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Abstract

Discontinuous maps provide interesting examples of chaotic behaviour generated not by
nonlinearities but by discontinuities themselves. We import the use of a coding map from
the context of piecewise isometries in order to identify points with complicated dynamics in
other systems. These are proved to be related to those that come arbitrarily close to the
discontinuity set.
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A well known fact in the theory of dynamical systems is that nonlinearities are a fundamental
source of chaotic behaviour. Perhaps, not as well known is the fact that discontinuous systems can

produce just as intricate phenomena even when the map is linear at continuity points.

Discontinuous maps appear in all sorts of mathematical models. In recent years, special atten-
tion has been devoted to digital filters which are electronic components that can be modelled by a

piecewise rotation on a rhombhus (see A. C. Davies [1995] and references therein).
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Mathematically, the first discontinuous maps to have been given special focus were interval
exchange transformations (IETs). The seminal work of M. Keane ([1975] & [1977]) prompted the
works of Katok [1980], Veech [1982], Masur [1982] and many others. Other systems emerged in
connection with IETSs like, for instance, polygonal billiards (see the survey by E. Gutkin [1996]).
But, perhaps, the most interesting generalisation of IETs came with the work of Goetz [1996] in
piecewise rotations (PRs) in the plane (see Section 2.1). Naturally, other works followed considering
piecewise isometries (PWIs) in any Euclidean space (see Goetz [2000], Buzzi [2000] and Mendes
[2007] for instance).

Attention to PRs was mainly drawn by the fascinating pictures provided in the papers by Goetz
(see Goetz [1998]). These suggested that the discontinuity line and its preimages had an enormous
impact on the dynamics of the map: points that never approach the discontinuity set have periodic
motion; but, those whose orbit comes arbitrarily close to the discontinuity line show some form of
chaotic dynamics which is successfully described a coding map. Results on the existence of periodic
and nonperiodic codings for PRs in any Euclidean space were generalised in Mendes & Nicol [2004].
Later, the stability of periodic points for PWIs in any Euclidean space was established in Mendes
[2007]. Points irrationaly coded still lack the much need focus they deserve.

In this paper we borrow these ideas from the theory of piecewise isometries and apply them to
more general models such as piecewise linear maps (see examples in Section 2.3). Namely, we use
the coding map in exactly the same way as defined in the setting of PWIs and establish results
relating the codings of points and the set of all preimages of the discontinuity and the set of all
points whose orbit is at distance zero from the discontinuity set (see Section 3).

Section 4 is devoted to obtaining stronger results in the context of PWIs and the Appendix
contains all auxiliary results including previous and new.

2 Preliminaries and examples

2.1 Motivating through an example

Let us start with a very simple - hopefully ellucidating - example of what this paper is about:
generating intricate dynamics from trivial maps by aglutinating them in a piecewise fashion.

More precisely let R; (z) := ™ (z — C;) + C; (with j = 0, 1) be two rotations in the complex
plane by angles a; around distinct centres Cy and C;. We now define a map, which is called the
Goetz map since it was first introduced in Goetz [1998], in the following way:

| Ro(z); if Re(z) <0
G (2) '—{ Ri(2): if Re(2) > 0

Of course, the dynamics generated by this new map depends heavily on the fact that each of its
branches is a rigid rotation and so, we expect that some sort of rotational dynamics be detectable
clearly. That is so because the composition of rotations is itself a rotation whose centre is different
from the previous two. Therefore, as we iterate the map G we compose Ry and R; in different
combinations so that the resulting maps give rise to cyclic (i.e., periodic) orbits of higher and
higher order (i.e., period).

However, not every possible combinaton is admissible and most interestingly, not every admis-
sible sequence generates a periodic orbit. The way to distinguish between these two different types
of orbits (cyclic and non-cyclic) is by use of a coding map which assigns a particular sequence of
symbols to a point depending on its position and that of its iterates in the phase space.
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Namely, let for this particular example, x : C — {0, 1}N be a mapping such that x (z) = wows...
if and only if G* (z) € P, for every k € Ng where Py := {Re (2) < 0} and P; := {Re (2) > 0}. In
this fashion if the coding of a point z starts with the block 0110 it means that it started off in Py
then its image G (z) falls in Py, the iterate of which will remain there and the point G* (2) comes
back to Fy. Surely, other points will follow this pattern in their first three iterations while others
will have other codings. This means that the complex plane can be divided into sets according
the codings that each point inside them will possess. And, as we iterate the mapping these sets
may be broken into several pieces since different codings may arise from a particular initial word
of any given length. If one wants to get an idea of how this process develops one has to picture the
preimages of the discontinuity line D := {Re (z) = 0} for this set separates points. In Figure 1 we
portrait a sequence of preimages of the discontinuity line. For a large number of preimages (say,
n = 500) we obtain a picture which numerically does not differ from others obtained for larger
values of n.

If we take the set of all preimages whose numerical approximation is obtained for large n then
we may suspect that it has a very intriguing structure resembling that of a fractal set. Indeed,
for some particular choices of angles and centres of rotation, it has been shown that there is a
self-similarity structure associated to this exceptional set (see Goetz [1998a]).
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Figure 1: Sequence of preimages of the discontinuity line of a Goetz map whose angles of rotation equal o := 27 /5
and centres are Cgy := (—1, tan(a/2)), C1 := (0.75, —0.75tan(a/2): (from left to right downwards) one, four, ten,

twenty, fifty and five hundred preimages of the discontinuity line.
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In terms of dynamics what is perhaps more interesting to note is that the set of all points whose
orbit come close to the discontinuity set yet never actually intersecting it has sensitive dependence
on initial conditions in the sense that two nearby points in this set will eventually fall on opposite
sides of the discontinuity line. Namely, let « be such a point and consider a ball B. (x) of radius
¢ > 0 around . Since the orbit of & comes arbitrarily close to the discontinuity then the set B. ()
will chopped up infinitely many times. In fact, it will so in such a manner that what remains
of B. (z) with x at infinity is a set of zero measure (in convex settings irrational cells have zero
measure). Consequently, points breaking up from B, (z) will be iteraed by different isometries than
z will and so will eventually be separated from x. This fact is what underpins the statement - with
which we tried to engage the reader in the beginning of our Introduction - that the discontinuity
set is a source of chaotic dynamics.

It is the aim of this paper to understand the relation between the collection of sets generated
by the full set of preimages and the codings generated by maps that constructed in this fashion.
Our first motivation was drawn from studying the Goetz map but other cases can have similar
properties as we prove in Section 3.

2.2 Basic definitions

Consider X being the standard Euclidean space R”, or some compact subset of it, endowed with
the Euclidean metric d(,-). Let P = {P,...,P,} be a finite collection of connected open sets
with piecewise smooth boundary, i.e, the boundary of each set P; can be decomposed into a finite
number of (n — 1)-dimensional submanifolds of X. We say that P is a (topological) partition of X
if: (i) P,NP;=0,fori+#j;and (ii) X =PoU...UPy_1.

Let f : U2, P, — X, be such that for every i, f; := f|Pi is at least continuous but f itself
does not admit a continuous extension to X. For that reason we say that D = uknglapk is the
discontinuity set. We will require stronger properties from each map f; later on.

The partition P gives rise to a way of coding the trajectories. We define X* C X to be the set
of points whose forward iterates avoid the discontinuity set that is,

X ={reX:¥Yn>0,f"(z) €P;,, for some iy}

Let A be the alphabet {0,...,m — 1}. We define the coding map x : X* — AN according to the
following rule:

x(x) =wg...wy..., if and only if f*(x) € P, , where w,, € A.

If 2 € X* is such that its coding x(x) is eventually periodic that is, if () = uv...v... where u
and v are finite words on A then we call x a rational point. Otherwise x € X* is called an irrational
point. Obviously, every periodic coding w can be written as an infinite adjacent repetition of a
finite block b which we represent by w := [b)].

The original partition can be refined using the coding map. More precisely, let K,, be the set
of all points z € X* with the same coding w. Sets of this form will be called cells. Thus, the set
of all cells, IC, is a new partition of X which is contained in P, in the sense that for each cell K,,
there is an atom P; such that K,, C P;.

We shall also denote by f,, the composition of maps f,, o...o fy, corresponding to a given
word w = wq ... w,, .

Finally, we define two important sets in this context: the exceptional set and the singularity
set. The former is the union of all points that will eventually fall on the discontinuity set,

€=U f (D) = X\X*



ON THE CODING OF ORBITS IN DISCONTINUOUS MAPS 5

and the latter is formed by the set of those points whose trajectory is arbitrarily close to the
discontinuity set, that is,
Yi={zeX:d(0"(z),D) =0}

where OF (z) = {f" (z);n € A} and A is a set of the form {1,2,..., N} with N € N. It turns out
that when all f; are isometries then ¥ = £ (see Goetz [2001]).

Note: Under more general conditions, namely, avoiding expansion, we were able to prove that ¥
is closed (see Appendix). However, we could not prove that it equals €.

When each map f; is smooth, each preimage f, * (D) is a finite union of (n — 1)-dimensional
submanifolds and therefore, the total preimage set of the discontinuity, U2, ¥ (D), is a zero
(Lebesgue) measure set and, consequently, has empty interior. The relevance of this assertion is
that, under the latter assumption on f;, the set of points for which the coding map cannot be
applied ad infinitum is negligible in terms of measure.

2.3 Other examples

Noninvertible and/or discontinuous endomorphisms of the plane have been studied in a series of
papers (see for instance C. Mira [1996] and references therein) using critical lines. Curiously,
critical lines are no other than the discontinuity and its preimages or - in the case of continuous
but nonivertible maps - lines dividing the plane according to the number of preimages of each point
in each connected component.

An interesting example which appeared in C. Mira [1996] is the following. Let 7" : R? 9 be a
planar map defined by:

| (yyy—Ax)ifzx <6
T(%y)—{ (y,y =y +6(y—A) +p)ifx>6

This is a piecewise linear map with a discontinuity at the vertical line x = 6. For particular
values of parameters A, u and + it is possible to show the existence of an attractor set (see C. Mira
[1996] for a more detailed discussion). In Figure 2 we plot a part of the exceptional set inside the
attractors for three particular choices of values.

3 Rationally vs. irrationally coded orbits

For the time being we assume that each map f; is a homeomorphism. Let us suppose that £ is
not dense, that is X\& # 0 and from now on let us assume that ¥ is closed which is the case for
piecewise non-expansive maps . The former assumption alone allows one to conclude that X\&
decomposes into a countable collection of disjoint and open connected sets C = {C; }ien, i.e.,

X\E = U2 Ci, C;NCy =0, # 5.

This is due to the fact that R™ can be written as the union of a countable number of open
balls R"™ = Ux,eqnBs(X;). Consequently, any open set O can be written as O = U®,0; where
0O; = Bs(X;) N O. Furthermore, these componentes are interchanged under f as we explain in the
following lemma.
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Figure 2: A numerical approximation of the exceptional set for a planar piecewise homeomorphism studied in C.
Mira [1996], for different values for parameters: (left) A =1.2,v = —0.1, u = 12; (right) A = 1.12,y = —0.2, p = 11.
The point being made here is that the structure of the set of preimages resembles that of the Goetz map (see other

figures in this paper).

Lemma 1 Let {C;}; be a collection of disjoint open and connected sets such that X\E = U C;.
Then,
(i) for every component C; there exist j,k € N such that, f(C;) = fi(C;) C C; . In particular,
each component is contained in a cell.
(ii) the preimage of each component C; is either empty or it is made of r (< m) components
le,...,er ecC, ie.,
G =C;u...uC0;, .

Proof. (i) Since f(€) C & there is a well defined restriction f, : X* — X*. Moreover, this map
acts continuously and therefore, the image of a connected set in X* must be a connected set in
X*. Obviously, this implies that the image of a connected component of X\€ must be another
connected component.

(i) Let Sk = fy *(Ci) N Py for k =0,...,m — 1. It is clear then that,

fH(Ci) = U S

It suffices to show that Sy = C;, for some Cj,. Since fj is a homeomorphism, S is an open
connected set. Suppose that Sy MY # @ and let = € S N X. Thus, there exist {z,}, € Xy such
that z,, — x and since Sj is open we can take N large enough so that x, € Si for p > N. By
construction, f(z,) € C;. However, since z, € X\D we must have that f(z,) € ¥ which is a
contradiction. Therefore, there must exist Cj, € C such that Sy C Cj, by connectedness of Sy.
Suppose now that C}, \Si # 0 and take x € C}, \Sk. By the previous assertion and the definition
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of Sj, we conclude that f(C;,) C C; and thus € f, 1(C;). Since all { S}, are disjoint we conclude
that Sy = C, which proves the statement. m

These conclusions prove the existence of a net of open sets which are interchanged by f. In the
case of irrational piecewise rotations in planar domains, U?ioai is simply a countable collection of
compact circles resembling disk packings. Ashwin and Fu [2001] have studied a family of piecewise
rotations on the two-dimensional torus and showed that for a full measure and dense set in the
parameter space the disks exhibit no tangencies with each other.

One investigates now when a connected component C; is rationally coded. Well, if some point
z € C; does not belong to 3 and its w-limit set is non-empty then the answer is positive. That is
the content of Theorem 4. Before that, we adapt a topological lemma which was first used in the
study of the symmetries of attractors (see Melbourne et al. [1993]).

Lemma 2 Let x € X be a point such that w(x) # 0. Then, either w(z) C & or the following are
valid:

(i) w(z) € CoU...UC, for some Cy,...,C. €C;

(ii) These components can be ordered so that f(C;) C Ciy1(mod r)-

Proof. We follow the recurrence argument used in Lemma 2.1 in Melbourne et al. [1993]. Take
y € w(r) and ¢ > 0 such that B.(y) C X\&. By connectedness of B.(y) we can conclude that
B:(y) C Cy, for some n € N. From the definition of w-limit set, there exists a first entrance time
k such that f*(x) € B.(y). Moreover, there must exist a second entrance time [ > k for which
fY(z) € B:(y). For r = | — k we can conclude that f"(B.(y)) N B:(y) # 0 since it must contain at
least f*(x).

From continuity of all f; and connectedness of all {C;};cn it follows that for any j € N, there
exists an i; € N such that f(C;) € Cj,. Consequently, the fact that f"(C,) N Cy # 0 implies
that f7(Cy,) C C,, by Lemma 1(i). Take z = f*(z) and let D; = C; where C; is the connected
component visited by f¢(z), for i = 0, ..., — 1. This shows that f(D;) C Dj{1(mod r)- In particular,
we have proved that w(z) C Do U...U D,_1 and since w(f*(x)) = w(z) for every k € N assertions
(7) and (i) now follow. m

This lemma can only be of use for proving the existence of periodic codings if we know that at
least one w-limit set is not contained in £. This is proved followingly.

Lemma 3 Ifz ¢ 3 then w(z)NY = ().

Proof. Let z € X\X. By definition of w(x), for every y € w(z), we conclude that there exists a
sequence { f™ (z)}ien such that f™ (z) == y. Let us suppose that y € ¥. Firstly, we show that y
cannot be a preimage of the discontinuity. Obviously, y ¢ D for otherwise d(O™ (z), D) = 0 and so,
x € X. Therefore, for §1 := d(y, D) > 0 we have that By, (y) C P, for some iy € {0,...,m—1} since
D is closed. Take k; large enough so that for all p > k;, we have f"»(z) € By, (y). Consequently,
1 (x) =3 f(y) by continuity of f;, and if f(y) € D then obviously, d(O* (z), D) = 0, which is
a contradiction. Once more, we have that f(y) ¢ D.

Analogously, since f(y) ¢ D there is d2 := d(f(y), D) > 0 for which we have that Bs,(f(y)) C
P,,, for some iz € {0,...,m — 1}. Once again, take ks large enough so that for all p > ks, we have
fr»t1(z) € Bs,(f(y)) which is possible since, as seen before, f"»*1(z) "= f(y). This implies

that f»+2(z) =3 f2(y) by continuity of f;, and if f2(y) € D then obviously, d(O*(x), D) = 0,
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which is, again, a contradiction. In a similar fashion we may prove that for every n € N, f"*(y) ¢ D
and so, y ¢ U, f % (D).

Consequently, there must exist a sequence of neighbourhoods V,, of each f™(y), such that
f |Vn acts continuously. Therefore, f™ (y) is a point of continuity of f™ and so, the orbit of y is
contained in w(x) (1). Since w(x) is closed it follows that w(y) C w(x). Consequently, if y € ¥,
that is, d(w(y), D) = 0, then it must be true w(y) N D # O because both w(y) and D are closed
sets. This latter fact would imply that w(x) itself intersected D and, therefore, z € X. Hence,
wE)NZ=0. m

We can now prove the existence of rationally coded orbits.
Theorem 4 If there exists x ¢ ¥ whose w-limit set is nonempty then x is rationally coded.

Proof. Let xz ¢ X be such that w(x) # (. Then, by Lemma 3 we know that w (z) N X = 0.
Therefore, w (z) cannot be contained in £ since £ C ¥ and by Lemma 2 we conclude that the
components containing the orbit of x for sufficiently large iterates are cyclically permuted. m

A trivial and yet insightful corollary can be drawn.
Corollary 1 If X is compact and X # X then all points not in X are rationally coded.

It should be clear that, although, the dynamics has rational codings outside X that does not
imply that it is trivial. In fact, we could have horsehoes dwelling inside this set and yet, under the
coding emap that has been defined, the dynamics is rationally coded and they are not detected.
What we want to underline is the fact that these systems have a different type of complicated
dynamics which arise naturally from the existence of discontinuities. This dynamics is suitably
detected by the coding map defined precisely as it was. In conclusion, Theorem 4 states that any
dynamics that is irrationally coded can only be detected within 3.

We can be easily tempted into conjecturing that if X is compact then all points in X are
irrationally coded. However, the best we can prove is the following.

Theorem 5 If X is compact then Y does not contain rational cells.

Proof. Without loss of generality let K, be a periodic cell. Let also W := K,,. By rationality
and uniqueness of the coding we know that there must exist a continuous return map f,, : W — W.
Since X is compact we conclude that W is also compact. Thus, by the Fixed Point theorem we
know that there exists a periodic point, p, in W. This, in turn, implies that K, N X # ) since the
orbit of every periodic point has to be a certain distance apart from the discontinuity set. m

In fact, the following simple example shows - at least in the context of piecewise isometric
systems - that there exist rational cells which intersect both ¥ (which is equal to & in this case)
and its complementary set.

Example 1 Consider a piecewise rotation as defined in Section 2.1 having a rotation Rg corre-
sponding to atom Py with centre C = (—1,0) and irrational angle . Obviously, there must exist a
period one cell K which is an open disc centred in C' and radius 1 plus all points in the boundary

n general, if f is continuous at y € w(x) then f (y) € w(x). At points y of discontinuity of f that lie in w(z),
we may have f (y) ¢ w(z).
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of that disc which will not fall in the origin. Since « is irrational it turns out that the orbit of
those points in K which belong to its boundary will be infinitely close to the origin hence they must
belong to ¥ as well. It is also true that the remainder of K does not intersect ¥.

Theorem 5 can be restated by asserting that any rational cell intersecting ¥ must intersect X*\ %
as well. Thus, another trivial corollary - which can be seen as a generalisation of Theorem 13 -
easily follows.

Corollary 2 If X is compact and ¥ = X then all points in X\E are irrationally coded.

4 A special setting: piecewise isometries

In this section we establish the relationship between connected components and cells for the special
case where each induced map f; is an isometry. Namely, we say that T is a piecewise isometry on
X with partition P ={Py,...,Pyp_1} if

T(x) =Ti(x), ifx e P,

where T; is an isometry defined on X, for every ¢ = 0,...,m — 1. As defined before, we call
D= u’,’g;lapk the discontinuity set, & := U, f % (D) the exceptional set and C is the collection
of all the connected components of X\&.

We shall also assume that all atoms in P are convex sets of X, hence P is a convex partition
of X. This assumption has an implication on the geometrical shape of cells since they must also
be convex as each of them can be written as a countable intersection of preimages of atoms and
isometries preserve convexity under backward iteration.

Using the fact that ¥ = £ Theorem 4 can be restated in the following form.

Corollary 3 If z € X\& has nonempty w-limit set then its coding is rational.
And a corollary of this result is the following.
Corollary 4 If T has no periodic points then every point in X\E has empty w-limit set.

Proof. Suppose there exists € X\& such that w(x) # (. Then, from Corollary 3 we conclude
that = has rational coding. By Theorem 14 in appendix the existence of rational points implies
that 7" must have periodic points. m

This simple corollary can be used to construct examples of piecewise isometries with orbits
diverging to infinity in the sense that if such example is to be constructed then one has to avoid
periodic points. In the case of piecewise rotations these correspond to the centres of rotation of all
rotations in the free group generated by Tp,...,T,,_1. These are very important cases as we show
in Example 2 for we can have cells with nonempty interior which are irrationally coded, somehow
contradicting our intuition.

The remainder of this section is devoted to proving results which relate cells and the connected
components of X\£.

As we have seen in Lemma 1.(i) for each component C; there must exist a cell K, such that
C; C K. The following is a strengthening of that remark in the context of piecewise isometries.

Proposition 6 For every component C; € C there exists a cell Ky, € K such that, K, = C;\E.
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Proof. Let K, be the cell which Lemma 1.(i) guarantees the existence of. Let us first prove that
K, \C; = 0. Suppose there exists y € K,,\C; and take the convex hull Y = conv({y}, C;). Since
y € Ky, C; C K, and K, is convex we conclude that Y C K, hence all points in Y must have
the same coding. By the definition of C, we know that all points in dC; must belong to £. Let us
choose a point z € JC; such that there exists an open neighbourhood N, which is contained in Y.
This is a simple geometric fact which is sketched in Figure 3.

Figure 3: Constructing a neighbourhood N, C K,, whose forward iterates intersect the discontinuity.

Taking into account the fact that z € £ we conclude that there must exist at least one point
2 € ENN, (in fact, infinitely many such points) which implies that the orbit of N, will eventually
intersect the discontinuity. Since N, is an open set this implies that N, contains points whose
iterates will fall in different sides of the discontinuity set. This yields a contradiction for all points
in Y must have the same coding. Consequently, K,,\C; = 0.

The assertion that K,, = 61-\8 is now a trivial consequence of the fact that every point in the
boundary of C; will have the same coding as C; unless it eventually hits the discontinuity. m

It should be noted that we cannot conclude whether K, has rational or irrational coding.
Theorem 3 implies that K, must be rational in the compact setting. However, since we are
considering piecewise isometries which are defined in domains that are possibly unbounded this no
longer holds. To see this consider the following example.

Example 2 In Goetz [1998] it is proved that the orbit of every point in C of a piecewise rotation
of the form,

G(2) = { 6720‘ (z—Cp) +Ch it Re(z) <0
eB(z—Cy)+ Oy if Re(z) >0

- where a and 3 are incommensurate® real numbers and Re (Co) > 0 > Re (C1) - diverges to
infinity, meaning that |G™ (z)| — oo. From Theorem 16 we conclude that those orbits must be
irrationally coded. In Figure 4 we depict a numerical simulation of the connected components of
X\& for a map G in this situation.

Another important implication of Example 2 and Proposition 6 is that Theorem 17 cannot
be genralised to spaces with infinite Lebesgue measure because the white components in Figure 4
correspond to cells by Proposition 6 which must be irrationally coded as argued in Example 2.

We now investigate the converse assertion, that is, given a cell K,, is there a connected com-
ponent of C that could be related to K,,7 It turns out that we can only obtain such relation for
rational cells.

2Two numbers  an y are said to be incommensurate if there are no pair of rational numbers a and b such that
ax + by = 0.
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Figure 4: A numerical approximation of the exceptional set for a planar piecewise rotation whose orbits are

unbounded as proved in Goetz [1998] .

Proposition 7 For all rational cells K, € K there exists a connected component Cy, € C such that
C; C Ky = C\E. In particular, K, has nonempty interior.

Proof. It suffices to show that there is a component C; such that C; C K, since that would imply
that K,, = C;\€ by our previous result and uniqueness of coding.

Let K,, be a periodic cell and take Ty, : K, — K, as being the return map on K,,. If Ty, is
a recurrent map then by Theorem 14 (in Appendix) there must exist a periodic point p € K,,. It
then follows that the orbit of p must be bounded away from the discontinuity and consequently
p € C; for some component C; € C. Since all points in C; belong to the same cell we conclude that
C; C K.

Consider now the case when T}, is a nonrecurrent isometry which implies that K,, must be an
unbounded convex set and consequently, there must exist an unbounded convex atom, P;, as well
such that K, € P;. By Lemma 11 there is a halfline L. C K,, on which T" acts as a translation.
Consequently, we can choose a point 2 € L which is an interior point of P;. By Lemma 12 we know
that d(L,0P;) > 0, hence the orbit of 2 € L is such that it does not approach the discontinuity
set. The assertion now follows analogously to the recurrent case.

Finally, assume that K, is a rational cell and take K~ as being its corresponding periodic cell
which is such that for some positive integer r, 0" (w) = w*, where o is the usual shift map. As we
have shown above there exists Cj» such that Cj« C K+ . By Lemma 1.(ii) we know that there
exists a finite number of components C;,,...,C; (n < r.m) such that:

in

Tﬁr(Ci*) = Ck:1 u...u Ckn .

Take i = k; where k; is such that K, N Cy, # 0. Such integer ¢ must exist since T"(Ky) C K.
Using the fact that C; is contained in some cell (Lemma 1.(i) again) we can then conclude that
C) C Ky by uniqueness of coding. m

11
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Theorem 15 (in Appendix) is the sharpest result available in the literature concerning codings
of points in £ and its complement. The following corollary is a refinement of this result in the case
when P is convex. Let us consider the set II := U® ,C,, which denotes the packing set generated
by the connected components of X\&.

Corollary 5 Given a piecewise isometry defined on a convex partition P and compact space X,
then the set of points with rational coding is TINE and the set of points with irrational coding
is TI°\E.

We note that the set of points with irrational coding may not equal £\E as Example 1 shows.
This is best understood by noticing that points in the boundary of the connected components must
also belong to the boundary of £.

5 Appendix

5.1 The singularity set is closed

As was discussed in the introduction the closure of the union of all points that will eventually fall
on the discontinuity set,
E:=U2,fF(D)
may, in general, be distinct from the set of those points whose trajectory is arbitrarily close to the
discontinuity set,
Yi={reX:d(0"(z),D) =0} .

We have also mentioned earlier on that, in the setting of piecewise isometries, it turns out that
(see Goetz [2001]) B

x=E£.
In general ¥ is a closed set under the more relaxed assumption on the generating maps {f;},: let
us assume that each induced transformation f; is a non-erpansive a;-Holder map, that is, for all
z,y € X there are 0 < C; <1 and 0 < «; such that,

d(fi (). fi (y)) < Cid (z, )" .

The proof is as follows. Let {z,}, be a sequence of points in ¥ such that lim, ..z, = .
Therefore, for each pair of integers n and k,

d(f* (@), J* (2n) Cond (f* (), 15 (@)™ <
Co O (F572 (@) 472 ()™ <

a; Qjq Qg e Qi Qg O
S Chci;l "'C’i;l *2 zkd(ﬂ?,l'n) i1 Qig ko,

IN N

By assumption we know that, given sufficiently small € > 0, we can choose n and k such that,
d(z,7y) < e and d(f*(2,),D) <.
Consequently, by the triangular inequality,

d(ff(@),D) < d(fF@), " (@n) +d(f* (zn),D) <
S Cilcioéil . nglaiz-“aik _gailaiz---aik + e S
< (C,-l(;'f:1 ...C;ila@maik + 1> max {1 Y2 Y g}

Cail Qg ...aik

ik is bounded.

which is arbitrarily small since C;, C;.* . ..
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5.2 Auxiliary lemmata

Lemma 8 If W is a linear space then projy, (convA) = conv(projy,A), where A C R™.

Proof. This is a trivial consequence of the fact that projy, is a linear map, since W is a linear
space. W

Lemma 9 T'(conv(A4)) = conv(1'(A)), where A C R"™ and T € E(n).

Proof. Every point y € conv(A) can be written in the form, y = a1@z1+. .. +apxp, where z1, ..., zp
and ay,...,a, € [0,1] are such that ¥, a; = 1. Therefore,

P
Ty=Ry+v=aRx1+...+aRaxp+ (Z ai> v
i=1

= Z a;i(Rx; +v) =a1T.x1 + ...+ apT.zp
i—1

which implies that T.y € conv(T'(A)). Note that the argument above can be reversed hence the
assertion is proved. m

Lemma 10 For a given recurrent isometry T € E (n) and © € R™ there is a y € Fix (T") such that
y € conv (O (x)).

Proof. For readability we reproduce an argument used in the proof of Theorem 14 even though
the context here is slightly different. We will use the following elementary lemma from Poggiaspalla
[2000]: If T : R™ — R™ is an isometry and S is a bounded and invariant set under T" then its centre
of mass is a fixed point for 7.

For any isometry 7', it is true that T'(conv(S)) = conv(T(S)) for every set S by Lemma 9
and therefore, given an invariant set I, conv(7) is a convex set which is also invariant under 7.
Consequently, J = conv(Us2___T*(z)) is a bounded?®, convex and T-invariant set.

It now follows that the centre of mass of J, Cy, is well defined and it is a fixed point for 7.
From a result in Webster [1994] we can also state that C; can be written as a convex combination
of a finite number of points of U3 T*(x). Furthermore, these points can be taken in U T*(z)

simply by iterating under 7T if necessary which shows that C; € conv(U2 T%(z)). m

Lemma 11 Let T be a nonrecurrent isometry. For any x € R", conv(O(x)) contains a halfline*
L such that T' |1, is a translation.

Proof. The case when T is a pure translation is trivial. Suppose T' = R + v is a nonrecurrent
isometry. Let ¥ and v be such that v = T+ v+ where (v, FixR) = 0 and 0 # & € FixR. It can be
easily shown (see proof of Lemma 1 in Mendes [2007]) that (v, FixR) = 0 implies the existence
of a vector u such that (Id — R).u = v’ which is equivalent to saying that R.u = u — v'. Let

3This stems from the fact that the full orbit of z is diffeomorphic to or contained in a torus T™ or the union of
two tori.
4A halfline is a set of the form {p + Av : A > 0} for some p and v in R™.
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V := FixR + u and note that T |y is a translation for given any y = y* + u, where y* € FixR, we
have that,

T.y:R.(y*+u)+v:R.y*+R.u+v:y*+(uva)+17+vl:y+z7.

Let =7 + 2+ € R" where T € FixR and 2+ € W := (FixR)*. Then,

Tx = R.(E—}—zl)+v:R.(E+zL—|—u—u)+v:R.(mL7u)+R.u+R.E+v:

= R@" —uw)+@u-v")+7+@+v") =R —w)+u+(T+7).

Therefore,

projy (T.z) = R.(projyyz — u) + u . (1)

since T + U € FixR.

Let us define the isometry S given by S(z) := R.(z — u) + u. We note that given a vector
w € W then,

S(w)=R.(w—-u)+u=Rw—Ru+u=Rw+v,

since R leaves W invariant by orthogonality. Consequently, W is invariant under S which means
that there is a well defined isometry R denoting the action of S on the linear space W. Clearly,

FixS = FixR + u hence FixR = W N FixS = projy-u because W N FixR = {6} by construction.
By Lemma 10 it follows that there is a y € FixR such that y € conv (Og (projyz)) (°).

As seen before y = projyu. Equation (1), can be rewritten as projy, (T.z) = R (projy ) which,
when apllied several times over, implies that projy, (I™.z) = R" (projyyz). This in turn, leads to
Oz (projyyz) = projy, (O (z)). Consequently, y € conv (projy, (O (x))) and therefore, there must
exist z € conv(O(z)) such that projy,z = y taking into account that by Lemma 8 we know that
projy(convA) = conv(projy, A).

The fact that projy, 2z = y = projyyu allows us to conclude that z € V because uw € V and W_LV.
By Lemma 9 it follows that T'(conv(O(x))) C conv(O(z)) and therefore, O(z) C conv(O(x)) which
obviously implies that conv (O(z)) C conv(O(z)).

Finally, it turns out that L := conv(O(z)) is a halfline with origin at z since T' |y is a translation.
[

Lemma 12 Given an unbounded conver set P and a halfline L = {x 4+ A\v; A > 0} C P generated
by an interior point © we must have d(L,0P) > 0.

Proof. By Theorem 18 we know that the closure P must contain any halfline of the form
{y +Av; A >0} for any y € P. Thus we can construct a cylinder set enveloping L made up
of halflines which are parallel to L. This imples that d(L,9P) > 0 which in turn is the same as
saying that d(L,0P) > 0 since 9P = OP. m

5Subscript R means that orbit is obtained under iteration of map R.



ON THE CODING OF ORBITS IN DISCONTINUOUS MAPS

5.3 Previous results

For self containedness we include full statements of all previous results that are used in this paper.
For more information please check references.

Theorem 13 (Goetz [2000]) Let T : X — X (X is compact) be a piecewise translation map with
rationally independent translation vectors. Then every point in X has irrational coding.

Theorem 14 (Mendes and Nicol [2004]) There exist recurrent points with ratonal codings if and
only if there exist periodic points.

Theorem 15 (Goetz [1996]) Let T act on a compact space X and suppose that the atoms {P;}; do
not have points of full density on their boundaries. Then for every x € X \&, its code is rational.
For almost every point x € &, its code is irrational.

Theorem 16 (Mendes and Nicol [2004]) Suppose n is even, T € SE(P) and the rotations { A; } 75"
defining T are incommensurate. Then, every unbounded orbit is irrationally coded. Furthermore,
for almost every T' € SE(P) the corresponding set of rotations {Ai};’igl defining T are incommen-
surate.

Theorem 17 (Goetz [2000]) If X has finite Lebesque measure, then every cell of positive Lebesgue
measure has a rational code.

Theorem 18 (Webster [1994]) Let A be a closed unbounded convex set in R™. Then A contains
a halfline. Moreover, if A contains some halfline with direction La' , then it contains every halfline
with direction L whose initial point is in A.
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