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1 Introduction

A basic question is the problem of obtaining connection coefficients between two se-
quences of functions, in particular, between two orthogonal polynomial sequences.
This last problem was already considered by L. Gegenbauer [11] just about the
Gegenbauer polynomials, by W. A. Al-Salam concerning the Bessel family [3] and
by R. Askey et al. about Laguerre, Gegenbauer and Jacobi cases [4, 5]. The results
of those works are based on properties of hypergeometric functions and generating
functions of the involving polynomials. In [20] several tables are provided giving
the coefficients of some polynomials (Chebyshev of first and second kind, Legendre,
Laguerre, Hermite), also giving the coefficients of 2™ in terms of those polynomials.
In this last case, there is no general expressions, only the values of the first coeffi-
cients. More recently, A. Ronveaux et al. [19] present a recursive approach of the
problem, with some general assumptions, given results for all classical polynomi-
als. The literature on this subject is extremely vast and a wide variety of methods
have been developed using several techniques like, recursion, hypergeometric ap-
proach, inversion and other combinatorial formulas, lowering operators, ..., etc, to
treat the connection coefficients for continuous, discrete and ¢— polynomials. See,
among others, the publications [1, 2, 6, 7, 10, 26, 27, 12, 13, 14, 15, 16, 17, 18, 28].

Here, we proceed with the simplest method based only on the recurrence re-
lation fulfilled by any orthogonal sequence, which leads to a recurrence relation
satisfied by the connection coefficients. But, generally, we do not succeed in resolv-
ing it through a compact form. Thus, it is required to guess a closed form for the
solution of the recurrence from enough data produced by a symbolic programming
language like Mathematica [29]. Next, the final goal of the work is to provide a
proof of the fact that the closed form is really a solution. For that, we use again
the same recurrence relation.

Unfortunately, in general, it is not possible to supply a model easily identifiable,
like an analytic object, from the symbolic results: for instance, when they are
not factorized (see, at the last section, the cases relating sequences belonging to
different families).

This work begins with a section of preliminaries, where we remember basic
definitions and results needed in the sequel. Next section is devoted to derive the
general recurrence relation satisfied by the connection coefficients, which play a
crucial role. After exposing the methodology employed to make the symbolic com-
putations and the proofs, we present closed formulas of the connection coefficients
for the families of Bessel, Laguerre and generalized Hermite. In each case, first,
we consider the connection coefficients between two sequences belonging to the
same family but with different parameters, and after, we consider the connection
coefficients between the canonical sequence and the orthogonal one. Finally, we
give some tables of coefficients between families with different director polynomials



for which we have not found closed formulas.

The sequences of Gegenbauer, Jacobi and a semi-classical type example [9, 23]
are exposed in [24]. We note that for Gegenbauer and Jacobi with the canonical
family, the methodology does not give a complete answer, but is the start point in
the corresponding theoretical proofs. In a forthcoming article [25], we shall present
results for other polynomials.

2 Preliminaries

Let P be the vector space of polynomials with coefficients in C and let P’ be
its dual. We denote by (u,p) the effect of u € P’ on p € P. In particular,
(u,2™) == (u), ,n = 0 represent the moments of u.

Let {P,},>0 be a monic polynomial sequence (MPS) with deg P, =n, n >0
and let {u,},>0 be its dual sequence, u,, € P’, defined by

(Uny Py = Opm , nym =0 . (1)

A form w is said regular [21, 22] if and only if there exist a MPS {P,},,>0, such
that:

(u,P,Pp,) = 0, n#m,nm2>0, (2)
(u,P) # 0,n>0. (3)

In this case, {P,},>0 is said regularly orthogonal with respect to u and is called a
monic orthogonal polynomial sequence (MOPS). The orthogonality conditions are
given by (2), and (3) corresponds to the regularity conditions.

The sequence {P,},>o is regularly orthogonal with respect to w if and only
if [21, 22] there exist two sequences of coefficients {8, }n>0 and {V,11}n>0, with
Ynt1 # 0, n > 0, such that, {P,},,>o satisfies the following recurrence relation of
order 2, with the corresponding initial conditions:

Poia(z) = (2 — Buy1) Prr1(x) — Y1 Pu(x), n 20, (4)

PO(.CE):l, Pl(.’ﬂ):x—ﬁo . (5)
Futhermore, the recurrence coefficients satisty:

(u, 253 (x))

T ) " )
o <u,P§+1(x)> n
= Ry 0 20 ")
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We remark that, from (5) and (7), the regularity conditions (3) are equivalent
to the conditions 7,11 # 0, n > 0.

The canonical sequence {X,,},>0, X,(x) = 2™, is orthogonal with respect to
the Dirac measure dy, (0o, f) = f(0), defined by the moments (J), = 6o, 7 =0,
where 0 is the Dirac symbol. This sequence is not regularly orthogonal, since its
recurrence coefficients are

ﬁn:077n+1:0;n>0- (8)

A form w is said symmetric if and only if (u)2,41 = 0, n > 0. A polynomial
sequence, { P, },>0, is said symmetric if and only if P,(—z) = (—=1)"P,(z), n > 0.

Let {P,}n>0 be a MOPS with respect to u. The following statements are
equivalent [8]:

n

a) u is symmetric. b) {P,},>0 is symmetric. ¢) 3, =0, n > 0. (9)

3 The general recurrence relation for the con-
nection coefficients

Given two MPS {P, },>0 and {P,},>o the coefficients that satisfy the equality
P,(z) = Z A Py(z), 1> 0 (10)
v=0

are called the connection coefficients ), := ALY 1= X, (P « P). It is obvious
that these coefficients are unique, because the polynomials are linearly indepen-
dents.

In the case of others polynomial normalizations, that is, B,(z) = k,P,(z),
k, # 0 and Bn(x) = /%npn(x), k, # 0, n > 0, the corresponding connection
coefficients to consider are

ABB = ko APP Rt NBX = APX KB = NPl 0<m<n, n> 0.

n,m’vm nm nm’¥m >

From now on, let us suppose that the sequences are MOPS with respect to the
forms u and 4, and are given by their recurrence coefficients {8, }n>0, {Vn+1}n>0
and {Bn}n>0, {An+1}n>0, respectively; let us consider the problem of determining
the corresponding connection coefficients.

To find A, ,,, we multiply both members of (10) by P,, and operating with 4,
we obtain

- <u Pnﬁm>

,0<m<n, n=0. (11)



Theorem 3.1 The connection coefficients, An,, = A, (P «— P), satisfy the fol-
lowing recurrence relation with the corresponding initial conditions

/\n+2,m + <ﬁn+1 - Bm) )\n-l—l,m + ’Yn—l—l)\n,m = ’?m—&-l/\n—&—l,m—&—l + >\n+1,m—1 (12)
0<m<n+1, n=>0.

Ao = Bo— B, (13)
/\n,n = 17 TL> 0, (14)
Am =0, n<0o0orm<0orm>n. (15)

Proof. Taking {n — n + 2} in (11) and applying (4), we get
Ant2,m <ﬁ: 157%> = <71» Pn+2]5m> = <1], (2 = Brs1) Poy1 — Yns1 Pl ﬁm>
= (. 2Puss P ) = B (0 P P ) = st (i Pl )
Using (11) twice, we obtain
Auszan (s P2 ) = W = Busthstin (i P2 ) = Gustdan (P2 ), (16)

where W, ,,, = <ﬂ,:rPn+1ﬁ’m> .

Taking {n — m—1}in (4), we have 2Py, = P14 B Po+m Pr_1, replacing
in W, ., we obtain

Wom = <7:L> Pn+115m+1> + Bm <ﬁ, Pn+1]5m> + Ym <71» Pn+1]5mfl> :
Applying three times (11), we write
Whm = Ansim1 <1~L7 p7721+1> + Bm)\nﬂ,m <1~L, [3731> + YmAnt1,m—1 <ﬁ> ~7i_1> .
Using (7) for {n — m} and {n — m — 1}, we get

Wn,m - )\n—i-l,m—i-l;?m—&—l <717 -‘E)r?@> + Bm)\n—l-l,m <a7 P73L> + >\n+1,m—1 <7]/7 Pr?1> .

Replacing in (16) and simplifying the factor <€L, Pﬁl> in both members, we
obtain (12).



In order to prove the initial conditions, let us write (10) for n = 1: Pi(z) =
M oPo(x) + A1 Pi(z). Then, from (5), we obtain

x— By = T+ <)\1,0 + >\1,150> )

and we get (13) and (14) for n = 1. From (10) and the fact that the
polynomials are monic, we get (14), ¥n > 0. Assuming, as usual, that
P_, =0, n>0, and due to deg (P,) = n, (15) becomes obvious. n

Remark 3.2 Ifu and @ are symmetric, then, from (11), we have

Aonom—1=0, Aopg12m =0, 0<m<n, n>0. (17)

4 Methodology

In order to deduce the results given in the next section of examples, we have used
the following methodology, which is explaned in more details in [25]:

e From the recurrence coefficients of the two MOPS { P, },,>0 and {f’n}nzo, that

is, from {3, }nz0, {Yn+1}tnz0 and {Bnnz0, {n+1}nzo0, We compute recursively
the corresponding first connection coefficients

{)\n,m(PH]S):Ogmgn,Ogngnmax},

with nmax fixed, using the general recurrence relation (12). This is done
making symbolic computation in the Mathematica language [29]. The re-
lation (12) is implemented using the Mathematica function definition that
remember values that it find. Often, we have applied the Mathematica com-
mands Simplify, FullSimplify, Together and Factor to the results given by
(12) in order to get the connection coefficients written in a simple conve-
nient form.

e In each case treated here, with exception to those cited below, the careful
observation of the Mathematica results allows to guess the model to the closed
formula for the connection coefficients. This formula can be implemented
in Mathematica in order to compare the first nmax connection coefficients
computed by it with those recursively computed by (12). Of course, this
verification does not constitute a mathematical proof. The demonstration
of the closed formula correspond to show that the model is a solution of the
general recurrence relation (12), that we write as follows

>\n+2,m = ’S/m—l-l)\n-i—l,m-l—l + >\n+1,m—1 - <ﬁn+1 - Bm) >\n+1,m - ’Yn—l—l)\n,m ) (18)
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for Vn > 0 and Vm : 0 < m < n. This could also be done, in principle,
directly via Mathematica, though that depends on the simplifying capabilities
of certain commands like FullSimplify and FunctionExrpand with respect to
expressions involving products and ratios of Gamma function’s values.

In general, we have used the following procedure.

Procedure 4.1 Find A, B, C and D such that

;g/m+1)\n+l,m+l =A )\n+2,m y >\n+1,m71 =B )\n+2,m s
- (ﬁn—i—l - ﬁm) >\n+1,m =C )\n+2,m > _/yn—s—l)\n,m =D /\n+2,m .

Thus, (18) is equivalent to Apiom = (A+ B+ C 4+ D)\piom, and we show
that A+ B+ C + D =1 with Mathematica.

In the case {P,}n>0 and {P,},>o are symmetric, the relation (18) is equiva-
lent to

)\2n+2,2m = :}/2m+1)\2n+1,2m+1 + )\2n+1,2m71 - '72n+1)\2n,2m ) (19>
A27’L-|—3,2m—|—1 = /?Zm+2)\2n+2,2m+2 + )\2n+2,2m - 72n+2)\2n+1,2m+1 ; (20)

and we have to show that the models to Aoy, 2, and Agp41 2m+1 are solutions
of these equations, Vn > 0 and Vm : 0 < m < n. Thus the preceding
procedure becomes the following.

Procedure 4.2 Find A, By, Ci and As, By, Cy such that

72m+1)\2n+1,2m+1 = A )\2n+2,2m ) ’72m+2)\2n+2,2m+2 = Ay )\2n+3,2m+1 )
>\2n+1,2m—1 = Bl )\2n+272m ) >\2n+272m = B2 )\2n+372m+1 )
—V2n+1>\2n,2m =0 )\2n+2,2m ) —72n+2)\2n+1,2m+1 = () )\2n+3,2m+1 .

Thus, (19) and (20) are equivalent to
Aont2.om = (A1+ B1+Ci)Aant29m » Aontsomi1 = (Ao + Ba+Co)Aonisomtt
and we show that A; + B; +C, =1 and Ay + By + Cy = 1 with Mathematica.

The success of this methodology depends on the possibility of writing the
connection coefficients computed recursively in a form that allows us to infer
the model for the closed formulas. To achieve it, we need to factorize the
numerators and the denominators of the connection coefficients so that we
can write them with the same ”appearance” than the recurrence coefficients.
For that, the above cited Mathematica commands play an important role.

7



e Exceptions to this methodology.

In the last section 5.4, we consider classical sequences belonging to different
families. We do not achieve to guess the model, because the results are not
products of simple elements neither ratio of products of simple elements,
they are sums of elements that can not be factorized. In spite of this, fixing
the values of the parameters, it is always possible to produce tables for the
first nmax symbolic connection coefficients.

5 Examples

5.1 Bessel polynomials

Let us express a monic Bessel polynomial sequence { P, («;.)},>0 with parameter «
in terms of other monic Bessel polynomial sequence {P,(&;.)},>0 with parameter
&. For that purpose, we need to recall the Bessel recurrence coefficients (see, for
example, [8, 21, 22]),

1 11—«
BO(OC) - _a ) 6n+1(a) = (n+ OZ)(TL—F a4+ 1) ) (21)
L (n+1)(n+2a—1)
Tn1(@) = (2n+2a—1)(n+a)?(2n+2a+1)’ (22)
Bn = 671(&)7 T+l = VYntl (6‘) ) (23)

for n > 0, with the regularity conditions o, & # —5, n > 0.
In this case, the general recurrence relation (12) produces the results of the
table 1. The observation of these results allows to suppose that the connection

coefficients are given by the following closed formula

(1) (n> - L5 "5 +a-a)

Q(nfl) (% + Oé) Hn71+m(% + d) ?

v=n—14+m

v=2m

for0<m<n-—1, n>1.
This formula can be written in terms of the Gamma function following to the
fact that

F(l):l,F(a—i—l):aF(a),H§<——(i;)m:1:[(a+u),n21. (24)

Thus, we have the following result.



Table 1: P represents the monic Bessel polynomials.

0 i 4(2a—2a+1)(2a—26+43)(a—a&)(a—a+1) (a—a+2) |

’ (a+2)(a+3)(a+4)(2a+5) (2a+7)a(a+1) (6+2) (26+1) (26+3)

1 20(2ac—2a+1)(2a—26+43)(a—a)(a—a+1) |

) (a+3)(a+4)(2a+5)(2a+7) (G+1) (a+2)(26+3) (26+5)

2 B 20(2a—2a+1)(a—&)(a—a+1) |

) (a+3)(a+4)(2a+T7)(a+2)(&+3)(2a+5)

3 20(2a—2a+1)(a—a&) |

) (a+4)(2a+7)(a+3)(2a+7)

5(a—a)

45 | “Groerm | !

0 8(2a—2a+1)(2a—24+3)(2a—2a+5) (a—a&) (a—a+1) (a—a+2) |
, (013)(a+4)(a+5)(20+5) (2a+7) (2a+9)a(a+ 1) (a+2) (2a+1) (2a+3) (2415)
1 B 24(2a—2a+1)(2a—26+43)(a—a)(a—a+1) (a—a+2) |

, (013) (at4)(at5) (2ot ) (2at9)(a+1)(G12) (at3)(2a13)(2615)

2 60(200—2a+1)(2a—26+43)(a—a&)(a—a+1) |

, (ot D) (at5)(2a+7) (201 9) (61 2)(613)(26+5) (26+7)

3 _ 40(20—2d+1)(a—a)(a—a+1) |

) (o+4)(a+5) (2a+9) (a+3) (a+4) (2a+7)

30(2ac—2a+1)(a—a) 6(a—a)
45,6 | armatoarneere | meaGe | L




Proposition 5.1 ( see, also, [3] )
The Ay = Apm(P(a; —) < P(&; —)), where P denotes the Bessel polynomi-

als, are given by

n) I'2a—a)+n—m)I'2a+n+m—1)I2(a+m))

Anm = (—1)"+m2”—m< I'2(a—a)Il'2(a+n)—DI'2a+n+m)

" (25)

for0<m<mn, n>0.

Proof. Let us use the procedure 4.1.

Taking {n - n+2}, {n >n+1m—-m+1},{n—->n+1,m—->m—1}
and {n — n + 1} in (25), we get, respectively

2
/\n+2,m - (_1>n+m2n—m+2<n+ ) (26)

F2a—a)+n—m+2)T2a+n+m+ DT(2(a+m))
I'2(a—a)l'2(a+n)+3)'(2&a+n+m+2)

)

+1
Moiimes = (—=1ynrmon—m( " P
i = (aympen (2 (27)

IF'2lao—a)+n—m)I'2a+n+m+1)I'(2(&+m) +2)
IF'2la—a)l'2a+n)+DI'Qa+n+m+2)

Y

1
)\n—l-l,m—l = (_1)n+m2nm+2(n+ ) (28)

m—1
IF'2a—a)+n—m+2)I'2a+n+m—1)I'(2(a+m)—2)
I'2(a—a)I'2(a+n)+1I'2a+n+m)

Y

hst = (1 (M) (29)

IF'2a—a)+n—m+DI'Q2a+n+m)['(2(a+m))
I'2(a—a)l'2a+n)+1)I'2a+n+m+1)

From (26) and (27), noting that (::;11) = ("_(T;IQ))((Z;TSH) ("2

the properties (24) of the Gamma function into account, we can write

) and taking

 (n=m4+1)(n—-m+2)
Antimtl = T 2)m+ 1) 2(a+n)+1)(a+n+1)
(@+m)2(a+m)+1)

2a—a)+n—m)2a—a)+n—m+1)

)\n+2,m . (30)

10



Hence and (23), we get Ym41 An+1,m+1 = ANnt2,m, where

 (n=m+1)(n—m+2)
A = — 19 2(a+n)+1)(a+n+1) (31)

(26 +m — 1)
(@+m)2a+m)—1)2(a—a)+n—m)2a—a)+n—m+1)

Due to (26) and (28), using (24) and noting that (7’::11) = %(”;2), we get
Ant1m—1 = BApt2m, where
B - m 2a+n)+1)(a+n+1) (32)
(n+2)2a+n+m—1)2a+n+m)
(2a+n+m)2a+n+m+1)
(@+m-—1)2(a+m)—1)

By virtue of (26) and (29), using (24), noting that (") = 2=mt2("+2) "anq

m n+2 m

also from (21) and (23), we obtain — (8,11 — Bm)/\%l,m = C\py2.m, where

C:

(n—m+2) l—a l-a
(n+2) {@Hﬁmn+a+n_Xm+@—1mn+®}
2a+n)+1)(a+n+1)2a+n+m+1)

33
2a+n+m)2a—a)+n—m+1) (33)
On account of (25) and (26), using (24) and noting that
n\ _ (n—m+1)(n—m+2) /n+2
(m) = <n+1§En+g) ( :72 )7 we get
— 1)(n — 2
. (n—=m+1)(n—m+2) (34)

(n+1)(n+2)
2(a+n)—1)(a+n)2(a+n)+1)(a+n+1)
a+n+m—1)2a+n+m)
(2a+n+m)(2a+n+m+1)
2a—a)+n—m)2(a—a)+n—m-+

e ()

From this and (22), we obtain —v,4+1A\nm = DAyjom, where

(n—m+1)(n—m+2) (a+n+1)(n+2a—-1)

(n+2) (a+n)2a+n+m—1)2a+n+m)
(2a+n+m)(2a+n+m-+1)

2a—a)+n—m)2a—a)+n—m+1)

D

(36)

It can be shown in Mathematica [29], using, for example, the command
Together or Simplify, that A+ B+ C + D =1, as desired. ]

11



Next, we give, the connection coefficients corresponding to the canonical se-
quence and the Bessel polynomials.

Proposition 5.2 ( see, also, [3] )
The M, := Ay (X — P(&; —)), where P denotes the Bessel polynomials, are
given by

0<m<n, n>0. (37)

Anm = (=1)"Fm2n—m (”> I'(2(a+m)

m)'(2a+n+m)’

Proof. In this case, we must consider (8) and 3,, Fn11,7 > 0 given by (23) and
afterward follow the same method of the preceding proof. [ ]

5.2 Laguerre polynomials
We recall the Laguerre recurrence coefficients (see, for example, [8, 21, 22]),
ﬂn(a) :2n+&+1 ) /Yn-i-l(oz) = (n—i—l)(n—f—a—i—l), TLZ 0 )

with the regularity condition o # —n, n > 0. Following the same method, we
achieve to the corresponding connection coefficients.

Proposition 5.3 ( see, also, [4, 5] )
Denoting by P the Laguerre polynomials, it holds:

o The My := Aam(P(a;—) — P(&; —)) are given by

n)F(a—d+n—m) 0<m<mn, n>0.

INa— &)
o The Ay = Aym(X «— P(&;—)) are given by

o = (MYEOEREY o s
’ m) (a@+m+1)

5.3 Generalized Hermite polynomials

Let us consider the case of the generalized Hermite sequence {P,(u;.)}n>0. The
recurrence coefficients are [§]

Ba=0 ) G =G () = 5 (1 + 14 a1+ (1)), n >0 (38)

We remark that this is a symmetric, semi-classical of class 1 sequence. When
1 = 0, we recover the classical Hermite sequence.

12



Proposition 5.4 Denoting by P the generalized Hermaite polynomauals, it holds,
for0<m <nandn >0:

1. The Ny = N (P(p; —) < P(f1;—)) are given by
I'(p—p+n—m)
A n,2m -1 nm (1
o = COM ()T @
)\2n+172m+1 - /\Qn,Zm . (40)

2. The My = Ay (X «— P(fi; —)) are given by

_(n\T(i+n+1/2)
&m%r_(m)F@%ﬂn+1ﬂ)’

g+n+1/2
fa+m+1/2

)\2n+1,2m+1 - )\Qn,2m .

3. The Ay = A (P(p; —) «— X)) are given by

&Mm:@4yw(”>ﬂu+n+um

m)T(up+m+1/2)°
\ pAnA41/2
2n+1,2m+1 — ,u—{—m—l— 1/2 2n.2m -

4. In all the cases,
A2n,27’r7,—1 =0= A271—{—1,2777, .

Proof. We begin by showing that the first assertion holds. The proofs of the
statements 2 and 3 are analogous. The statement 4 is the same as (17).

From (40), the formulas of the procedure 4.2 become

’72m+1)\2n,2m = A )\2n+2,2m ) ’Yzm+2>\2n+2,2m+2 = Ay )\2n+2,2m )
)\2n72m—2 = Bl )\2n+272m > )\2n+272m = BZ )\2n+272m 5
—72n+1/\2n,2m =0 )\2n+2,2m ) —72n+2/\2n,2m = () )\2n+2,2m .

It is easy to deduce that

A — n—m+1 (m+j+3) A — n—m+1
e n+l (u—p+n—-m) > 2 p—j+n—-m’
m
B, = By =1
1 +1 ) 2 )
n—m+1 (n+p+y) n—m-+1
Clz = 3 02: = .
n+l (p—f+n—m) p—p+n—m
Now, we can verify that A1 + B +C; =1and Ay + Bo + Cy = 1. [

13



5.4 Miscellaneous examples

In this section, we give some tables of connection coefficients between sequences
belonging to different classical families with specific values of parameters up to a
fixed value of degree. More precisely, we consider the Hermite polynomials in terms
of the Legendre ones and vice-versa. Also, we present the Laguerre polynomials
with null parameter in terms of the Bessel ones with parameter equal to 1, and
vice-versa. Of course, we could give many other examples.

Table 2: P and @) represent the monic Hermite and the monic Legendre polyno-

mials,
Kl Mm@ —Q), m=0,....n |
0 1
1 0 1
T
22
3 0 | -2 I
4] -5 0 [ -2 0 1
5] 0 | & ~3 0 |1
29 155 135
i e B e e T I
9 (1)44 117 66 20105 286 RT5T 015 770
~ 176 286 130 —97

Table 3: @ and P represent the monic Legendre and the monic Hermite polyno-

mials .
’nH )‘n,m(QHP),TTLZO,...,n
0 1
1 0 1
2| & 0 1
31 0 z 0 1
alsE o [Bl o [1
sl 0o S ol ®lTo]1
- % 21%5 % 10215 % 231 !
! 77(7)91 204 95977 S 1(929 2 122 !
8 | amos | O | %g | 0 | 55| 0 |20 1
R
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Table 4: P(0; —) and Q(1; —) represent the monic Laguerre and the monic Bessel
polynomials with parameters 0 and 1, respectively.

’ n H A (P(0; =) — Q(1;—)), m=0,...,n ‘

0 1

1 -2 1

2 2 -5 1
0T 138

S —

S s R s N S s (OB B

5 a5 21 7 9 -26 1

G | 2998008 [ 304921 508145 | 25832 5352 37 1
315 35 63 9 11

7 | _5iddaay [ 2013506 | 3903026 | 368T8A5 | _2r2545 | 12110 | g
63 27 15 99 33 13

Table 5: Q(1; —) and P(0; —) represent the monic Bessel and the monic Laguerre
polynomials with parameters 1 and 0, respectively.

|

Am(Q(L; =) «— P(0;—)), m=0,...,n
0 1
1 2 1
2 2 5 1
7 T2
5 vig) 5152 517(()) !
1 B 1hs1 60785 1})’478 L
5 945 63 9 9 26 1
6 | Ss5202 PPN 597350 86044 5230 37 1
10395 495 99 33 11
|| 15250407 | I54013984 | AT903552 | 13689690 | 23435 | 1940 | g
27027 3861 715 429 3 13
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