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1 Introduction

A basic question is the problem of obtaining connection coefficients between two se-
quences of functions, in particular, between two orthogonal polynomial sequences.
This last problem was already considered by L. Gegenbauer [11] just about the
Gegenbauer polynomials, by W. A. Al-Salam concerning the Bessel family [3] and
by R. Askey et al. about Laguerre, Gegenbauer and Jacobi cases [4, 5]. The results
of those works are based on properties of hypergeometric functions and generating
functions of the involving polynomials. In [20] several tables are provided giving
the coefficients of some polynomials (Chebyshev of first and second kind, Legendre,
Laguerre, Hermite), also giving the coefficients of xn in terms of those polynomials.
In this last case, there is no general expressions, only the values of the first coeffi-
cients. More recently, A. Ronveaux et al. [19] present a recursive approach of the
problem, with some general assumptions, given results for all classical polynomi-
als. The literature on this subject is extremely vast and a wide variety of methods
have been developed using several techniques like, recursion, hypergeometric ap-
proach, inversion and other combinatorial formulas, lowering operators, ..., etc, to
treat the connection coefficients for continuous, discrete and q− polynomials. See,
among others, the publications [1, 2, 6, 7, 10, 26, 27, 12, 13, 14, 15, 16, 17, 18, 28].

Here, we proceed with the simplest method based only on the recurrence re-
lation fulfilled by any orthogonal sequence, which leads to a recurrence relation
satisfied by the connection coefficients. But, generally, we do not succeed in resolv-
ing it through a compact form. Thus, it is required to guess a closed form for the
solution of the recurrence from enough data produced by a symbolic programming
language like Mathematica [29]. Next, the final goal of the work is to provide a
proof of the fact that the closed form is really a solution. For that, we use again
the same recurrence relation.

Unfortunately, in general, it is not possible to supply a model easily identifiable,
like an analytic object, from the symbolic results: for instance, when they are
not factorized (see, at the last section, the cases relating sequences belonging to
different families).

This work begins with a section of preliminaries, where we remember basic
definitions and results needed in the sequel. Next section is devoted to derive the
general recurrence relation satisfied by the connection coefficients, which play a
crucial role. After exposing the methodology employed to make the symbolic com-
putations and the proofs, we present closed formulas of the connection coefficients
for the families of Bessel, Laguerre and generalized Hermite. In each case, first,
we consider the connection coefficients between two sequences belonging to the
same family but with different parameters, and after, we consider the connection
coefficients between the canonical sequence and the orthogonal one. Finally, we
give some tables of coefficients between families with different director polynomials
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for which we have not found closed formulas.
The sequences of Gegenbauer, Jacobi and a semi-classical type example [9, 23]

are exposed in [24]. We note that for Gegenbauer and Jacobi with the canonical
family, the methodology does not give a complete answer, but is the start point in
the corresponding theoretical proofs. In a forthcoming article [25], we shall present
results for other polynomials.

2 Preliminaries

Let P be the vector space of polynomials with coefficients in C and let P ′ be
its dual. We denote by 〈u, p〉 the effect of u ∈ P ′ on p ∈ P . In particular,
〈u, xn〉 := (u)n , n > 0 represent the moments of u.

Let {Pn}n>0 be a monic polynomial sequence (MPS) with deg Pn = n, n ≥ 0
and let {un}n>0 be its dual sequence, un ∈ P ′, defined by

〈un, Pm〉 = δn,m , n,m > 0 . (1)

A form u is said regular [21, 22] if and only if there exist a MPS {Pn}n>0, such
that:

〈u, PnPm〉 = 0 , n 6= m , n, m ≥ 0 , (2)〈
u, P 2

n

〉
6= 0 , n ≥ 0 . (3)

In this case, {Pn}n>0 is said regularly orthogonal with respect to u and is called a
monic orthogonal polynomial sequence (MOPS). The orthogonality conditions are
given by (2), and (3) corresponds to the regularity conditions.

The sequence {Pn}n>0 is regularly orthogonal with respect to u if and only
if [21, 22] there exist two sequences of coefficients {βn}n>0 and {γn+1}n>0, with
γn+1 6= 0, n > 0, such that, {Pn}n>0 satisfies the following recurrence relation of
order 2, with the corresponding initial conditions:

Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n > 0 , (4)

P0(x) = 1, P1(x) = x− β0 . (5)

Futhermore, the recurrence coefficients satisfy:

βn =
〈u, xP 2

n(x)〉
〈u, P 2

n(x)〉
, n > 0, (6)

γn+1 =

〈
u, P 2

n+1(x)
〉

〈u, P 2
n(x)〉

, n > 0. (7)
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We remark that, from (5) and (7), the regularity conditions (3) are equivalent
to the conditions γn+1 6= 0, n > 0.

The canonical sequence {Xn}n>0, Xn(x) = xn, is orthogonal with respect to
the Dirac measure δ0, 〈δ0, f〉 = f(0), defined by the moments (δ0)n = δ0,n, n > 0,
where δ is the Dirac symbol. This sequence is not regularly orthogonal, since its
recurrence coefficients are

βn = 0 , γn+1 = 0 , n > 0 . (8)

A form u is said symmetric if and only if (u)2n+1 = 0, n ≥ 0. A polynomial
sequence, {Pn}n>0, is said symmetric if and only if Pn(−x) = (−1)nPn(x), n > 0.

Let {Pn}n>0 be a MOPS with respect to u. The following statements are
equivalent [8]:

a) u is symmetric. b) {Pn}n>0 is symmetric. c) βn = 0, n > 0. (9)

3 The general recurrence relation for the con-

nection coefficients

Given two MPS {Pn}n>0 and {P̃n}n>0 the coefficients that satisfy the equality

Pn(x) =
n∑

ν=0

λn,νP̃ν(x), n > 0 (10)

are called the connection coefficients λn,ν := λPP̃
n,ν := λn,ν(P ← P̃ ). It is obvious

that these coefficients are unique, because the polynomials are linearly indepen-
dents.

In the case of others polynomial normalizations, that is, Bn(x) = knPn(x),
kn 6= 0 and B̃n(x) = k̃nP̃n(x), k̃n 6= 0, n ≥ 0, the corresponding connection
coefficients to consider are

λBB̃
n,m := knλ

PP̃
n,mk̃−1

m , λBX
n,m := knλ

PX
n,m , λXB

n,m := λXP
n,mk−1

m , 0 ≤ m ≤ n, n ≥ 0 .

From now on, let us suppose that the sequences are MOPS with respect to the
forms u and ũ, and are given by their recurrence coefficients {βn}n>0, {γn+1}n>0

and {β̃n}n>0, {γ̃n+1}n>0, respectively; let us consider the problem of determining
the corresponding connection coefficients.

To find λn,m, we multiply both members of (10) by P̃m and operating with ũ,
we obtain

λn,m =

〈
ũ, PnP̃m

〉
〈
ũ, P̃ 2

m

〉 , 0 6 m 6 n, n > 0 . (11)
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Theorem 3.1 The connection coefficients, λn,ν := λn,ν(P ← P̃ ), satisfy the fol-
lowing recurrence relation with the corresponding initial conditions

λn+2,m +
(
βn+1 − β̃m

)
λn+1,m + γn+1λn,m = γ̃m+1λn+1,m+1 + λn+1,m−1 (12)

0 6 m 6 n + 1, n > 0 .

λ1,0 = β̃0 − β0 , (13)

λn,n = 1, n > 0 , (14)

λn,m = 0, n < 0 or m < 0 or m > n . (15)

Proof. Taking {n→ n + 2} in (11) and applying (4), we get

λn+2,m

〈
ũ, P̃ 2

m

〉
=

〈
ũ, Pn+2P̃m

〉
=

〈
ũ, [(x− βn+1) Pn+1 − γn+1Pn] P̃m

〉
=

〈
ũ, xPn+1P̃m

〉
− βn+1

〈
ũ, Pn+1P̃m

〉
− γn+1

〈
ũ, PnP̃m

〉
.

Using (11) twice, we obtain

λn+2,m

〈
ũ, P̃ 2

m

〉
= Wn,m − βn+1λn+1,m

〈
ũ, P̃ 2

m

〉
− γn+1λn,m

〈
ũ, P̃ 2

m

〉
, (16)

where Wn,m =
〈
ũ, xPn+1P̃m

〉
.

Taking {n→ m−1} in (4), we have xP̃m = P̃m+1+β̃mP̃m+γ̃mP̃m−1, replacing
in Wn,m, we obtain

Wn,m =
〈
ũ, Pn+1P̃m+1

〉
+ β̃m

〈
ũ, Pn+1P̃m

〉
+ γ̃m

〈
ũ, Pn+1P̃m−1

〉
.

Applying three times (11), we write

Wn,m = λn+1,m+1

〈
ũ, P̃ 2

m+1

〉
+ β̃mλn+1,m

〈
ũ, P̃ 2

m

〉
+ γ̃mλn+1,m−1

〈
ũ, P̃ 2

m−1

〉
.

Using (7) for {n→ m} and {n→ m− 1}, we get

Wn,m = λn+1,m+1γ̃m+1

〈
ũ, P̃ 2

m

〉
+ β̃mλn+1,m

〈
ũ, P̃ 2

m

〉
+ λn+1,m−1

〈
ũ, P̃ 2

m

〉
.

Replacing in (16) and simplifying the factor
〈
ũ, P̃ 2

m

〉
in both members, we

obtain (12).
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In order to prove the initial conditions, let us write (10) for n = 1: P1(x) =
λ1,0P̃0(x) + λ1,1P̃1(x). Then, from (5), we obtain

x− β0 = λ1,1x +
(
λ1,0 + λ1,1β̃0

)
,

and we get (13) and (14) for n = 1. From (10) and the fact that the
polynomials are monic, we get (14), ∀n ≥ 0. Assuming, as usual, that
P−n = 0, n > 0, and due to deg (Pn) = n, (15) becomes obvious.

Remark 3.2 If u and ũ are symmetric, then, from (11), we have

λ2n,2m−1 = 0 , λ2n+1,2m = 0 , 0 6 m 6 n, n > 0 . (17)

4 Methodology

In order to deduce the results given in the next section of examples, we have used
the following methodology, which is explaned in more details in [25]:

• From the recurrence coefficients of the two MOPS {Pn}n≥0 and {P̃n}n≥0, that
is, from {βn}n≥0, {γn+1}n≥0 and {β̃n}n≥0, {γ̃n+1}n≥0, we compute recursively
the corresponding first connection coefficients

{λn,m(P ← P̃ ) : 0 ≤ m ≤ n, 0 ≤ n ≤ nmax} ,

with nmax fixed, using the general recurrence relation (12). This is done
making symbolic computation in the Mathematica language [29]. The re-
lation (12) is implemented using the Mathematica function definition that
remember values that it find. Often, we have applied the Mathematica com-
mands Simplify, FullSimplify, Together and Factor to the results given by
(12) in order to get the connection coefficients written in a simple conve-
nient form.

• In each case treated here, with exception to those cited below, the careful
observation of the Mathematica results allows to guess the model to the closed
formula for the connection coefficients. This formula can be implemented
in Mathematica in order to compare the first nmax connection coefficients
computed by it with those recursively computed by (12). Of course, this
verification does not constitute a mathematical proof. The demonstration
of the closed formula correspond to show that the model is a solution of the
general recurrence relation (12), that we write as follows

λn+2,m = γ̃m+1λn+1,m+1 + λn+1,m−1−
(
βn+1 − β̃m

)
λn+1,m− γn+1λn,m , (18)
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for ∀n ≥ 0 and ∀m : 0 ≤ m ≤ n. This could also be done, in principle,
directly via Mathematica, though that depends on the simplifying capabilities
of certain commands like FullSimplify and FunctionExpand with respect to
expressions involving products and ratios of Gamma function’s values.

In general, we have used the following procedure.

Procedure 4.1 Find A, B, C and D such that

γ̃m+1λn+1,m+1 = A λn+2,m , λn+1,m−1 = B λn+2,m ,

−
(
βn+1 − β̃m

)
λn+1,m = C λn+2,m , −γn+1λn,m = D λn+2,m .

Thus, (18) is equivalent to λn+2,m = (A + B + C + D)λn+2,m, and we show
that A + B + C + D = 1 with Mathematica.

In the case {Pn}n≥0 and {P̃n}n≥0 are symmetric, the relation (18) is equiva-
lent to

λ2n+2,2m = γ̃2m+1λ2n+1,2m+1 + λ2n+1,2m−1 − γ2n+1λ2n,2m , (19)

λ2n+3,2m+1 = γ̃2m+2λ2n+2,2m+2 + λ2n+2,2m − γ2n+2λ2n+1,2m+1 , (20)

and we have to show that the models to λ2n,2m and λ2n+1,2m+1 are solutions
of these equations, ∀n ≥ 0 and ∀m : 0 ≤ m ≤ n. Thus the preceding
procedure becomes the following.

Procedure 4.2 Find A1, B1, C1 and A2, B2, C2 such that

γ̃2m+1λ2n+1,2m+1 = A1 λ2n+2,2m , γ̃2m+2λ2n+2,2m+2 = A2 λ2n+3,2m+1 ,

λ2n+1,2m−1 = B1 λ2n+2,2m , λ2n+2,2m = B2 λ2n+3,2m+1 ,

−γ2n+1λ2n,2m = C1 λ2n+2,2m , −γ2n+2λ2n+1,2m+1 = C2 λ2n+3,2m+1 .

Thus, (19) and (20) are equivalent to

λ2n+2,2m = (A1 +B1 +C1)λ2n+2,2m , λ2n+3,2m+1 = (A2 +B2 +C2)λ2n+3,2m+1 ,

and we show that A1 +B1 +C1 = 1 and A2 +B2 +C2 = 1 with Mathematica.

• The success of this methodology depends on the possibility of writing the
connection coefficients computed recursively in a form that allows us to infer
the model for the closed formulas. To achieve it, we need to factorize the
numerators and the denominators of the connection coefficients so that we
can write them with the same ”appearance” than the recurrence coefficients.
For that, the above cited Mathematica commands play an important rôle.
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• Exceptions to this methodology.

In the last section 5.4, we consider classical sequences belonging to different
families. We do not achieve to guess the model, because the results are not
products of simple elements neither ratio of products of simple elements,
they are sums of elements that can not be factorized. In spite of this, fixing
the values of the parameters, it is always possible to produce tables for the
first nmax symbolic connection coefficients.

5 Examples

5.1 Bessel polynomials

Let us express a monic Bessel polynomial sequence {Pn(α; .)}n≥0 with parameter α
in terms of other monic Bessel polynomial sequence {Pn(α̃; .)}n≥0 with parameter
α̃. For that purpose, we need to recall the Bessel recurrence coefficients (see, for
example, [8, 21, 22]),

β0(α) = − 1

α
, βn+1(α) =

1− α

(n + α)(n + α + 1)
, (21)

γn+1(α) = − (n + 1)(n + 2α− 1)

(2n + 2α− 1)(n + α)2(2n + 2α + 1)
, (22)

β̃n = βn(α̃), γ̃n+1 = γn+1(α̃) , (23)

for n ≥ 0, with the regularity conditions α, α̃ 6= −n
2
, n ≥ 0.

In this case, the general recurrence relation (12) produces the results of the
table 1. The observation of these results allows to suppose that the connection
coefficients are given by the following closed formula

λn,m = (−1)n+m

(
n

m

) ∏n−1−m
ν=0 (ν

2
+ α− α̃)∏2(n−1)

ν=n−1+m(ν
2

+ α)
∏n−1+m

ν=2m (ν
2

+ α̃)
,

for 0 ≤ m ≤ n− 1, n ≥ 1.
This formula can be written in terms of the Gamma function following to the

fact that

Γ(1) = 1 , Γ(a + 1) = aΓ(a) ,
Γ(a + n)

Γ(a)
=

n−1∏
ν=0

(a + ν) , n ≥ 1 . (24)

Thus, we have the following result.
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Table 1: P represents the monic Bessel polynomials.

n m λn,m := λn,m(P (α;−)← P (α̃;−))

5 0, − 4(2α−2α̃+1)(2α−2α̃+3)(α−α̃)(α−α̃+1)(α−α̃+2)
(α+2)(α+3)(α+4)(2α+5)(2α+7)α̃(α̃+1)(α̃+2)(2α̃+1)(2α̃+3)

|

1, 20(2α−2α̃+1)(2α−2α̃+3)(α−α̃)(α−α̃+1)
(α+3)(α+4)(2α+5)(2α+7)(α̃+1)(α̃+2)(2α̃+3)(2α̃+5)

|

2, − 20(2α−2α̃+1)(α−α̃)(α−α̃+1)
(α+3)(α+4)(2α+7)(α̃+2)(α̃+3)(2α̃+5)

|

3, 20(2α−2α̃+1)(α−α̃)
(α+4)(2α+7)(α̃+3)(2α̃+7)

|

4,5 − 5(α−α̃)
(α+4)(α̃+4)

| 1

6 0, 8(2α−2α̃+1)(2α−2α̃+3)(2α−2α̃+5)(α−α̃)(α−α̃+1)(α−α̃+2)
(α+3)(α+4)(α+5)(2α+5)(2α+7)(2α+9)α̃(α̃+1)(α̃+2)(2α̃+1)(2α̃+3)(2α̃+5)

|

1, − 24(2α−2α̃+1)(2α−2α̃+3)(α−α̃)(α−α̃+1)(α−α̃+2)
(α+3)(α+4)(α+5)(2α+7)(2α+9)(α̃+1)(α̃+2)(α̃+3)(2α̃+3)(2α̃+5)

|

2, 60(2α−2α̃+1)(2α−2α̃+3)(α−α̃)(α−α̃+1)
(α+4)(α+5)(2α+7)(2α+9)(α̃+2)(α̃+3)(2α̃+5)(2α̃+7)

|

3, − 40(2α−2α̃+1)(α−α̃)(α−α̃+1)
(α+4)(α+5)(2α+9)(α̃+3)(α̃+4)(2α̃+7)

|

4,5,6 30(2α−2α̃+1)(α−α̃)
(α+5)(2α+9)(α̃+4)(2α̃+9)

| − 6(α−α̃)
(α+5)(α̃+5)

| 1
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Proposition 5.1 ( see, also, [3] )
The λn,m := λn,m(P (α;−)← P (α̃;−)), where P denotes the Bessel polynomi-

als, are given by

λn,m = (−1)n+m2n−m

(
n

m

)
Γ(2(α− α̃) + n−m)Γ(2α + n + m− 1)Γ(2(α̃ + m))

Γ(2(α− α̃))Γ(2(α + n)− 1)Γ(2α̃ + n + m)
,

(25)
for 0 ≤ m ≤ n, n ≥ 0.

Proof. Let us use the procedure 4.1.

Taking {n → n + 2}, {n → n + 1, m → m + 1}, {n → n + 1, m → m − 1}
and {n→ n + 1} in (25), we get, respectively

λn+2,m = (−1)n+m2n−m+2

(
n + 2

m

)
(26)

Γ(2(α− α̃) + n−m + 2)Γ(2α + n + m + 1)Γ(2(α̃ + m))

Γ(2(α− α̃))Γ(2(α + n) + 3)Γ(2α̃ + n + m + 2)
,

λn+1,m+1 = (−1)n+m2n−m

(
n + 1

m + 1

)
(27)

Γ(2(α− α̃) + n−m)Γ(2α + n + m + 1)Γ(2(α̃ + m) + 2)

Γ(2(α− α̃))Γ(2(α + n) + 1)Γ(2α̃ + n + m + 2)
,

λn+1,m−1 = (−1)n+m2n−m+2

(
n + 1

m− 1

)
(28)

Γ(2(α− α̃) + n−m + 2)Γ(2α + n + m− 1)Γ(2(α̃ + m)− 2)

Γ(2(α− α̃))Γ(2(α + n) + 1)Γ(2α̃ + n + m)
,

λn+1,m = (−1)n+m+12n−m+1

(
n + 1

m

)
(29)

Γ(2(α− α̃) + n−m + 1)Γ(2α + n + m)Γ(2(α̃ + m))

Γ(2(α− α̃))Γ(2(α + n) + 1)Γ(2α̃ + n + m + 1)
.

From (26) and (27), noting that
(

n+1
m+1

)
= (n−m+1)(n−m+2)

(n+2)(m+1)

(
n+2
m

)
and taking

the properties (24) of the Gamma function into account, we can write

λn+1,m+1 =
(n−m + 1)(n−m + 2)

(n + 2)(m + 1)
(2(α + n) + 1)(α + n + 1)

(α̃ + m)(2(α̃ + m) + 1)

(2(α− α̃) + n−m)(2(α− α̃) + n−m + 1)
λn+2,m . (30)
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Hence and (23), we get γ̃m+1λn+1,m+1 = Aλn+2,m, where

A = −(n−m + 1)(n−m + 2)

(n + 2)
(2(α + n) + 1)(α + n + 1) (31)

(2α̃ + m− 1)

(α̃ + m)(2(α̃ + m)− 1)(2(α− α̃) + n−m)(2(α− α̃) + n−m + 1)
.

Due to (26) and (28), using (24) and noting that
(

n+1
m−1

)
= m

n+2

(
n+2
m

)
, we get

λn+1,m−1 = Bλn+2,m, where

B =
m

(n + 2)

(2(α + n) + 1)(α + n + 1)

(2α + n + m− 1)(2α + n + m)
(32)

(2α̃ + n + m)(2α̃ + n + m + 1)

(α̃ + m− 1)(2(α̃ + m)− 1)
.

By virtue of (26) and (29), using (24), noting that
(

n+1
m

)
= n−m+2

n+2

(
n+2
m

)
, and

also from (21) and (23), we obtain −(βn+1 − β̃m)λn+1,m = Cλn+2,m, where

C =
(n−m + 2)

(n + 2)

{ 1− α

(n + α)(n + α + 1)
− 1− α̃

(m + α̃− 1)(m + α̃)

}
(2(α + n) + 1)(α + n + 1)(2α̃ + n + m + 1)

(2α + n + m)(2(α− α̃) + n−m + 1)
. (33)

On account of (25) and (26), using (24) and noting that(
n
m

)
= (n−m+1)(n−m+2)

(n+1)(n+2)

(
n+2
m

)
, we get

λn,m =
(n−m + 1)(n−m + 2)

(n + 1)(n + 2)
(34)

(2(α + n)− 1)(α + n)(2(α + n) + 1)(α + n + 1)

(2α + n + m− 1)(2α + n + m)

(2α̃ + n + m)(2α̃ + n + m + 1)

(2(α− α̃) + n−m)(2(α− α̃) + n−m + 1)
λn+2,m . (35)

From this and (22), we obtain −γn+1λn,m = Dλn+2,m, where

D =
(n−m + 1)(n−m + 2)

(n + 2)

(α + n + 1)(n + 2α− 1)

(α + n)(2α + n + m− 1)(2α + n + m)

(2α̃ + n + m)(2α̃ + n + m + 1)

(2(α− α̃) + n−m)(2(α− α̃) + n−m + 1)
. (36)

It can be shown in Mathematica [29], using, for example, the command
Together or Simplify, that A + B + C + D = 1, as desired.
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Next, we give, the connection coefficients corresponding to the canonical se-
quence and the Bessel polynomials.

Proposition 5.2 ( see, also, [3] )
The λn,m := λn,m(X ← P (α̃;−)), where P denotes the Bessel polynomials, are

given by

λn,m = (−1)n+m2n−m

(
n

m

)
Γ(2(α̃ + m)

Γ(2α̃ + n + m)
, 0 ≤ m ≤ n, n ≥ 0 . (37)

Proof. In this case, we must consider (8) and β̃n, γ̃n+1, n ≥ 0 given by (23) and
afterward follow the same method of the preceding proof.

5.2 Laguerre polynomials

We recall the Laguerre recurrence coefficients (see, for example, [8, 21, 22]),

βn(α) = 2n + α + 1 , γn+1(α) = (n + 1)(n + α + 1), n ≥ 0 ,

with the regularity condition α 6= −n, n ≥ 0. Following the same method, we
achieve to the corresponding connection coefficients.

Proposition 5.3 ( see, also, [4, 5] )
Denoting by P the Laguerre polynomials, it holds:

• The λn,m := λn,m(P (α;−)← P (α̃;−)) are given by

λn,m = (−1)n+m

(
n

m

)
Γ(α− α̃ + n−m)

Γ(α− α̃)
, 0 ≤ m ≤ n, n ≥ 0.

• The λn,m := λn,m(X ← P (α̃;−)) are given by

λn,m =

(
n

m

)
Γ(α̃ + n + 1)

Γ(α̃ + m + 1)
, 0 ≤ m ≤ n, n ≥ 0.

5.3 Generalized Hermite polynomials

Let us consider the case of the generalized Hermite sequence {Pn(µ; .)}n≥0. The
recurrence coefficients are [8]

βn = 0 , γn+1 := γn+1(µ) =
1

2
(n + 1 + µ(1 + (−1)n)) , n ≥ 0. (38)

We remark that this is a symmetric, semi-classical of class 1 sequence. When
µ = 0, we recover the classical Hermite sequence.
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Proposition 5.4 Denoting by P the generalized Hermite polynomials, it holds,
for 0 ≤ m ≤ n and n ≥ 0:

1. The λn,m := λn,m(P (µ;−)← P (µ̃;−)) are given by

λ2n,2m = (−1)n+m

(
n

m

)
Γ(µ− µ̃ + n−m)

Γ(µ− µ̃)
, (39)

λ2n+1,2m+1 = λ2n,2m . (40)

2. The λn,m := λn,m(X ← P (µ̃;−)) are given by

λ2n,2m =

(
n

m

)
Γ(µ̃ + n + 1/2)

Γ(µ̃ + m + 1/2)
,

λ2n+1,2m+1 =
µ̃ + n + 1/2

µ̃ + m + 1/2
λ2n,2m .

3. The λn,m := λn,m(P (µ;−)← X) are given by

λ2n,2m = (−1)n+m

(
n

m

)
Γ(µ + n + 1/2)

Γ(µ + m + 1/2)
,

λ2n+1,2m+1 =
µ + n + 1/2

µ + m + 1/2
λ2n,2m .

4. In all the cases,
λ2n,2m−1 = 0 = λ2n+1,2m .

Proof. We begin by showing that the first assertion holds. The proofs of the
statements 2 and 3 are analogous. The statement 4 is the same as (17).

From (40), the formulas of the procedure 4.2 become

γ̃2m+1λ2n,2m = A1 λ2n+2,2m , γ̃2m+2λ2n+2,2m+2 = A2 λ2n+2,2m ,

λ2n,2m−2 = B1 λ2n+2,2m , λ2n+2,2m = B2 λ2n+2,2m ,

−γ2n+1λ2n,2m = C1 λ2n+2,2m , −γ2n+2λ2n,2m = C2 λ2n+2,2m .

It is easy to deduce that

A1 = −n−m + 1

n + 1

(m + µ̃ + 1
2
)

(µ− µ̃ + n−m)
, A2 = − n−m + 1

µ− µ̃ + n−m
,

B1 =
m

n + 1
, B2 = 1 ,

C1 =
n−m + 1

n + 1

(n + µ + 1
2
)

(µ− µ̃ + n−m)
, C2 =

n−m + 1

µ− µ̃ + n−m
.

Now, we can verify that A1 + B1 + C1 = 1 and A2 + B2 + C2 = 1.
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5.4 Miscellaneous examples

In this section, we give some tables of connection coefficients between sequences
belonging to different classical families with specific values of parameters up to a
fixed value of degree. More precisely, we consider the Hermite polynomials in terms
of the Legendre ones and vice-versa. Also, we present the Laguerre polynomials
with null parameter in terms of the Bessel ones with parameter equal to 1, and
vice-versa. Of course, we could give many other examples.

Table 2: P and Q represent the monic Hermite and the monic Legendre polyno-
mials.

n λn,m(P ← Q), m = 0, . . . , n

0 1
1 0 1
2 −1

6
0 1

3 0 − 9
10

0 1
4 − 1

20
0 −15

7
0 1

5 0 33
28

0 −35
9

0 1
6 29

56
0 155

28
0 −135

22
0 1

7 0 −37
24

0 2065
132

0 −231
26

0 1
8 −335

144
0 −1115

66
0 9975

286
0 −182

15
0 1

9 0 −117
176

0 −20195
286

0 8757
130

0 −270
17

0 1

Table 3: Q and P represent the monic Legendre and the monic Hermite polyno-
mials .

n λn,m(Q← P ), m = 0, . . . , n

0 1
1 0 1
2 1

6
0 1

3 0 9
10

0 1
4 57

140
0 15

7
0 1

5 0 65
28

0 35
9

0 1
6 1955

1848
0 335

44
0 135

22
0 1

7 0 2135
264

0 10815
572

0 231
26

0 1
8 77791

20592
0 9877

286
0 1029

26
0 182

15
0 1

9 0 1411263
38896

0 48153
442

0 12573
170

0 270
17

0 1
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Table 4: P (0;−) and Q(1;−) represent the monic Laguerre and the monic Bessel
polynomials with parameters 0 and 1, respectively.

n λn,m(P (0;−)← Q(1;−)), m = 0, . . . , n

0 1
1 -2 1
2 20

3
-5 1

3 -91
3

138
5

-10 1
4 2602

15
−2668

15
620
7

-17 1
5 −53552

45
27862

21
−17105

21
2030

9
-26 1

6 2993008
315

−394921
35

508145
63

−25832
9

5352
11

-37 1
7 −5444449

63
2912906

27
−3903026

45
3687845

99
−272545

33
12110

13
-50 1

Table 5: Q(1;−) and P (0;−) represent the monic Bessel and the monic Laguerre
polynomials with parameters 1 and 0, respectively.

n λn,m(Q(1;−)← P (0;−)), m = 0, . . . , n

0 1
1 2 1
2 10

3
5 1

3 127
15

112
5

10 1
4 3251

105
2432
21

570
7

17 1
5 138826

945
44381

63
6085

9
1948

9
26 1

6 8853202
10395

2458121
495

597350
99

86044
33

5230
11

37 1
7 157259497

27027
154013984

3861
41903552

715
13682690

429
23435

3
11940

13
50 1
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