 6= 0. Such points are all singular.
For an arbitrary point of rank two as above, we have:

gµ = 〈aX1 + bX2 + cX3, X4, X5, X6〉.

From now on we will assume, without loss of generality, that c 6= 0. We choose h to be:

h = 〈X1, X2〉.

Then, proceeding with the computations as in [1], we obtain the following:

1. the affine subspace of g∗ given by:

Nh ' {(a, b, c+ y1, y2, y3, y4) : y1, . . . , y4 ∈ R}

is a transverse manifold to the coadjoint orbit of µ;

2. the transverse Poisson structure on Nh is given by the matrix:

Ph(y) =


0 −c(−cy3 − y3y1 + by4)

c+ y1

c(−cy2 − y2y1 + ay4)
c+ y1

c(by2 − ay3)
c+ y1

∗ 0
−y2

4

c+ y1

y3y4
c+ y1

∗ ∗ 0 − y2y4
c+ y1

∗ ∗ ∗ 0


(where, as before, we are only presenting the upper part of the Poisson matrix).

3. the linear approximation to Ph at y = 0 is given by:

P o
h (y) =


0 cy3 − by4 ay4 − cy2 by2 − ay3

by4 − cy3 0 0 0
cy2 − ay4 0 0 0
ay3 − by2 0 0 0

 .

We can easily find obstructions to linearizability of Ph at y = 0 by non-matching zero-
-rank sets. In fact the zero-rank set for Ph is:

S0(Ph) = {(y1, 0, 0, 0) : y1 ∈ R}

whereas the same set for P 0
h is:

S0(P 0
h ) = {(cy1, ay4, by4, cy4) : y1, y4 ∈ R}.

And no matter how we choose another supplement h′, we will always find the same kind
of obstructions to linearizability.
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3.4 Example with compact-type isotropy subalgebra

In this subsection we present an example of a Lie algebra g and of µ ∈ g∗ such that: (a) gµ

is of compact type and (b) the transverse Poisson structure to Oµ is not linear on any Nh.
To show (b) we will make use, again, of theorem 4.

Let g be a real 4-dimensional Lie algebra with basis {T1, T2, X1, X2} and brackets given
by:

[T1, T2] = 0, [T1, X1] = T2, [T1, X2] = kX1

[T2, X1] = 0, [T2, X2] = T2

[X1, X2] = T1 +X1

(k is an arbitrary real number). In other words, the Poisson matrix for the Lie-Poisson
structure on g∗ is given by (again dots stand for zero):

L(t,x) =


. . t2 kx1

. . . t2
−t2 . . t1 + x1

−kx1 −t2 −(t1 + x1) .

 ,

Take µ = (1, 0, 0, 1) ∈ g∗. Then:

gµ = 〈T1, T2〉,

which is obvioulsy of compact type (for example, gµ is the Lie algebra of the 2-torus).
Now take the following supplement to gµ:

h = 〈X1, X2〉.

Then:
Nh ' {(1 + y1, y2, 0, 1) : y1, y2 ∈ R},

and usual computations (as described in [1]) produce:

Ph(y) =

(
0 y2

2

1+y1

− y2
2

1+y1
0

)
.

Again there are obstructions to linearizability since:

P 0
h (y) =

(
0 0
0 0

)
which is not Poisson equivalent to Ph in any neighbourhood of y = 0 (i.e., in any neighbour-
hood of µ). Theorem 4 then implies that there is no linear transverse Poisson structure to
the coadjoint orbit of such µ.

4 Final considerations

As far as we know there is no knowledge of a necessary and sufficient condition (on g or on
µ) for linearity.

In what concerns “polynomiality”, semisimplicity of the Lie algebra g is sufficient for the
existence of a polynomial transverse ([2]), but obviously it is not necessary (this condition
is not necessary even for linearity - see the last example in [1]).

Obstructions to “polynomiality” are harder to get, because only the first nonvanishing
homogeneous term in the Taylor series for P is itself a Poisson tensor. As we said in
subsection 3.3, we think it is an open question whether there is any polynomial transverse
structure on se(3)∗.
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