
Symbolic implementation, in the Mathematica language, for

deriving closed formulas for connection coefficients between

orthogonal polynomials

Zélia da Rocha∗

Departamento de Matemática - CMUP
Faculdade de Ciências da Universidade do Porto

Rua do Campo Alegre n.687, 4169 - 007 Porto, Portugal
Email: mrdioh@fc.up.pt

2010

Abstract

We deal with the problem of obtaining closed formulas for the connection coeffi-
cients between orthogonal polynomial sequences and, also, the canonical sequence,
using a methodology based on symbolic computations, verifications and demonstra-
tions in the Mathematica language. We present, explain and exemplify in details the
implementation that has produced, among others, the results contained in two pre-
ceding articles of the author referenced herein and we give new insights on automatic
demonstrations.

Key words: Connection coefficients; orthogonal polynomials; symbolic computa-
tions; automatic demonstrations; Mathematica 7.

2010 Mathematics Subject Classification: 33C45, 33D45, 42C05, 33F10, 68W30,
68-01, 68-04.

Contents

1 Introduction 2

2 Connection coefficients for orthogonal polynomials 5

∗Corresponding author. Work partially supported by the Centro de Matemática da Universidade do
Porto, financed by FCT (Portugal) through the programmes POCTI (Programa Operacional ”Ciência
Tecnologia e Inovação”) and POSI (Programa Operacional Sociedade da Informação), with national and
European Community structural funds.

1

3 Symbolic computation of connection coefficients 6

3.1 How to implement recurrence relations in Mathematica 6

3.2 Implementation of the general recurrence relation for the connection co-
efficients . 7

3.3 Implementation of recurrence coefficients and orthogonal polynomials . . 9

3.4 Getting and verifying results for connection coefficients computed recur-
sively . 11

3.5 Getting and verifying results for connection coefficients computed by a
direct closed formula . 12

3.6 Mathematica demonstration of closed formulas for the connection coefficients 12

3.7 Main commands description . 13

4 Test examples 16

4.1 Charlier polynomials . 16

4.2 Canonical and Laguerre polynomials . 17

4.3 Commands description of test examples 19

5 Symbolic computation of connection coefficients in the symmetrical
case 21

5.1 Mathematica demonstration of closed formulas for the connection coefficients 21

5.2 Main command description . 23

5.3 Test example - generalized Hermite polynomials 23

5.4 Commands description of test example . 25

6 Conclusions 27

1 Introduction

The aim of this work is to present, explain and exemplify in details the Mathemat-
ica [19, 20] implementation which produces the results showed in [15, 16] for obtaining
closed formulas for the connection coefficients between two orthogonal polynomials se-
quences, or between the canonical sequence and an orthogonal one. This implementation
is available on a Mathematica notebook attached to [17].

Essentially, we follow the same methodology employed in [15, 16], which is based on
symbolic computations, verifications and demonstrations. Here, we explore a new topic
on automatic proofs.

We proceed with the simplest method based only on the recurrence relation fulfilled
by any orthogonal sequence, which leads to a general recurrence relation with two in-
dexes satisfied by the connection coefficients. The implementation of this relation allows
the recursive computation of the first connection coefficients up to a certain order. The
capabilities of simplification and factorization of Mathematica are crucial to get these
coefficients written in a convenient form that enable us to infer the corresponding closed

2

formula. This task is not always possible and could be more or less difficult depend-
ing on the complexity of the examples. In most families the recurrence coefficients are
factorized polynomial or rational functions in n. So the Mathematica algebraic manip-
ulation commands work pretty well. This software is mostly intended for that cases.
After that, if we identify the model for the closed formula, then it can be translated in a
Mathematica command and we can easily verify the first results obtained. The final goal
of the work is to provide a demonstration of the fact that the closed formula is really
true, that is, the model is a solution of the general recurrence relation. In principle,
this demonstration can also be achieved uniquely by implementation depending on the
success of the simplifications abilities of Mathematica. When this is not possible, we can
always try the procedures employed in [15, 16] doing only a part of the demonstration
with the help of Mathematica.

We would like to refer the Navima software [1, 2, 3, 8, 18] which implements a
similar recursive approach to connection problems in Mathematica. Navima algorithm
generates in a systematic way a linear recurrence relation in one index only, using some
additional proprieties of the orthogonal families, like structure relations or differential
equations among others. Then that recurrence relation is solved in the following way:
computation of the first few CC from the recurrence in order to guess its general expres-
sion. Afterwards, Navima verify by substitution that this guess satisfies the recurrence
relation [2, p.768, p.773]. In the present work, any particular character of the sequences
like classical, semi-classical or other are not directly employed, the general recurrence
relation that we use is based only on the orthogonality of the sequences. Other recursive
method is also considered in [10, 11] and recently in [6] with implementation in Maple.

We remark the fact that the mathematical literature on this subject is extremely
vast and a wide variety of methods have been developed using several other techniques.
The reader can find some of the main references in [16]. Furthermore, nowadays, there
are symbolic implementations in the domain of orthogonal polynomials. We refer the
CAOP [12], a package for calculating formulas for orthogonal polynomials belonging
to the Askey scheme in Maple, one approach based on special functions available on
internet.

Let us present the summary of the this work.

This article begins with a section that remembers the basic definitions and mathe-
matic results needed in the sequel, namely the notions of connection coefficients, orthog-
onal polynomials and symmetry and, also, the recurrence relation of order two satisfied
by any orthogonal sequence, the resultant general recurrence relation fulfilled by the
connection coefficients and the corresponding relations in the symmetrical case [15, 16].

Afterwards, we present an extensive section dedicated to the symbolic computation
of the connection coefficients. As this work is based on the implementation of recurrence
relations, the first subsection is devoted to this topic taking as basic example the com-
putation of the Fibonacci numbers. In the following subsection, we give explicitly the
commands that implement the general recurrence relation that allows the recursive com-
putation of the first connection coefficients up to a certain fixed order: we call them the
CC commands. Moreover, we discuss several important details in this implementation

3

that is conceived in order to work for every example. We note that each case is deter-
mined by the recurrence coefficients (the coefficients of the recurrence relation of order
2) and the parameters of the two orthogonal polynomials sequences corresponding to the
connection coefficients we want to compute. The names of the commands that translate
these elements are arguments of CC and must be implemented in a certain manner.
Therefore, in the subsection 3.3, we propose the implementation of the recurrence co-
efficients and the command MOP that computes the corresponding monic orthogonal
polynomials using the above cited recurrence relation of order two. In the subsection 3.4,
we show how to call the CC commands in order to get the first connection coefficients
up to a fixed order. Also, we established a command named verificationRCC based on
the mathematical definition of the connection coefficients, in order to verify the results
produced by CC. From these results, we try to infer a model to a direct closed formula
for the connection coefficients. If we succeed, it is always possible to implement that
formula in a command and compare the results produced by it with those computed
recursively. This comparison is implemented in a command named verificationDCC
presented in subsection 3.5. In the following subsection, we treat the main task of prov-
ing that the formula is true through a symbolic implementation furnish by the command
demonstrationDCC. At last, we present a list of the main commands refereeing, for
each one, the name, brief description, arguments, Mathematica commands and other
commands employed in the implementation and the result produced.

Section 4 is dedicated to the presentation of test examples. In the first subsection,
we follow all the steps of the methodology, giving the implementation and the results, for
the Charlier polynomials [7]. Next, we express the canonical polynomials in terms of the
monic Laguerre ones. Our goal is to explain how the commands work with an example
involving the canonical sequence. We present all the steps giving the corresponding
results. We finish the section with a description list of the commands developed.

Section 5 concerns the symmetrical case that need a specific treatment, because,
often, there are two different formulas for the connection coefficients corresponding to
odd or even indexes. The commands CC, verificationRCC and verificationDCC
work perfectly in this case, but the implementation of the closed formulas must be
more complete and the command demonstrationDCC must be replaced by another one
named demonstrationSymDCC. Next, the main command description is furnish. In
the subsection 5.3, we present as test example the generalize Hermite polynomials [7]
and we finish this section with the corresponding description.

We insist on the fact that all the developed commands are designed to accept every
example. The characteristic elements of each case to treat, that is, the names of the
commands corresponding to the recurrence coefficients and the parameters pass as argu-
ments of CC, verficationRCC and MOP . The name of the command translating the
closed formula passes as argument of verficationDCC and either demonstrationDCC
or demonstrationSymDCC.

For the sake of clearness, we have preferred to exemplify the commands with simple
test examples. Moreover, the methodology work perfectly in the cases of Laguerre and
Bessel with the canonical sequence presented in [15]; can be used to treat partially other

4

examples as the Gegenbauer and the Jacobi families with the canonical sequence given
in [16], and allows to explore new cases as the semi-classical ones treated in [16] and [17].

In the last section, we expose some conclusions and commentaries on the work pre-
sented here and in [15, 16, 17].

2 Connection coefficients for orthogonal polynomials

Let P be the vector space of polynomials with coefficients in C and let P ′ be its dual.
We denote by 〈u, p〉 the effect of u ∈ P ′ on p ∈ P. In particular, 〈u, xn〉 := (u)n , n > 0
represent the moments of u.

Let {Pn}n>0 be a monic polynomial sequence (MPS) with degPn = n, n ≥ 0, that
is, Pn(x) = xn + A form u is said regular [13, 14] if and only if there exists a MPS
{Pn}n>0, such that:

〈u, PnPm〉 = 0 , n 6= m , n,m ≥ 0 , (1)〈
u, P 2

n

〉
6= 0 , n ≥ 0 . (2)

In this case, {Pn}n>0 is said regularly orthogonal with respect to u and is called a
monic orthogonal polynomial sequence (MOPS). The orthogonality conditions are given
by (1), and (2) corresponds to the regularity conditions.

The sequence {Pn}n>0 is regularly orthogonal with respect to u if and only if [13, 14]
there exist two sequences of coefficients {βn}n>0 and {γn+1}n>0, with γn+1 6= 0, n > 0,
such that, {Pn}n>0 satisfies the following initial conditions and recurrence relation of
order 2:

P0(x) = 1, P1(x) = x− β0, (3)

Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n > 2. (4)

Furthermore, the recurrence coefficients {βn}n>0 and {γn+1}n>0 satisfy:

βn =

〈
u, xP 2

n(x)
〉

〈u, P 2
n(x)〉

, n > 0, (5)

γn+1 =

〈
u, P 2

n+1(x)
〉

〈u, P 2
n(x)〉

, n > 0. (6)

We remark that, from (3) and (6), the regularity conditions (2) are equivalent to the
conditions γn+1 6= 0, n > 0.

As usual, we suppose that

βn = 0, γn+1 = 0, Pn(x) = 0, n < 0. (7)

We recall that the recurrence coefficients of the canonical sequence {Xn}n>0, Xn(x) =
xn, are

βn = 0, γn+1 = 0, n > 0; (8)

5

it is a nonregular sequence.
Given two MPS {Pn}n>0 and {P̃n}n>0 the coefficients that satisfy the equality

Pn(x) =

n∑
m=0

λn,mP̃m(x), n > 0, (9)

are called the connection coefficients: λn,m := λPP̃
n,m := λn,m(P ← P̃).

It is obvious that these coefficients exist and are unique, because the polynomials are
linearly independent.

Let us suppose that the two monic polynomial sequences {Pn}n>0 and {P̃n}n>0

are orthogonal and are given by their recurrence coefficients {βn}n>0, {γn+1}n>0 and
{β̃n}n>0, {γ̃n+1}n>0, respectively, let us consider the problem of compute and determine
closed formulas for the connection coefficients.

As demonstrate in [15, 16], the connection coefficients fulfill the following initial
conditions and general recurrence relation

λn,m = 0, n < 0 or m < 0 or m > n, (10)

λn,n = 1, n > 0, (11)

λ1,0 = β̃0 − β0, (12)

λn,m =
(
β̃m − βn−1

)
λn−1,m − γn−1λn−2,m + γ̃m+1λn−1,m+1 + λn−1,m−1 (13)

, 0 6 m < n, n > 2.

We recall that a MPS, {Pn}n>0, is symmetric if and only if Pn(−x) = (−1)nPn(x),
n > 0; if it is orthogonal the symmetry is equivalent to βn = 0, n > 0 [7].

If {Pn}n>0 and {P̃n}n>0 are two symmetrical orthogonal polynomial sequences, then
the corresponding connection coefficients fulfil [15, 16], for 0 6 m 6 n and n > 0,

λ2n,2m−1 = 0, λ2n+1,2m = 0, (14)

λ2n,2m = −γ2n−1λ2n−2,2m + γ̃2m+1λ2n−1,2m+1 + λ2n−1,2m−1, (15)

λ2n+1,2m+1 = −γ2nλ2n−1,2m+1 + γ̃2m+2λ2n,2m+2 + λ2n,2m. (16)

In the case of other polynomial normalizations, that is, Bn(x) = knPn(x), kn 6= 0 and
B̃n(x) = k̃nP̃n(x), k̃n 6= 0, n ≥ 0, the corresponding connection coefficients to consider
are

λBB̃
n,m := knλ

PP̃
n,mk̃

−1
m , λBX

n,m := knλ
PX
n,m , λXB

n,m := λXP
n,mk

−1
m , 0 ≤ m ≤ n, n ≥ 0 .

3 Symbolic computation of connection coefficients

3.1 How to implement recurrence relations in Mathematica

In this work, the computation of the connection coefficients essentially involves the
implementation of recurrence relations. In the Mathematica language [19, 20], this can
be done easily using two different types of function definitions, as follows.

6

1- f [x] := rhs, define a standard function.

In this case, the value of the function is computed every time we ask for it.

2 - f [x] := f [x] = rhs, define a function which remembers values that it finds.

In this case, Mathematica never recomputes a function value, because the first time
a function value is computed it is automatically stored in memory.

Let us consider the typical example of Fibonacci numbers, given by the following
initial conditions and recurrence relation

f(0) = f(1) = 1 , f(n) = f(n− 1) + f(n− 2). (17)

The point is that if we calculate say f(10) by just applying the recursion relation
over and over again, we end up having to recalculate quantities like f(5) many times.
In a case like this, it is therefore better just to remember all the values of the Fibonacci
numbers already computed [19, 20]. This can be done, using a function definition of
type 2, as follows.

f [0] = f [1] = 1;

f [n /;And[n ∈ Integer, n ≥ 0]] := f [n] = f [n− 1] + f [n− 2];

There is a trade-off involved in remembering values. It is faster to find a particular
value, but it takes more memory space to store all of them. We should usually define
functions to remember values only if the total number of different values that will be
produced is comparatively small, or the expense of recomputing them is very great
[19, 20]. Of course that we can manage other kinds of implementation, but the preceding
ones are the most straightforward to use.

3.2 Implementation of the general recurrence relation for the connec-
tion coefficients

It is clear that, the recursive computation of the connection coefficients is more difficult
than the computation of the Fibonacci numbers, because the λn,m have two indexes,
the relation (13) is more complicated than (17) and involves the computation of the
recurrence coefficients βn, γn+1, β̃n and γ̃n+1, with the corresponding parameters. In
spite of this, all the considerations cited above remain valid for the λn,m. In this work,
we have used always functions that remember values. In practice, the maximal value of n
on λn,m and Pn is 20 or 25, so there is not a large amount of elements to store in memory.
On the other hand, to recompute the connection coefficients could be quite expensive,
if there are several parameters to consider, so the standard function definitions are not
indicated to this problem. We have not needed to do a more careful and complicated
implementation, because we have obtained all the results without any problems of time
or space memory.

Let us explain exactly how the implementation is done.

The initial conditions and the general recurrence relation for the connection coeffi-

7

cients (10)-(13) are easily implemented as follows.

CC[rc , rct][p][pt]

[n /;And[IntegerQ[n], n < 0],m /; IntegerQ[m]] := (18)

CC[rc, rct][p][pt][n,m] = 0;

CC[rc , rct][p][pt]

[n /; IntegerQ[n],m /;And[IntegerQ[m],m < 0]] := (19)

CC[rc, rct][p][pt][n,m] = 0;

CC[rc , rct][p][pt]

[n /;And[IntegerQ[n], n ≥ 0], n /;And[IntegerQ[n], n ≥ 0]] := (20)

CC[rc, rct][p][pt][n, n] = 1;

CC[rc , rct][p][pt][1, 0] := CC[rc, rct][p][pt][1, 0] = (21)

Factor[FullSimplify[rct[pt][0][[1]]− rc[p][0][[1]]]];

CC[rc , rct][p][pt][n /; IntegerQ[n],m /; IntegerQ[m]] :=

CC[rc, rct][p][pt][n,m] = (22)

Module[{},
If [And[n >= 0, n <= m− 1], Return[0],

Return[Factor[FullSimplify[

(rct[pt][m][[1]]− rc[p][n− 1][[1]]) ∗ CC[rc, rct][p][pt][n− 1,m]−
rc[p][n− 1][[2]] ∗ CC[rc, rct][p][pt][n− 2,m] +

rct[pt][m+ 1][[2]] ∗ CC[rc, rct][p][pt][n− 1,m+ 1] +

CC[rc, rct][p][pt][n− 1,m− 1]]]

]; (∗ end of Return ∗)
]; (∗ end of If ∗)

]; (∗ end of Module ∗)

The arguments [rc , rct] and [p][pt] correspond to the names of the recurrence
coefficient commands and the names of the parameters of the sequences P and P̃ , in
such a way that, rc[p][n] and rct[pt][n] are lists corresponding to {βn, γn} and {β̃n, γ̃n},
respectively. To access to the first or second element of a list, we join to its name [[1]]
or [[2]]. The commands corresponding to rc and rct must be given before calling the
CC commands (see next subsections). Note that the triple underscore next p and pt is
a pattern object that can stand for any sequence of zero or more expressions [19, 20],
which means that it matches for polynomial sequences without parameters as is the case
of the canonical one.

8

After the above explanations, we think it is easy to accept that the definitions of
the CC commands (18)-(19), (20), (21) and (22) correspond to the mathematical re-
lations (10), (11), (12) and (13), respectively. Note that we put exclusion and initial
conditions ahead of the general recurrence relation. This principle has been followed by
Mathematica in order to avoid special rules be shadowed by more general ones [19, 20].

Remark that, the CC commands only accept integer values for the arguments n or
m. This is done by the restrictions following the patterns arguments. The aim is to
avoid acceptation of absurd values for n and m. In fact, if we could give, for example,
n = 5.5 or n symbolic in a CC-calling statement, the recurrence relation would never
match the initial conditions and would enter in an infinite recursion process.

We have added to the body of (21) and (22) the very useful Mathematica commands
Factor followed by FullSimplify in order to get results written in the simplest factorized
form [19, 20]. In examples for which the recurrence coefficients are rational functions
Factor should be replace by Together. We note that Factor[expr] writes expr as a
product of minimal factors and Together[expr] puts terms in a sum over a common
denominator and cancels factors in the result [19, 20].

3.3 Implementation of recurrence coefficients and orthogonal polyno-
mials

Let us consider two polynomial sequences identified, for example, by the names Ex1P
and Ex2P ; the first one with two parameters p1 and p2 and the second one with one
parameter p, for instance. We would like to compute the connection coefficients λn,m :=
λn,m(Ex1P ← Ex2P). The CC-commands suppose that the corresponding recurrence
coefficients are implemented in commands, named Ex1C and Ex2C, for example, as
follows.

Ex1C[p1 , p2][n] := Ex1C[p1, p2][n] = (23)

Module[{...}, ...;Return[{..., ...}]];

Ex2C[p][n] := Ex2C[p][n] = Module[{...}, ...;Return[{..., ...}]]; (24)

In that manner, these definitions return a list of two elements {..., ...}, thus
Ex1C[p1, p2][n][[1]] and Ex1C[p1, p2][n][[2]] correspond to βn and γn; and Ex2C[p][n][[1]]
and Ex2C[p][n][[2]] correspond to β̃n and γ̃n, respectively.

Note that there is no restriction on the argument n, because nearly always, we are
able to give a closed formula for the recurrence coefficients valid for all n, so n can be
a symbol argument or a numeric expression in the calling statement (Ex1C[p1, p2][5];
Ex1C[p1, p2][n], for example). In spite of the fact that the computation of recurrence
coefficients is not recursive, we have used functions that remember values, because each
recurrence coefficient is needed many times.

The monic orthogonal polynomials are recursively computed using the identities (3)-

9

(4) and are implemented in the following MOP -commands.

MOP [rc][p][n /;And[IntegerQ[n], n < 0], x] := (25)

MOP [rc][p][n, x] = 0;

MOP [rc][p][0, x] := MOP [rc][p][0, x] = 1; (26)

MOP [rc][p][1, x] := MOP [rc][p][1, x] = (27)

Simplify[x− rc[0][[1]]];

MOP [rc][p][n /;And[IntegerQ[n], n ≥ 2], x] := (28)

MOP [rc][p][n, x] =

Collect[Simplify[(x− rc[p][n− 1][[1]]) ∗MOP [rc][p][n− 1, x]−
rc[p][n− 1][[2]] ∗MOP [rc][p][n− 2, x]],

x, Factor];

To the sake of implementation, it is necessary to consider the shift n← n− 2 in (4)
in order to have the index n isolated on the left hand side of the relation.

As set before, the arguments [rc] and [p] correspond to the name of the recurrence
coefficients command and the name of the parameters of the sequence P . As usual n is
the degree and x is the variable in Pn(x).

It is easy to see that the MOP commands (25), (26)-(27) and (28) correspond to
the mathematical relations (7), (3) and (4), respectively. Remark that we have used
functions that remember values and in the calling statements of MOP n must be a fixed
integer and x should be a symbol or a numeric expression.

In order to get the polynomials simplified and written in the canonical base with
factorized coefficients we have used the Simplify and Collect Mathematica commands
(Collect[expr, x, command] groups together powers of x in expr and applies the
command to the corresponding coefficients; in rational cases Factor shoud be replaced
by Together [19, 20]). If we are going to use the MOP command for no numeric values
of x (NumericQ[x] === False), then Collect should be omitted.

The commands that define the polynomials of the specified examples with which we
treat can be easily implemented in one line calling the MOP definition as follows.

Ex1P [p1 , p2][n , x] := Ex1P [p1, p2][n, x] = MOP [Ex1C][p1, p2][n, x]; (29)

Ex2P [p][n , x] := Ex2P [p][n, x] = MOP [Ex2C][p][n, x]; (30)

To get the polynomials of degree 5 for example, we furnish

Ex1P [p1, p2][5, x] Ex2P [p][5, x]

If we want to consider special values to the parameters, for example, p1 = 0, p2 = 1
and p = −1, we call

Ex1P [0, 1][5, x] Ex2P [−1][5, x]

10

To evaluate the preceding in x = 0, we give

Ex1P [0, 1][5, 0] Ex2P [−1][5, 0]

3.4 Getting and verifying results for connection coefficients computed
recursively

Supposing the structure of commands previously establish, the statement to get the
connection coefficients λn,m := λn,m(Ex1← Ex2), for n = 0, ..., 10, m = 0, ..., n, is

Table[CC[Ex1C,Ex2C][p1, p2][p̃][n,m], {n, 0, 10}, {m, 0, n}]

, where Table[expr, {i, imin, imax}, {j, jmin, jmax}] generates a double list of the
values of expr when i runs from imin to imax and j runs from jmin to jmax. The list
associated with i is outermost [19, 20].

We should make some kind of verifications in order to test our implementation. A
crucial one is based on the definition of connection coefficients given by the equality (9),
which can be reproduced with our commands fixing the upper value of n = nmax. This
can be done by defining

verificationRCC[rc , rct][p][pt]

[nmax /;And[IntegerQ[nmax], nmax ≥ 0] :=

Module[{x, answer = Table[True, {n, 0, nmax}]},
Table[FullSimplify[MOP [rc][p][n, x]−

n∑
m=0

CC[rc, rct][p][pt][n,m] ∗MOP [rct][pt][m,x]] === 0

, {n, 0, nmax}] === answer];

In Mathematica, in order to ask if two entities a and b are identical, we can give
a === b and have True or False as answer. Often, it is more efficient to verify if their
difference is 0 doing FullSimplify[a− b] === 0 [19, 20].

In our example, the calling statement to get this verification up to 20, for example,
is

verificationRCC[Ex1C,Ex2C][p1, p2][p̃][20]

And we should have True as answer.
To get the connection coefficients corresponding to two different polynomial se-

quences concerning the same familiy, Ex1P , but with different parameters, [p1, p2] and
[p̃1, p̃2], we call

Table[CC[Ex1C,Ex1C][p1, p2][p̃1, p̃2][n,m], {n, 0, 10}, {m, 0, n}]

The corresponding verification up to 20 is

verificationRCC[Ex1C,Ex1C][p1, p2][p̃1, p̃2][20]

And, we should have True as answer.

11

3.5 Getting and verifying results for connection coefficients computed
by a direct closed formula

In [15, 16], it is shown that, in several important cases, we are able to infer from the
table of results produced by the CC-definitions, what is the mathematical direct closed
formula of the connection coefficients, for all n and m. Then, we can translate this
model in a Mathematica command and compare the connection coefficients given by it
with those produced by the recursive computations of the CC-commands, for the first
values of n up to nmax. This comparison can be implemented in a command like

verificationDCC[dcc][rc , rct][p][pt]

[nmax /;And[nmax ∈ Integer, nmax ≥ 0]] :=

Module[{answer = Table[True, {n, 0, nmax}, {m, 0, n}]},
Table[FullSimplify[dcc[p][pt][n,m]− CC[rc, rct][p][pt][n,m]] === 0

, {n, 0, nmax}, {m, 0, n}] === answer];

where the dcc argument is the name of the direct definition,

In the case of the examples Ex1 and Ex2, we establish a command of the following
type for the closed formula.

Ex1Ex2DCC[p1 , p2][pt][n ,m] := Ex1Ex2DCC[p1, p2][pt][n,m] =

Module[{...}, Return[...]];

Note that the parameters of the two sequences must figure separately as arguments.
Remark, also, that there are no restriction on n and m, because they can be fixed
integers or symbols.

The comparison up to 20 can be executed as follows.

verificationDCC[Ex1Ex2DCC][Ex1C,Ex2C][p1, p2][p̃][20]

And, we should have a True as answer. Of course, this does not constitute a proof of
the direct formula.

3.6 Mathematica demonstration of closed formulas for the connection
coefficients

The mathematic demonstration corresponds to show that the direct closed formula for
the connection coefficients is a solution of the recurrence relation (13), for all non negative
integers n and m such that m ≤ n.

In principle, this proof can be done totally in Mathematica using the next command, if
the formulas for the recurrence coefficients {βn}, {γn+1} and {β̃n}, {γ̃n+1} are available,
for all n, that is, for n symbolic, and the commands FullSimplify or FunctionExpand

12

are able to make the necessary simplifications.

demonstrationDCC[dcc][rc , rct][p][pt][n Symbol,m Symbol] :=

FullSimplify[

dcc[p][pt][n,m]− (rct[pt][m][[1]]− rc[p][n− 1][[1]]) ∗ dcc[p][pt][n− 1][m] +

rc[p][n− 1][[2]] ∗ dcc[p][pt][n− 2,m]−
rct[pt][m+ 1][[2]] ∗ dcc[p][pt][n− 1,m+ 1]− dcc[p][pt][n− 1,m− 1],

Assumptions→
And[Element[n, Integers], Element[m, Integers], n >= 0,m >= 0,m <= n]

] === 0;

Remark that n and m must be symbols in the calling statement otherwise
demonstrationDCC does nothing. Note that the assumptions inform that the symbols
n and m represent integers such that 0 ≤ m ≤ n. These Assumptions can not be
necessary to accomplish the demonstrations. demonstrationDCC is , in fact, a symbolic
translation of the recurrence relation (13).

In the case of the examples Ex1 and Ex2 the demonstration corresponds to get True
as answer to the following entry.

demonstrationDCC[Ex1Ex2CC][Ex1C,Ex2C][p1, p2][p̃][n,m]

3.7 Main commands description

In this section, we furnish a list with a description of the main commands implemented
in the general case, they are: CC, MOP , verificationRCC, verificationDCC and
demonstrationDCC. For each command we refer the name, brief description, argu-
ments, Mathematica commands and other commands employed in the implementation
and the result produced.

• Arguments rc, rct, p and pt of the commands listed in the sequel.

- rc and rct are the names of the commands that define the recurrence coefficients
{βn, γn} and {β̃n, γ̃n} of the two polynomials sequences P and P̃ ; they must be
symbols.

- rc and rct must be defined like:

rc[p][n] := ...[...;Return[{βn, γn}]]; rct[pt][n] := ...[...;Return[{β̃n, γ̃n}]];
- p and pt are the sequences of parameters of P and P̃ .

• CC[rc, rct][p][pt][n,m]

Description:

CC computes recursively the connection coefficient, λn,m := λn,m(P ← P̃), defined
in (9), using the initial conditions (10)-(12) and the recurrence relation (13).

13

Arguments:

- rc, rct, p and pt described before.

- n and m must be integers.

Mathematica commands used:

- Factor or Together, FullSimplify.

Result:

- λn,m.

• MOP [rc][p][n, x]

Description:

MOP computes recursively the monic orthogonal polynomial, Pn(x), of degree n
in the variable x, using the initial conditions (2) and the recurrence relation (3).

Arguments:

- rc and p described before.

- n must be an integer.

- x should be a symbol or a numeric expression.

Mathematica commands used:

- Collect, Factor or Together, Simplify or FullSimplify.

Result:

- Pn(x).

• Argument nmax of the commands listed in the sequel.

- nmax must be a non negative integer.

• verificationRCC[rc, rct][p][pt][nmax]

Description:

verificationRCC makes a verification of the first connection coefficients, λn,m :=
λn,m(P ← P̃), computed recursively by the CC command up to an index n =
nmax. verificationRCC is based on the definition (9) of the connection coeffi-
cients.

Arguments:

- rc, rct, p, pt and nmax described before.

Mathematica commands used:

- FullSimplify.

Other commands used:

- CC and MOP .

14

Result:

- Returns True if the the verification is correct, returns False otherwise.

• Argument dcc of the commands listed in the sequel.

- dcc is the name of the command that implements the direct closed formula; it
must be a symbol.

- dcc must be defined like dcc[p][pt][n ,m] := ...[...;Return[λn,m]];

• verificationDCC[dcc][rc, rct][p][pt][nmax]

Description:

verificationDCC makes a comparison between the values of the connection co-
efficients, λn,m := λn,m(P ← P̃), computed by the CC command and the ones
computed using a direct closed formula, this, up to the index n = nmax.

Arguments:

- dcc, rc, rct, p, pt and nmax described before.

Mathematica commands used:

- FullSimplify.

Other commands used:

- CC.

Result:

- Returns True if the verification is correct, returns False otherwise.

• demonstrationDCC[dcc][rc, rct][p][pt][n,m]

Description:

demonstrationDCC tries to demonstrate the direct closed formula for the connec-
tion coefficients λn,m := λn,m(P ← P̃) for every n and m.

Arguments:

- dcc, rc, rct, p and pt described before.

- n and m are symbols and represent non negative integers such that 0 ≤ m ≤ n.

Mathematica commands used:

- FullSimplify with Assumptions.

Result:

- Returns True if Mathematica achieves the demonstration, returns False other-
wise.

15

4 Test examples

4.1 Charlier polynomials

Let us see how the commands we have developed work and what results they produce in
the simple case of the classical discrete monic Charlier polynomials {Pn(α, .)}n≥0 with
parameter α [7]. The Charlier recurrence coefficients

βn(α) = n+ α , n ≥ 0 ; γn(α) = nα , n ≥ 1 , α 6= 0, (31)

are implement in the following command.

CharlierC[α][n] := CharlierC[α][n] =

If [And[NumericQ[n], n < 0], Return[{0, 0}], Return[{n+ α, α ∗ n}]];

The monic Charlier polynomials are defined, using the MOP command, by

CharlierP [α][n , x] := CharlierP [α][n, x] = MOP [CharlierC][α][n, x];

The connection coefficients λn,m := λn,m(P (α;−) ← P (α̃;−)) are computed recur-
sively up to n = 6, for example, by the next calling statement of the CC command.

In[] := Table[CC[CharlierC,CharlierC][α][α̃][n,m], {n, 0, 6}, {m, 0, n}]//

TableForm

Out[]TableForm =

1
−α+ α̃ 1
(α− α̃)2 −2(α− α̃) 1
−(α− α̃)3 3(α− α̃)2 −3(α− α̃) 1
(α− α̃)4 −4(α− α̃)3 6(α− α̃)2 −4(α− α̃) 1
−(α− α̃)5 5(α− α̃)4 −10(α− α̃)3 10(α− α̃)2 −5(α− α̃) 1
(α− α̃)6 −6(α− α̃)5 15(α− α̃)4 −20(α− α̃)3 15(α− α̃)2 −6(α− α̃) 1

Now, we can verify these results and the next ones up to nmax = 20, for example,
calling

In[] := Timing[verificationRCC[CarlierC,CharlierC][α, α̃][20]]

and we get the answer

Out[] = {278.7, T rue}

Note that Timing[expr] evaluates expr, and returns a list of the time in seconds
used, together with the result obtained [19, 20].

16

The observation of the above results getting by the CC commands allows us to infer
the following direct closed formula for the connection coefficients

λn,m = (−1)n−m
(
n

m

)
(α− α̃)n−m, 0 ≤ m ≤ n, n ≥ 0, (32)

which can be implement in a command as follows

CharlierDCC[α][αt][n ,m] :=

(−1)ˆ(n−m) ∗Binomial[n,m] ∗ (α− αt)ˆ(n−m);

In order to compare the results given by this command with those produced by CC
up to nmax = 20, for example, we do

In[] := Timing[verificationDCC[CharlierDCC][CharlierC,CharlierC][α][α̃][20]]
Out[] = {0.02, T rue}

The mathematical demonstration of the formula (32) is achieved in Mathematica
doing

In[] := Timing[
demonstrationDCC[CharlierDCC][CharlierC,CharlierC][α][α̃][n,m]]

Out[] = {0.5, T rue}

We remember that the formula (32) is well known and can be found in several
references; see, among others, [1, 11].

4.2 Canonical and Laguerre polynomials

Let us express the canonical sequence in terms of the classical monic Laguerre polyno-
mials. For that purpose, we need to recall the Laguerre recurrence coefficients [7],

βn(α) = 2n+ α+ 1 , γn+1(α) = (n+ 1)(n+ α+ 1), α 6= −n, n ≥ 0, (33)

which can be implemented in the following command.

LaguerreC[α][n] := LaguerreC[α][n] =

If [And[NumericQ[n], n < 0], Return[{0, 0}], Return[{2 ∗ n+ α+ 1, n ∗ (n+ α)}]];

The recurrence coefficients of the canonical sequence given in (8) and the canonical
polynomials are easily translated as follows

CanonicalC[][n] := CanonicalC[][n] = {0, 0};

CanonicalP [][n , x] := CanonicalP [][n, x] = MOP [CanonicalC][][n, x];

The connection coefficients λn,m := λn,m(X ← P (α̃;−)) are computed recursively
up to n = 4, for example, by the next calling statement of the CC command.

17

In[] := Table[CC[CanonicalC, LaguerreC][][α̃][n,m], {n, 0, 4}, {m, 0, n}]//
TableForm

Out[]TableForm =
1
(1 + α̃) 1
(1 + α̃)(2 + α̃) 2(2 + α̃) 1
(1 + α̃)(2 + α̃)(3 + α̃) 3(2 + α̃)(3 + α̃) 3(3 + α̃) 1
(1 + α̃)(2 + α̃)(3 + α̃)(4 + α̃) 4(2 + α̃)(3 + α̃)(4 + α̃) 6(3 + α̃)(4 + α̃) 4(4 + α̃) 1

Now, we can verify these results and the next ones up to nmax = 20, for example,
calling

In[] := Timing[verificationRCC[CanonicalC, LaguerreC][][α̃][20]]

and we get the answer

Out[] = {402.41, T rue}

The observation of the above table allows us to infer the following direct closed
formula for the connection coefficients

λn,m =

(
n

m

) n−m−1∏
k=0

(α̃+ n− k), 0 ≤ m ≤ n, n ≥ 0, (34)

which can be implement in a command as follows

CanonicalLaguerreDCC[][αt][n ,m] := Binomial[n,m] ∗
n−m−1∏
k=0

(αt+m− k);

In order to compare the results given by this command with those produced by CC up
to nmax = 20, for example, we do

In[] := Timing[

verificationDCC[CanonicalLaguerreDCC[CanonicalC, LaguerreC][][α̃][20]]]

Out[] = {0.02, T rue}

The mathematical demonstration of the formula (34) is achieved in Mathematica doing

In[] := Timing[

demonstrationDCC[CanonicalLaguerreDCC[CanonicalC, LaguerreC][][α̃][n,m]]]

Out[] = {0.32, T rue}

We remember that the formula (34) is well known and can be found in several
references; see, among others, [4, 5, 2, 15]. About the table of recursive results, when
α̃ = 0, see [9].

18

4.3 Commands description of test examples

In this section, we give a descriptive list, in the same terms as before, of the commands
implemented in the section of test examples.

• Commands for the Charlier family: CharlierC, CharlierP and CharlierDCC.

Argument α of the commands listed in the sequel.

- α is a parameter (α 6= 0).

- If α = 0, then Charlier polynomials are not regular, γn = 0, n >= 1.

- α should be a symbol or a numeric expression.

• CharlierC[α][n]

Description:

CharlierC[α][n] is the n-th recurrence coefficients, {βn, γn}, of the monic Charlier
polynomials (31).

Arguments:

- n should be a symbol or an integer.

Result:

- If n > 0, {βn, γn}. If n=0, {βn, 0}. If n < 0, {0, 0}.

• CharlierP [α][n, x]

Description:

CharlierP [α][n, x] is the monic Charlier polynomial of parameter α of degree n in
the variable x: Pn(x).

Arguments:

- n must be an integer.

- x should be a symbol or a numeric expression.

Commands used:

- CharlierC, MOP.

Result:

- Pn(x)

• CharlierDCC[α][α̃][n,m]

Description:

CharlierDCC[α][α̃][n,m] computes the connection coefficient λn,m := λn,m(P (α,−)
← P̃ (α̃,−)), where P notes the monic Charlier polynomials, using the direct closed
formula (32) inferred from the above results produced by the CC command.

Arguments:

19

- α and α̃ are the parameters of P and P̃ .

- n and m should be symbols or integers.

Result:

- λn,m.

• Commands for the canonical family: CanonicalC and CanonicalP .

• CanonicalC[][n]

Description:

CanonicalC[][n] is the n-th recurrence coefficients {βn, γn} of the canonical poly-
nomials (8).

Arguments:

- n should be a symbol or an integer.

Result:

- {0, 0}.

• CanonicalP [][n, x]

Description:

CanonicalP [][n, x] is the canonical polynomial of degree n in the variable x.

Arguments:

- n must be an integer.

- x should be a symbol or a numeric expression.

Commands used:

- CanonicalC, MOP.

Result:

- If n >= 0, xn. If n < 0, 0.

• Commands for the Laguerre family: LaguerreC, LaguerreP and
CanonicalLaguerreDCC.

Argument α of the commands listed in the sequel.

- α is a parameter (α 6= −n, n > 0).

- If α = −n, n > 0 , then Laguerre polynomials are not regular, γn = 0, n ≥ 1.

- α should be a symbol or a numeric expression.

• LaguerreC[α][n]

Description:

LaguerreC[α][n] is the n-th recurrence coefficients, {βn, γn}, of the monic Laguerre
polynomials (33).

20

Arguments:

- n should be a symbol or an integer.

Result:

- If n > 0, {βn, γn}. If n = 0, {βn, 0}. If n < 0, {0, 0}.

• LaguerreP [α][n, x]

Description:

LaguerreP [α][n, x] is the monic Laguerre polynomial of parameter α of degree n
in the variable x: Pn(x).

Arguments:

- n must be an integer.

- x should be a symbol or a numeric expression.

Commands used:

- LaguerreC, MOP.

Result:

- Pn(x)

• CanonicalLaguerreDCC[][α̃][n,m]

Description:

CanonicalLaguerreDCC[][α̃][n,m] computes the connection coefficient λn,m :=
λn,m(X ← P (α̃),−)), where X notes the canonical polynomials and P notes the
monic Laguerre polynomials, using the direct closed formula (34) inferred from the
above results produced by the CC command.

Arguments:

- α̃ is the parameter of P̃ .

- n and m should be symbols or integers.

Result:

- λn,m

5 Symbolic computation of connection coefficients in the
symmetrical case

5.1 Mathematica demonstration of closed formulas for the connection
coefficients

It is quite clear that the general commands CC, verificationRCC and verificationDCC
work perfectly in the case of the two polynomials sequences are symmetric. Neverther-
less, we could develop more efficient commands due to the simplifications introduced by

21

the equalities (14), creating a command named SymCC for implement the recurrence re-
lations (14)-(16) and the commands verificationSymRCC and verificationSymDCC
for accomplish the corresponding verifications. We have not do that because the gain in
second times execution is very small.

On the other hand, in the symmetrical case, the command demonstrationDCC can
not work, because, often, the direct closed formulas for the connection coefficients are
given separately for even and odd integer indexes, that is, we have different formulas for
λ2n,2m and λ2n+1,2m+1. Therefore, the commands that implement these formulas must
be defined for the arguments [2∗n , 2∗m] and [2∗n +1, 2∗m +1]. In calling statements,
the arguments corresponding to the indexes 2∗n+2, 2∗m−2 and 2∗n−1, 2∗m−1, for
example, should be given as [2 ∗ (n− 1) + 1, 2 ∗ (m− 1) + 1] and [2 ∗ (n+ 1), 2 ∗ (m− 1)]
in order to match with the definitions.

We next translate the command demonstrationSymDCC, which allows to show
that the direct closed formulas, which name enter as the argument symdcc, satisfy the
recurrence relations (15) and (16), for every n and m.

demonstrationSymDCC[symdcc][rc , rct][p][pt][n Symbol,m Symbol] :=

And[FullSimplify[

symdcc[p][pt][2 ∗ n, 2 ∗m] +

rc[p][2 ∗ (n− 1) + 1][[2]] ∗ symdcc[p][pt][2 ∗ (n− 1), 2 ∗m]−
rct[pt][2 ∗m+ 1][[2]] ∗ symdcc[p][pt][2 ∗ (n− 1) + 1, 2 ∗m+ 1]−
symdcc[p][pt][2 ∗ (n− 1) + 1, 2 ∗ (m− 1) + 1],

Assumptions→
And[Element[n, Integers], Element[m, Integers], n >= 0,

m >= 0,m <= n]

] === 0,

FullSimplify[

symdcc[p][pt][2 ∗ n+ 1, 2 ∗m+ 1] +

rc[p][2 ∗ n][[2]] ∗ symdcc[p][pt][2 ∗ (n− 1) + 1, 2 ∗m+ 1]−
rct[pt][2 ∗ (m+ 1)][[2]] ∗ symdcc[p][pt][2 ∗ n, 2 ∗ (m+ 1)]−
symdcc[p][pt][2 ∗ n, 2 ∗m],

Assumptions→
And[Element[n, Integers], Element[m, Integers], n >= 0,

m >= 0,m <= n]

] === 0

];

These Assumptions can not be necessary to accomplish the symplifications.

22

In the case of the symmetric examples SymEx1 and SymEx2 the demonstration cor-
responds to get True as answer to the next entry, supposing that SymEx1SymEx2DCC
is the name of the command that translate the direct closed formulas of λ2n,2m and
λ2n+1,2m+1, and SymEx1C and SymEx2C are the names of the recurrence coefficients.

demonstrationSymDCC[SymEx1SymEx2DCC][SymEx1C, SymEx2C][p1, p2][p̃][n,m]

5.2 Main command description

As before, we give a description of the main command implemented in the symmetrical
case: demonstrationSymDCC.

• demonstrationSymDCC[symdcc][rc, rct][p][pt][n,m]

Description:

demonstrationSymDCC tries to demonstrate the direct closed formulas for the
connection coefficients λn,m := λn,m(P ← P̃), when P and P̃ are symmetrical
polynomials sequences implementing the recurrence relations (15) and (16).

Arguments:

- symdcc is the name of the command that implements the direct closed formulas,
it must be a symbol.

- rc and rct are the names of the commands that define the recurrence coefficients,
{0, γn} and {0, γ̃n}, of the two symmetrical polynomials sequences P and P̃ ; they
must be symbols.

- rc and rct must be defined like:

rc[p][n] := ...[...;Return[{0, γn}]]; rct[pt][n] := ...[...;Return[{0, γ̃n}]];
- p and pt are the sequences of parameters of P and P̃ .

- n and m are symbols and represent non negative integers such that 0 <= m <= n.

Mathematica commands used:

- FullSimplify with Assumptions.

Result:

- Returns True if Mathematica achieves the demonstration, returns False other-
wise.

5.3 Test example - generalized Hermite polynomials

Let us consider the semi-classical generalized monic Hermite sequence {Pn(µ; .)}n≥0
with parameter µ, which is symmetric. When µ = 0, we recover the classical Hermite
sequence.

The recurrence coefficients [7]

βn = 0, n ≥ 0 ; γn := γn(µ) =
1

2

(
n+ µ(1 + (−1)n−1)

)
, µ 6= −n− 1

2
, n ≥ 1, (35)

23

are implemented in the following command.

GenHermiteC[µ][n] := GenHermiteC[µ][n] =

If [And[NumericQ[n], n <= 0], Return[0, 0], Return[0, (n+ µ ∗ (1 + (−1)(n−1)))/2]];

We can compute recursively the connection coefficients λn,m := λn,m(P (µ;−)← P (µ̃;−))
up to n = 5, for example, by the next call of the CC command.

In[] := Table[CC[GenHermiteC,GenHermiteC][µ][µ̃][n,m], {n, 0, 5}, {m, 0, n}]//
TableForm

Out[]//TableForm =

1
0 1
−µ+ µ̃ 0 1
0 −µ+ µ̃ 0 1
(−µ+ µ̃)(1 + µ− µ̃) 0 −2(µ− µ̃) 0 1
0 (−µ+ µ̃)(1 + µ− µ̃) 0 −2(µ− µ̃) 0 1

We can verify these results and the next ones up to nmax = 20, for example, calling

In[] := Timing[verificationRCC[GenHermiteC,GenHermiteC][µ, µ̃][20]]

and we get the answer

Out[] = {90.22, T rue}

From the above table and some more results, we can easily infer the direct closed
formulas for the connection coefficients; they are

λ2n,2m = (−1)n+m

(
n

m

) n−m−1∏
k=0

(µ− µ̃+ k) , (36)

λ2n+1,2m+1 = λ2n,2m ; (37)

which are implemented as follows.

GenHermiteDCC[µ][µt][n /;And[IntegerQ[n], n >= 0],

m /;And[IntegerQ[m],m >= 0]] :=

GenHermiteDCC[µ][µt][n,m] =

Module[{n1,m1},
If [Or[And[EvenQ[n], OddQ[m]], And[OddQ[n], EvenQ[m]]], Return[0]];

n1 = Quotient[n, 2]; m1 = Quotient[m, 2];

Return[

(−1)ˆ(n1−m1) ∗Binomial[n1,m1] ∗ Product[µ− µt+ k, {k, 0, n1−m1− 1}]]];

24

We inform that EvenQ[exp] gives True, if exp is an even integer, and False oth-
erwise; OddQ works in a similar way; Quotient[n,m] returns the integer quotient of n
and m [19, 20]. We remark that these commands could not furnish the desired answer
if n or m are symbols. In principle, EvenQ[exp] and OddQ[exp] return always False, if
exp is a symbol and Quotient[n,m] gives no answer if n or m are symbols. Therefore
these commands should work only for non negative values of n and m as is insured by
the restrictions following the corresponding pattern arguments.

In order to compare the results produced by GenHermiteDCC with those obtained
from CC up to nmax = 20, for example, we do

In[] := Timing[verificationDCC[GenHermiteDCC]

[GenHermiteC,GenHermiteC][µ][µ̃][20]]

Out[] = {0.03, T rue}

In order to demonstrate the formulas (36) and (37) for every n and m, through
the command demonstrationSymDCC, the above definition of GenHermiteDCC is
not adequate and we should add the next definitions for GenHermiteDCC that will
be called in demonstrationSymDCC for n and m symbolic. We alert that a Symbol
restriction following the patterns of the arguments n and m must not figure in these
definitions and that they do not allow computations for fixed values of n and m.

GenHermiteDCC[µ][µt][2 ∗ n , 2 ∗m] :=

(−1)ˆ(n−m) ∗Binomial[n,m] ∗ Product[µ− µt+ i, {i, 0, n−m− 1}];
GenHermiteDCC[µ][µt][2 ∗ n + 1, 2 ∗m + 1] :=

GenHermiteDCC[µ][µt][2 ∗ n, 2 ∗m];

Therefore the demonstration is achieved doing

In[] := Timing[demonstrationSymDCC[GenHermiteDCC]

[GenHermiteC,GenHermiteC][µ][µ̃][n,m]]

Out[] = {0.66, T rue}

We remember that the formulas (36) and (37) are well known and they are available
in several references; see, among others, [15].

5.4 Commands description of test example

In this section, we give a descriptive list, in the same terms as before, of the commands
implemented in order to test the symmetrical case of generalized Hermite family, they
are: GenHermiteC, GenHermiteP and GenHermiteDCC.

• Argument µ of the commands listed in the sequel.

- µ is a parameter (µ 6= −n− 1
2 , n >= 0).

25

- If µ = −n − 1
2 , n >= 0, then generalized Hermite polynomials are not regular,

γ2n+1 = 0, n >= 1.

- µ should be a symbol or a numeric expression.

• GenHermiteC[µ][n]

Description:

GenHermiteC[µ][n] is the n-th recurrence coefficients, {0, γn}, of the monic gen-
eralized Hermite polynomials (35).

- n should be a symbol or an integer.

Result:

- If n > 0, {0, γn}. If n <= 0, {0, 0}.

• GenHermiteP [µ][n, x]

Description:

GenHermiteP [µ][n, x] is the monic generalized Hermite polynomial of parameter
µ of degree n in the variable x: Pn(x).

Arguments:

- n must be an integer.

- x should be a symbol or a numeric expression.

Commands used:

- GenHermiteC, MOP.

Result:

- Pn(x)

• GenHermiteDCC[µ][µ̃][n,m]

Description:

GenHermiteDCC[µ][µ̃][n,m] computes the connection coefficients λn,m :=
λn,m(P (µ,−) ← P (µ̃,−)), where P notes the monic generalized Hermite polyno-
mials, using the direct closed formulas (36) and (37) inferred from the above results
produced by the CC command.

Arguments:

- µ and µ̃ are the parameters of P and P̃ = P (µ̃,−).

- n and m must be non negative integers.

Results:

- λ2n,2m, λ2n+1,2m+1.

26

• GenHermiteDCC[µ][µ̃][n,m]

Description:

GenHermiteDCC[µ][µ̃][n,m] translates the definitions (36) and (37) of the con-
nection coefficients λn,m := λn,m(P (µ,−) ← P (µ̃,−)), where P notes the monic
generalized Hermite polynomials, for n and m symbolic, in order to be used in
calling statements of the demonstrationSymCC command.

Arguments:

- µ and µ̃ are the parameters of P and P̃ = P (µ̃,−).

- n and m should be symbols.

Results:

- λ2n,2m, λ2n+1,2m+1.

6 Conclusions

There are two difficult steps in the methodology exposed here and in [15, 16, 17]. The
first one consists to infer the closed formula for the CC from enough data produced and
treated by a symbolic language like Mathematica. The second one is to accomplish the
demonstration of the model, which can be done completely via Mathematica or only in
part with the help of Mathematica.

In spite of some limitations, we know that this method can be useful to treat several
other examples of CC. Furthermore, the implementation principles studied here can be
applied in a similar way to other situations in the branch of orthogonal polynomials and
in mathematics.

References

[1] I. Area, E. Godoy, A. Ronveaux, A. Zarzo, Minimal recurrence relations for connec-
tion coefficients between classical orthogonal polynomials: Discrete case, J. Comput.
Appl. Math., 89 (1998) 309-325.

[2] I. Area, E. Godoy, A. Ronveaux, A. Zarzo, Inversion Problems in the q-Hahn
Tableau, J. Symbolic Computation, 28 (1999) 767-776.

[3] I. Area, E. Godoy, A. Ronveaux, A. Zargo, Solving connection and linearization
problems within the Askey scheme and its q−analogue via inversion formulas, J.
Comput. Appl. Math., 133, 151-162, 2001.

[4] R. Askey, Orthogonal Polynomials and Special Functions. CBMS-NSF Regional
Conference Series, Appl. Math., 21, SIAM, Philadelphia, PA, 1975.

[5] G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press,
71, 1999.

27

[6] H. Chagarra, W. Koepf, On linearization and connection coefficients for generalized
Hermite polynomials, J. Comput. Appl. Math., in press.

[7] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach,
New York,1978.

[8] E. Godoy, I. Area, A. Ronveaux, A. Zarzo, Minimal recurrence relations for con-
nection coefficients between classical orthogonal polynomials: Continuous case, J.
Comput. Appl. Math., 84(2) (1997) 257-275.

[9] U. W. Hochstrasser, Handbook of Mathematical Functions with Formulas, Graphs
and Mathematical Tables, In M. Abramowitz, I. A. Stegun, eds., N.Y., 1970.

[10] S. Lewanowicz, Quick construction of recurrence relations for the Jacobi coefficients,
J. Comput. Appl. Math., 43 (1992) 355-372.

[11] S. Lewanowicz, Recurrence relations for the connection coefficients of orthogonal
polynomials of a discrete variable, J. Comput. Appl. Math., 76 (1996) 213-229.

[12] Koepf, Wolfram and Swarttouw, Ren: ”CAOP: Computer Algebra and Orthogonal
Polynomials”. http://pool-serv1.mathematik.uni-kassel.de/CAOP

[13] P. Maroni, Variations around classical orthogonal polynomials. Connected problems,
J. Comput. Appl. Math., 48, 133-155, 1993.

[14] P. Maroni, Fonctions eulériennes. Polynômes orthogonaux classiques. Techniques de
l’Ingénieur, traité Généralités (Sciences Fondamentales), 1994.

[15] P. Maroni, Z. da Rocha, Connection coefficients for orthogonal polynomials and the
canonical sequence, Preprints CMUP, Centro de Matemática da Universidade do
Porto, 29, 1-18, 2007. http://cmup.fc.up.pt/cmup/v2/frames/publications.htm

[16] P. Maroni, Z. da Rocha, Connection coefficients between orthogonal polynomials
and the canonical sequence: an approach based on symbolic computation, Numeri-
cal Algorithms, 47-3 (2008) 291-314.

[17] P. Maroni, Z. da Rocha, Connection coefficients for orthogonal polynomials: sym-
bolic computations, verifications and demonstrations in the Mathematica language,
submitted for publication, 2010.

[18] A. Ronveaux, A. Zarzo, E. Godoy, Recurrence relation for connection coefficients
between two families of orthogonal polynomials, J. Comput. Appl. Math. 62 (1995)
67-73.

[19] Stephen Wolfram, The Mathematica Book, 4th ed., Wolfram Media/Cambridge
University Press, 1999.

[20] Wolfram Mathematica Virtual Book, 2010. www.wolfram.com

28

