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Abstract. The estimation of the tail index is a central topic in
the extreme value analysis. We consider a geometric-type estima-
tor for the tail index and study its asymptotic properties. We pro-
pose here two asymptotic equivalent bias corrected geometric-type
estimators and establish the corresponding asymptotic behaviour.
We also apply the suggested estimators to construct asymptotic
confidence intervals for this tail parameter. Some simulations in
order to illustrate the finite sample behaviour of the proposed es-
timators are provided.

1. Introduction

We consider the problem of estimating the Pareto-tail index of a
distribution function F , with tail function F = 1 � F 2 RV�1/� , � > 0,
where RV↵ denotes the class of regularly varying functions with index
of regular variation equal to ↵, that is,

lim
t!1

F (tx)

F (t)
= x�1/� , for all x > 0.

Equivalently,

(1) 1 � F (x) = x�1/� l (x) for x > 0,

where l is a slowly varying function at infinity, that is, l satisfies the
condition l (tx) /l (t) ! 1 as t ! 1 for all x > 0. Denoting by F�1 the
left continuous inverse of F , F�1 (s) = inf {y : F (y) � s}, the condition
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(1) is equivalent to the regular variation of the tail function U (x) =
F�1 (1 � 1/x), i.e.,

(2) U (x) = x�L (x) ,

where L is a slowly varying function at infinity. In this way, the question
addressed is the estimation of � from a finite sample X1, . . . , Xn.

Let us consider X1, X2, . . . independent and identically distributed
(i.i.d.) random variables (r.v.) with distribution function (d.f.) F
and let X(1,n)  X(2,n)  · · ·  X(n,n) denote the corresponding order

statistics (o.s.) based on the n first observations. We also consider
intermediate sequences k = kn of positive integers (1  k < n), that is

(3) k ! 1,
k

n
! 0 as n ! 1.

One of the most well known estimators for the tail index has been
suggested by Hill (1975) and is given by

bH (k) =
1

k

kX

i=1

log X(n�i+1,n) � log X(n�k,n).

The asymptotic properties of the Hill estimator have been much
studied and it is well known that, under certain conditions, bH (k) is
a strongly consistent estimator (see e.g. Deheuvels et al. (1988)) with
asymptotic normal distribution (see e.g. Haeusler and Teugels (1985)).

We recall that the above problem of tail index estimation of a Pareto
type distribution is equivalent to the estimation of the exponential tail
coe�cient. Setting Zi = logXi, i = 1, 2, . . . , with Xi as above, we have

(4) 1 � G (z) = P (Z1 > z) = r (z) e�Rz, z > 0,

where r (z) = l (ez) is a regularly varying function at infinity and
R = 1/� is a positive constant, called exponential tail coe�cient. Equiv-
alently we have

G�1 (1 � s) = � 1

R
log s+ log eL (s) , 0 < s < 1,

where eL (s) = L (1/s) is a slowly varying function at 0.
The problem of the estimation of the exponential tail coe�cient has

applications in a variety of domains and an overview of the existing
literature is given in Schultze and Steinebach (1996).

We focus this work in the problem of estimating the tail index using a
geometric-type estimator of the exponential tail coe�cient R, proposed
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by Brito and Freitas (2003), given by

(5) bR (k) =

vuuuut

Pk
i=1 log

2(n/i) � 1
k

⇣Pk
i=1 log(n/i)

⌘2

Pk
i=1 Z

2
(n�i+1,n)

� 1
k

⇣Pk
i=1 Z(n�i+1,n)

⌘2 .

This estimator arises from the study of two estimators based on the
least squares method introduced by Schultze and Steinebach (1996).
One of these estimators was also introduced by Kratz and Resnick
(1996) in an independent but equivalent way. In general, when com-
pared with other tail index estimators, it is reported that the estima-
tors proposed by Schultze and Steinebach have a very good behaviour,
performing better in several circumstances.

One of the interesting characteristics of the least squares estimators
is the smoothness of the realizations as a function of k. It should be
noted that the high variability that some tail estimators present is not
a welcome feature, since it makes more di�cult the proper selection of
the number of upper o.s. involved in the estimation. In this sense, the
stability presented in almost all examples can be considered a promi-
nent advantage of the least squares estimators over the classical Hill
estimator, which plots often exhibit strong trends and a considerable
lack of smoothness resulting in di↵erent estimates for neighbouring val-
ues of k and an extreme sensibility to the choice of the ideal k-value
(see e.g. Csörgő and Viharos (1998)). On the other hand, it can be
shown that the asymptotic variance of the geometric-type estimator is
twice the asymptotic variance of the Hill estimator. However, given the
bias presented by the Hill estimator, the asymptotic variance should
not be the only criterion to be considered.

The estimators provided by Schultze and Steinebach were motivated
by the fact that � log(1�G(z)), from (4), is approximately linear with
slope R, for large z, since z�1 log r(z) ! 0 as z ! 1. It is then expected
that � log(1 � Gn(z)) is also approximately linear for high values of n
and z, where Gn denotes the empirical d.f. associated to the random
sample Z1, . . . , Zn. It was also assumed that r(z) ⌘ c, 8z > 0, and thus

y := � log(1 � G(z)) = Rz � log c = Rz � d,

or equivalentely,
z = R�1(y + d) = ay + b,

where a = R�1, b = R�1d and d = log c.
Denoting by zi := z(n�i+1,n), i = 1, . . . , k  n, the k upper o.s. of the

sample Z1, . . . , Zn, Schultze and Steinebach approximate � log(1�G(zi))
by yi := � log(1 � Gn(z

�
i )) = � log(1 � (n � i)/n) = log(n/i), obtaining
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that yi is “close” to Rzi � d, or equivalently, zi is “close” to ayi + b.
Following this approach, one of the estimators was obtained by mini-
mizing the function f1(a, b) =

Pk
i=1(zi � ayi � b)2 and the other one by

minimizing the function f2(R, d) =
Pk

i=1(yi � Rzi + d)2, which corre-
sponds to determining the inverse of the slope of the line by minimizing
the sum of the distances between the points {(zi, yi), i = 1, . . . , k} and
the line, measured in horizontal or vertical, respectively.

The bR estimator is obtained through a geometrical adaptation of
these two perspectives, minimizing the sum of the areas of the rectan-
gles whose sides are the horizontal and vertical segments between the
points {(zi, yi), i = 1, . . . , k} and the line, in Figure 1, which is equivalent
to minimize the function f(R, d) =

Pk
i=1(yi�Rzi+d)(R�1yi+R�1d�zi).

In this way both horizontal and vertical distances between the points
{(zi, yi), i = 1, . . . , k} and the line are minimized.

estacionárias, com uma estrutura de dependência semelhante à considerada por Hsing, e
faremos uma aplicação ao caso de sucessões estacionárias m-dependentes.

Na secção 1.2, introduziremos o já referido estimador de tipo geométrico, bR(kn), para
o coeficiente de cauda exponencial, relacionado com os estimadores bR1(kn) e bR3(kn) de
Schultze e Steinebach, e provaremos um resultado acerca da sua consistência. Na secção
1.3 mostraremos que, para sucessões kn que verifiquem (1.1.5) e tais que kn/ log4 n ! 1
quando n ! 1, bR(kn) é assimptoticamente normal sobre toda a classe de funções de
distribuição que satisfazem (1.1.1), quando centrado numa certa sucessão determińıstica
que converge para R. Na secção 1.4 estabeleceremos um resultado acerca da normalidade
assimptótica de bR(kn), quando centrado em R. Na secção 1.5 iremos considerar o proced-
imento bootstrap de cauda introduzido por Bacro e Brito (1998) e mostrar que é posśıvel,
usando esse método, construir intervalos de confiança para R, com base no estimador
bR(kn). Por fim, na secção 1.6 estudaremos a consistência do novo estimador no caso de
v.a. dependentes, seguindo o estudo de Hsing (1991) para o estimador de Hill.

1.2 Um estimador geométrico para coeficiente de cauda

exponencial, bR
No seguimento do estudo dos estimadores bR1(kn) e bR3(kn) correspondentes às Figuras 1 e
2, consideramos os dois pontos de vista simultaneamente, minimizando a soma das áreas
dos rectângulos indicados na figura seguinte.

z

(z  , y )

(ay + b , Rz  - d)

y 

 

 i

 i

 i
 i  i

 i

y

z

Figura 3.

Assim, um novo estimador para R de tipo geométrico, bR(kn), resulta da minimização
da função

f(R, d) =
knX

i=1

(yi � Rzi + d)(R�1yi + R�1d � zi).

O estimador deduzido é o seguinte:

15

Figure 1. Geometric representation of the rectangles whose areas will be min-
imized to obtain the estimator of R.

The asymptotic properties of bR (k) were investigated in Brito and
Freitas (2003). In particular, these authors established the consistency
of the estimator and proved that, under general regularity conditions,

the distribution of k1/2
⇣
bR (k) � R

⌘
is asymptotically normal. This

estimator also enjoys of certain properties that makes its use specially
attractive for the case where R is expected to be small (see e.g. Csörgő
and Viharos (1998) and Brito and Freitas (2006)).

In the context of estimating the tail index, we will consider the fol-
lowing geometric-type estimator for �:

(6) dGT (k) =
1
bR (k)

=

vuuutM
(2)
n �


M

(1)
n

�2

in(k)
.
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where

(7) in(k) =
1

k

kX

i=1

log2(n/i) �

0

@1

k

kX

i=1

log(n/i)

1

A
2

and

(8) M
(j)
n (k) =

1

k

kX

i=1

⇣
logX(n�i+1,n) � logX(n�k,n)

⌘j
.

The asymptotic properties of dGT (k) arise naturally from the corre-
sponding properties of bR (k) studied in Brito e Freitas (2003).

To deal with the suggested problems, the procedures are formulated
under second order conditions. We begin by assuming there exists a
positive function a such that, for all x > 0,

(9) lim
t!1

U (tx) � U (t)

a (t)
=

x� � 1

�
.

From (2), we can choose a (t) = �U (t). We also suppose that there
exists a function A (t), tending to zero as t ! 1, such that

(10) lim
t!1

U(tx)
U(t)

� x�

A (t)
= x�

x⇢ � 1

⇢
,

for all x > 0, where ⇢ < 0 is the shape parameter governing the rate
of convergence of U (tx) � U (t) and the function |A (t) | 2 RV⇢ (see e.g.
Geluk and de Haan (1987)).

In order to obtain information about the upper tail of F , most of
the estimators are constructed as functions of the upper k o.s. of a
sample of size n (see e.g. Pickands (1975), Dekkers et al. (1989)).
When the number of upper o.s. used in the estimation of � increases,
the bias in the estimation becomes larger. This considerable bias that
appears in several estimators reveals a di�cult problem to go beyond
the applications and there are several papers trying to deal with. Once
this is such an important research theme, the bias reduction has become
popular and received considerable attention in extreme value statistics.
Some estimators were built in order to deal with the bias term in an
appropriate way (see for example, Peng (1998), Beirlant et al. (1999),
Feuerverger and Hall (1999), Gomes et al. (2000), Gomes and Pestana
(2007) and Beirlant et al. (2008)). One of the procedures commonly
used to deal with this problem was formulated under second order
properties of the d.f. and gave rise to the second order reduced-bias
estimators.
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In Section 2 we study some properties of the geometric-type estima-
tor and, in Section 3, we propose two asymptotic equivalent bias cor-
rected estimators and study their asymptotic behaviour. We use the
presented estimators to obtain asymptotic confidence intervals. Proofs
are presented in Section 4. A simulation study is provided in Section
5, in order to illustrate and compare the finite sample behaviour of the
presented tail index estimators, including the geometric-type and Hill
bias corrected estimators.

2. Asymptotic properties of the geometric-type
estimator

Here the asymptotic normality of the geometric-type estimator is
shown using a method that proves to be very useful for statistical in-
ference. We first derive the asymptotic distributional representation of
the geometric-type estimator.

Since in(k) ! 1 as n ! 1, we begin by considering the asymptotic
normality of the following tail index estimator of �

e� (k) =

s

M
(2)
n �


M

(1)
n

�2
.

In the sequel, D�! and D
= stand, respectively, for convergence and

equality in distribution.

Theorem 2.1. Assume (9) holds. For sequences k such that (3) holds,
we have the following asymptotic distributional representation

e� (k) D= � +
�

2
p
k
Qn � �p

k
Pn +

A
⇣
n
k

⌘

(1 � ⇢)2
+ op

⇣
A
⇣n
k

⌘⌘
+Op

✓
1

k

◆
,

where Pn =
p
k
⇣Pk

i=1 Zi/k � 1
⌘
and Qn =

p
k
⇣Pk

i=1 Z
2
i /k � 2

⌘
, (Pn,Qn)

is asymptotically normal with mean equal to

�
0
0

�
and covariance matrix�

1 4
4 20

�
, and {Zi} denote i.i.d. standard exponential r.v..

Corollary 2.2. Assume the conditions of Theorem 2.1 hold. If k is

such that

p
kA(n/k) ! � finite, then

p
k (e� (k) � �)

D����!
n!1 N

✓
�

(1 � ⇢)2
, 2�2

◆
.

Theorem 2.3. Assume (9) holds. For sequences k such that (3) holds,
we have the following asymptotic distributional representation

dGT (k)
D
= � +

�

2
p
k
Qn � �p

k
Pn +

A
⇣
n
k

⌘

(1 � ⇢)2
+ op

⇣
A
⇣n
k

⌘⌘
+Op

 
log2 k

k

!
,
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where Pn =
p
k
⇣Pk

i=1 Zi/k � 1
⌘
and Qn =

p
k
⇣Pk

i=1 Z
2
i /k � 2

⌘
, (Pn,Qn)

is asymptotically normal with mean equal to

�
0
0

�
and covariance matrix�

1 4
4 20

�
, and {Zi} denote i.i.d. standard exponential r.v..

Corollary 2.4. Assume the conditions of Theorem 2.3 hold. If k is

such that

p
kA(n/k) ! � finite, then

p
k
⇣
dGT (k) � �

⌘
D����!

n!1 N

✓
�

(1 � ⇢)2
, 2�2

◆
.

3. Bias corrected geometric-type estimation

In this section we improve the geometric-type estimator in the sense
of reducing its bias. For this we propose two asymptotic equivalent bias
corrected estimators for the tail index, and study the corresponding
asymptotic behaviour.

It is convenient to assume that the underlying models belong to
Hall’s class (Hall (1982)), given by:

U (t) = Ct�
✓
1 +

A (t)

⇢
(1 + o (1))

◆
, as t ! 1,

where

(11) A (t) = ��t⇢,

with � > 0 and C > 0, and ⇢ < 0 and � 6= 0 are, respectively, the shape
and scale parameters. This is a very important family with several
applications.

3.1. Bias corrected geometric-type estimators.

In order to achieve the improvement of the geometric-type estima-
tor behaviour presented in (6), and following some suggestions in the
literature, we derive corrected geometric-type estimators by removing
its bias dominant component (see e.g. Caeiro et al. (2005)).

For this we use the asymptotic representation of the geometric-type
estimator presented in Theorem 2.3,

dGT (k)
D
= � +

�

2
p
k
Qn � �p

k
Pn +

A
⇣
n
k

⌘

(1 � ⇢)2
+ op

⇣
A
⇣n
k

⌘⌘
+Op

 
log2 k

k

!
,

where the bias dominant component can be written as

A
⇣
n
k

⌘

(1 � ⇢)2
=

��
⇣
n
k

⌘⇢

(1 � ⇢)2
.
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Thus, removing the bias dominant component directly, we obtain a
bias corrected estimator of dGT (k) given by

(12) dGT (k) =dGT (k)

0

@1 �
�
⇣
n
k

⌘⇢

(1 � ⇢)2

1

A .

Considering now the exponential expansion e�x = 1�x+o (x) as x !
0, we may get the asymptotically equivalent bias corrected estimator

(13) dGT (k) =dGT (k) exp

(
� �

(1 � ⇢)2

⇣n
k

⌘⇢
)
.

We can easily note that the bias dominant component is dependent
of the shape ⇢ and scale � second order parameters. Thus, another
challenge of utmost importance to consider is the proper and adequate
estimation of the second order parameters, ⇢ and �, in order to remove
the bias dominant component and obtain bias corrected estimators.

We remark that the geometric-type estimator has a lower bias dom-
inant component than the Hill estimator when evaluated at the same
threshold, i.e. for the same k.

Estimation of the second order parameters.

Here, we consider the class of estimators of the parameter ⇢ (depend-
ing on ⌧) proposed by Fraga Alves et al. (2003)

(14) b⇢(⌧)n (k) = �

��������

3

✓
T
(⌧)
n (k) � 1

◆

T
(⌧)
n (k) � 3

��������
,

where

T
(⌧)
n (k) =

8
>>>>>>>><

>>>>>>>>:

⇣
M

(1)
n (k)

⌘⌧
�
⇣
M

(2)
n (k)/2

⌘⌧/2

⇣
M

(2)
n (k)/2

⌘⌧/2
�
⇣
M

(3)
n (k)/6

⌘⌧/3 , if ⌧ > 0

log
⇣
M

(1)
n (k)

⌘
�1

2 log
⇣
M

(2)
n (k)/2

⌘

1
2 log

⇣
M

(2)
n (k)/2

⌘
�1

3 log
⇣
M

(3)
n (k)/6

⌘ , if ⌧ = 0,
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with Mj
n as in (8), and the � estimator obtained in Gomes and Martins

(2002)
(15)

b�b⇢ (k) =
✓
k

n

◆b⇢

 
1
k

kP

i=1

⇣
i
k

⌘�b⇢
!

1
k

kP

i=1
Ui � 1

k

kP

i=1

⇣
i
k

⌘�b⇢
Ui

 
1
k

kP

i=1

⇣
i
k

⌘�b⇢
!

1
k

kP

i=1

⇣
i
k

⌘�b⇢
Ui � 1

k

kP

i=1

⇣
i
k

⌘�2b⇢
Ui

,

where

Ui = i

 
log

X(n�i+1,n)

X(n�i,n)

!
,

with 1  i  k < n.
We remark that the class of estimators of ⇢ presented above, and

consequently also the � estimators, is dependent on a tuning parameter
⌧ � 0. In the literature it has been suggested the use of the tuning
parameter ⌧ = 0 when ⇢ 2 [�1, 0) and ⌧ = 1 when ⇢ 2 (�1,�1). This
parameter must be chosen appropriately in order to provide a higher
stability for the estimator of ⇢ and as such, a graphical study supporting
this choice must always be seen as a relevant tool.

Choice of the kh level to be used in the second order parameters esti-

mation.

It is known that the external estimation of ⇢ and � at a larger k
value than the one used for �-estimation has clear advantages, allowing
the bias reduction without increasing the asymptotic variance (see e.g.
Caeiro et al. (2005)).

Through some simulation studies presented in the next chapter we
can notice that the estimator of ⇢ only stabilizes at high levels of k,
which justifies the suggestion given in some works that ⇢ must be esti-
mated at a high level kh (see e.g. Caeiro and Gomes (2008) and Gomes
et al. (2004)). Moreover, the number kh of the top observations to be
considered for the estimation of ⇢ and � should be such as to ensure
that b⇢ � ⇢ = op(1/ log n).

In the lines of other studies, and among some suggestions (see e.g.
Gomes et al. (2007)), the level that seemed to be the most appropriate
to consider in illustrations is

(16) kh =
j
n1�✏

k
, for some ✏ > 0 small,

where bxc denotes the integer part of x.



BIAS CORRECTED GEOMETRIC-TYPE ESTIMATORS 10

3.2. Asymptotic properties of geometric-type bias corrected
estimators.

We begin by assuming that only the tail index parameter � is un-

known and that dGT
⇤
(k) is one of the estimators dGT (k) or dGT (k).

Theorem 3.1. Assume (10) holds. For sequences k such that (3)
holds, and A(t) as in (11), we have the following asymptotic distribu-

tional representation

dGT
⇤
(k)

D
= � +

�

2
p
k
Qn � �p

k
Pn + op

⇣
A
⇣n
k

⌘⌘
+Op

 
log2k

k

!
,

where Pn =
p
k
⇣Pk

i=1 Zi/k � 1
⌘
and Qn =

p
k
⇣Pk

i=1 Z
2
i /k � 2

⌘
, (Pn,Qn)

is asymptotically normal with mean equal to

�
0
0

�
and covariance matrix�

1 4
4 20

�
, and {Zi} denote i.i.d. standard exponential r.v..

Corollary 3.2. Assume the conditions of Theorem 3.1 hold. If we

choose k such that

p
kA(n/k) ! � finite, then

p
k
⇣
dGT

⇤
(k) � �

⌘
D����!

n!1 N
⇣
0, 2�2

⌘
.

Assuming now that dGT
⇤⇤

(k) denotes the version of dGT
⇤
(k) where

the parameters ⇢ and � are estimated externally, we have the following
result

Theorem 3.3. Under the conditions of Theorem 3.1 and assuming

consistent estimators for ⇢ and � computed at a level that implies

b⇢ � ⇢ = op(1/ log n), we have the following asymptotic distributional

representation

dGT
⇤⇤

(k)
D
= � +

�

2
p
k
Qn � �p

k
Pn + op

⇣
A
⇣n
k

⌘⌘
+Op

 
log2k

k

!
,

where Pn =
p
k
⇣Pk

i=1 Zi/k � 1
⌘
and Qn =

p
k
⇣Pk

i=1 Z
2
i /k � 2

⌘
, (Pn,Qn)

is asymptotically normal with mean equal to

�
0
0

�
and covariance matrix�

1 4
4 20

�
, and {Zi} denote i.i.d. standard exponential r.v..

Corollary 3.4. Assume the conditions of Theorem 3.3 hold. If we

choose k such that

p
kA(n/k) ! � finite, then

p
k
⇣
dGT

⇤⇤
(k) � �

⌘
D����!

n!1 N
⇣
0, 2�2

⌘
.
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4. Proofs

For the proof of Theorem 2.1 we need the following Lemma.

Lemma 4.1 (Dekkers and de Haan (1993), Lemma 3.1). Let Y(1,n) 
Y(2,n)  · · ·  Y(n,n) denote the o.s. based on the n first observations of

the sequence Y1, . . . , Yn of i.i.d. r.v. with common d.f. 1 � 1/x (x > 1).
Let k be such that (3) holds. For � > 0, define

Tn =
p
k

8
<

:
1

k

kX

i=1

log Y(n�i+1,n) � log Y(n�k,n) � 1

9
=

; ,

Vn =
p
k

8
<

:
1

k

kX

i=1

⇣
log Y(n�i+1,n) � log Y(n�k,n)

⌘2
� 2

9
=

; .

Then (Tn, Vn) is asymptotically normal with mean equal to

�
0
0

�
and

covariance matrix

�
1 4
4 20

�
.

Proof of Theorem 2.1. Note that the condition (10) is equivalent to

lim
t!1

logU (tx) � logU (t) � � log x

A (t)
=

x⇢ � 1

⇢
.

Consequently we have

logU (tx) � logU (t) = � log x+A (t)
x⇢ � 1

⇢
(1 + o (1))

and

(logU (tx) � logU (t))2 = (� log x)2 + 2�
x⇢ � 1

⇢
(log x)A (t) + o (A (t)) ,

as t ! 1.
Let us consider the variables presented in Lemma 4.1.

Since
⇣
X(1,n), X(2,n), · · · , X(n,n)

⌘
D
=
⇣
U
⇣
Y(1,n)

⌘
, U
⇣
Y(2,n)

⌘
, · · · , U

⇣
Y(n,n)

⌘⌘
,

without loss of generality we can write
⇣
X(i,n)

⌘
=
⇣
U
⇣
Y(i,n)

⌘⌘
.
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Then,

M
(1)
n =

1

k

kX

i=1

logX(n�i+1,n) � logX(n�k,n)

=
1

k

kX

i=1

logU

 
Y(n�i+1,n)

Y(n�k,n)
Y(n�k,n)

!
� logU

⇣
Y(n�k,n)

⌘

= � +
�p
k
Tn +

A
⇣
Y(n�k,n)

⌘

1 � ⇢
+ op

⇣
A
⇣
Y(n�k,n)

⌘⌘
,

since

1

k

kX

i=1

0

BB@

✓
Y(n�i+1,n)
Y(n�k,n)

◆⇢
� 1

⇢

1

CCA
D
=

1

k

kX

i=1

 
Y ⇢
i � 1

⇢

!
,

which tends to E

✓
Y ⇢

1 �1
⇢

◆
= 1

1�⇢ .

We have also

M
(2)
n =

1

k

kX

i=1

h
logX(n�i+1,n) � logX(n�k,n)

i2

= 2�2 +
�2p
k
Vn +A

⇣
Y(n�k,n)

⌘ 2� (2 � ⇢)

(1 � ⇢)2
+ op

⇣
A
⇣
Y(n�k,n)

⌘⌘
,

since

1

k

kX

i=1

0

BB@

✓
Y(n�i+1,n)
Y(n�k,n)

◆⇢
� 1

⇢
log

Y(n�i+1,n)

Y(n�k,n)

1

CCA
D
=

1

k

kX

i=1

 
Y ⇢
i � 1

⇢
log Yi

!
,

which tends to E

✓
Y ⇢

1 �1
⇢ log Y1

◆
= 2�⇢

(1�⇢)2
.

Considering h(x) = x2 and the Taylor expansion of h
✓
M

(1)
n

◆
around

h (�) we obtain


M

(1)
n

�2
= �2 +

2�2p
k
Tn +

2�

1 � ⇢
A
⇣
Y(n�k,n)

⌘
+ op

⇣
A
⇣
Y(n�k,n)

⌘⌘
+Op

✓
1

k

◆
.
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Using the above representations we obtain

e�2 (k) = M
(2)
n �


M

(1)
n

�2

= �2 +
�2p
k
(Vn � 2Tn) + d A

⇣
Y(n�k,n)

⌘
+ op

⇣
A
⇣
Y(n�k,n)

⌘⌘
+Op

✓
1

k

◆
,

where d = 2�/ (1 � ⇢)2.
Since A (t) 2 RV⇢, then A (tx) = x⇢A (t) (1 + o (1)).
Noting that (k/n)Y(n�k,n) = 1 + op (1), we have

A
⇣
Y(n�k,n)

⌘
= A

⇣n
k

�
1 + op (1)

�⌘

= A
⇣n
k

⌘
+ op

⇣
A
⇣n
k

⌘⌘
.

Therefore, we may write

e�2 (k) = �2 +
�2p
k
(Vn � 2Tn) + d A

⇣n
k

⌘
+ op

⇣
A
⇣n
k

⌘⌘
+Op

✓
1

k

◆
.

Considering g(x) =
p
x and the Taylor expansion of g

⇣
e�2 (k)

⌘
around

g
⇣
�2
⌘

we obtain

(17)

e� (k) = � +
1

2�

"
�2p
k
(Vn � 2Tn) + d A

⇣n
k

⌘
+ op

⇣
A
⇣n
k

⌘⌘
+Op

✓
1

k

◆#

= � +
�

2
p
k
Vn � �p

k
Tn +

A
⇣
n
k

⌘

(1 � ⇢)2
+ op

⇣
A
⇣n
k

⌘⌘
+Op

✓
1

k

◆
.

Recall that log
⇣
Y(n�i+1,n)/Y(n�k,n)

⌘
are exponential standard r.v.,

Exp (1). Using Lemma 4.1, from (17) we can write

e� (k) D= � +
�

2
p
k
Qn � �p

k
Pn +

A
⇣
n
k

⌘

(1 � ⇢)2
+ op

⇣
A
⇣n
k

⌘⌘
+Op

✓
1

k

◆
,

where Pn =
p
k
⇣Pk

i=1 Zi/k � 1
⌘
, Qn =

p
k
⇣Pk

i=1 Z
2
i /k � 2

⌘
, with Zi

i.i.d. exponential standard r.v., are jointly asymptotic normal.
This completes the proof. ⇤

Proof of Corollary 2.2. As (Pn,Qn)
D�! N

✓
0
0

◆
,

✓
1 4
4 20

◆�
,

V
⇣p

k (e� (k) � �)
⌘
= V

⇣�
2
Qn

⌘
+V (�Pn)�2Cov

⇣�
2
Qn, �Pn

⌘
����!
n!1

2�2.
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The result follows from the proof of Theorem 2.1. ⇤
For proving Theorem 2.3 we use the following auxiliary Lemma.

Lemma 4.2 (Brito and Freitas (2003), Lemma 2). Let k be a sequence

of positive integers such that 1  k  n. For the sequence in (k) defined
in (7) we have

in (k) = 1 +O

 
log2k

k

!
.

Proof of Theorem 2.3. We recall that

dGT (k) =
e� (k)p
in (k)

.

Note now that we can write
p
k
⇣
dGT (k) � �

⌘
=

p
k (e� (k) � �) +

p
ke� (k)

 
1p
in (k)

� 1

!
.

As e� (k) P����!
n!1

�, from Lemma 4.2 we get

p
ke� (k)

 
1p
in (k)

� 1

!
= Op

 
log2kp

k

!
,

So, from the proof of Theorem 2.1 and Lemma 4.2, we have

dGT (k) = � +
�

2
p
k
Vn � �p

k
Tn +

A
⇣
n
k

⌘

(1 � ⇢)2
+ op

⇣
A
⇣n
k

⌘⌘
+Op

 
log2k

k

!
,

where Tn and Vn are the same as in proof of Theorem 2.1 and the result
follows. ⇤
Proof of Corollary 2.4. By Theorem 2.3, the result is established in a
similar way to the proof of Corollary 2.2. ⇤

Proof of Theorem 3.1. Recall that dGT (k)
P�! � as n ! 1. If all pa-

rameters are known, except the tail index �, we get

dGT (k) =dGT (k)

0

@1 �
�
⇣
n
k

⌘⇢

(1 � ⇢)2

1

A

=dGT (k) �
A
⇣
n
k

⌘

(1 � ⇢)2
�
1 + op (1)

�

= � +
�

2
p
k
Vn � �p

k
Tn + op

⇣
A
⇣n
k

⌘⌘
+Op

 
log2k

k

!
.
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With an easy calculation, we also have

dGT (k) =dGT (k) exp

0

@�
�
⇣
n
k

⌘⇢

(1 � ⇢)2

1

A

=dGT (k)

2

41 �
A
⇣
n
k

⌘

� (1 � ⇢)2
+ op

0

@
A
⇣
n
k

⌘

� (1 � ⇢)2

1

A

3

5

= � +
�

2
p
k
Vn � �p

k
Tn + op

⇣
A
⇣n
k

⌘⌘
+Op

 
log2k

k

!
.

⇤

Proof of Corollary 3.2. From the proof of Theorem 3.1 we have

p
k
⇣
dGT

⇤
(k) � �

⌘
=

�

2
Vn � �Tn +

p
kop

⇣
A
⇣n
k

⌘⌘
+Op

 
log2kp

k

!
.

Since
p
kA(n/k) ! � as n ! 1,

p
k
⇣
dGT

⇤
(k) � �

⌘
=

�

2
Vn � �Tn + op (1) .

It remains to compute the values of the asymptotic variance and
mean.

E
hp

k
⇣
dGT

⇤
(k) � �

⌘i
=

�

2
E (Vn) � �E (Tn) ����!

n!1
0,

V
hp

k
⇣
dGT

⇤
(k) � �

⌘i
=

�2

4
V (Vn) + �2V (Tn) � 2Cov

⇣�
2
Vn, �Tn

⌘
����!
n!1

2�2.

⇤

Proof of Theorem 3.3. If ⇢ and � are estimated consistently, we can use
the Taylor’s expansion for bivariate functions and get

b�
(1 � b⇢)2

⇣n
k

⌘b⇢
=

�

(1 � ⇢)2

⇣n
k

⌘⇢
+
⇣
b� � �

⌘ 1

(1 � ⇢)2

⇣n
k

⌘⇢ �
1 + op (1)

�

+
�

(1 � ⇢)2
(b⇢ � ⇢)

⇣n
k

⌘⇢✓ 2

1 � ⇢
+ log

⇣n
k

⌘◆�
1 + op (1)

�

=
A(n/k)

� (1 � ⇢)2

 
b�
�
+

2 (b⇢ � ⇢)

1 � ⇢
+ (b⇢ � ⇢) log

⇣n
k

⌘!�
1 + op (1)

�
,

where b� and b⇢ are the estimators of � and ⇢, respectively.
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Therefore we have

dGT (k)

0

B@1 �
b�
⇣
n
k

⌘b⇢

(1 � b⇢)2

1

CA =dGT (k) �
A
⇣
n
k

⌘

(1 � ⇢)2
+ op

⇣
A
⇣n
k

⌘⌘

= � +
�p
k

✓
Vn
2

� Tn

◆
+ op

⇣
A
⇣n
k

⌘⌘
+Op

 
log2k

k

!

and

dGT (k) exp

0

B@�
b�
⇣
n
k

⌘b⇢

(1 � b⇢)2

1

CA = � +
�p
k

✓
Vn
2

� Tn

◆
+ op

⇣
A
⇣n
k

⌘⌘
+Op

 
log2k

k

!
,

since b⇢ and b� are consistent estimators of ⇢ and � computed at a level
such that b⇢ � ⇢ = op (1/ log n). The result follows. ⇤
Proof of Corollary 3.4. The result follows using the same approach as
in the proof of Corollary 3.2. ⇤

5. Simulation results

In this section we present some simulations in order to examine the
finite sample behaviour of the proposed tail index estimators. We have
generated s=2000 independent replicates of sample size 1000 from the
Generalised Pareto Distribution (GPD) with d.f.

F (x) = 1 � (1 + �x)�1/� , x � 0, � = 1,

and from the Burr distribution with d.f.

F (x) = 1 �
⇣
1 + x�⇢/�

⌘1/⇢
, x � 0, � = 1 and ⇢ = �2.

Remark that � = 1 for both families, and for GPD ⇢ = ��.
The results were compared using mean values of the estimates and

through relative root mean square error (RRMSE), with the expression

\RRMSE
⇣
b✓
⌘
=

r
1
s
Ps

i=1

⇣
b✓i � ✓

⌘2

✓
,

where ✓ is the value we want to estimate.
The main purpose of the simulations performed in this section is to

provide a general insight into the distributional behaviour of the new
geometric-type bias corrected tail index estimators proposed, (12) and
(13). Once the evaluation of their behaviour encompasses the compar-
ison with similar corrections of Hill estimator, we start by presenting
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in Figures 2 and 3 the behaviour of both original estimators for the
chosen distributions.
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Figure 2. Mean estimates (left) and RRMSE (right) ofdGT and bH, for a sample
size n=1000 (and 2000 replicates), as a function of k, from a GPD given by

F (x) = 1 � (1 + �x)�1/� , x � 0 with � = 1.
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Figure 3. Mean estimates (left) and RRMSE (right) ofdGT and bH, for a sample
size n=1000 (and 2000 replicates), as a function of k, from a Burr distribution

given by F (x) = 1 �
�
1 + x�⇢/�

�1/⇢
, x � 0, with � = 1 and ⇢ = �2.

To illustrate the behaviour of the corrected estimators we consider
the suitable estimators of the parameter ⇢ proposed by Fraga Alves et



BIAS CORRECTED GEOMETRIC-TYPE ESTIMATORS 18

al. (2003), in (14), and the � estimator obtained in Gomes and Martins
(2002), in (15). Firstly we need to choose the tuning parameter ⌧ , in
which we will support the estimation of the second order parameters
⇢ and �. To achieve this, we draw in Figure 4 the behaviour of b⇢⌧ for
the values of the control parameter ⌧ 2 {0, 0.5, 1} for both distributions
and analyse the variations that it causes in their behaviour.
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Figure 4. Mean estimates of b⇢⌧ , ⌧ = {0, 0.5, 1}, for GPD (left) and Burr (right)

distributions. GPD given by F (x) = 1�(1 + �x)�1/� , x � 0 (⇢ = �1), and Burr

distribution given by F (x) = 1 �
�
1 + x�⇢/�

�1/⇢
, x � 0 and ⇢ = �2, both with

� = 1 (� = 1).

It is suggested in some works the use of ⌧ = 0 when ⇢ 2 [�1, 0) and
⌧ = 1 when ⇢ 2 (�1,�1) (see e.g. Fraga Alves et al. (2003)). This
leads to the choice of ⌧ = 0 for the GPD (⇢ = �1) and ⌧ = 1 for Burr
distribution (⇢ = �2). The Figure 4 confirms the prevalent choice of
⌧ = 0 for GPD but suggests that perhaps the choice of ⌧ = 0.5 instead
of ⌧ = 1 seems to be more suitable for Burr distribution, leading to
better estimates of � and ⇢.

We also remark that the estimator of ⇢ presents a high variation
in the majority of k values, stabilizing only at very high levels of k,
for which the estimates gets closer to the true value of the parameter.
This fact rea�rm that estimation of ⇢ at a high level is favourable and
highly recommended.

For exploring the results we consider in (16) ✏ = 0.005 and ✏ = 0.001,
ie, we use the following kh levels:

(18) kh1 =
j
n0.995

k
and kh2 =

j
n0.999

k
.
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Figure 5. Mean estimates of b�b⇢⌧ (kh1) and b�b⇢⌧ (kh2), ⌧ = {0, 0.5, 1}, for GPD

(left) and Burr (right) distributions. GPD given by F (x) = 1 � (1 + �x)�1/� ,

x � 0 (⇢ = �1), and Burr distribution given by F (x) = 1 �
�
1 + x�⇢/�

�1/⇢
,

x � 0 and ⇢ = �2, both with � = 1 (� = 1).

To give an idea about the behaviour of b� according to the choice of
⌧ and the level kh, we present in Figure 5 the estimates of � computed
with b⇢⌧ (kh1) and b⇢⌧ (kh2), ⌧ 2 {0, 0.5, 1}, for both distributions. One
aspect that stands out in this figure is that estimates of � are more
favourable the higher the k value used for its calculation.

Following what seems to be graphically more propitious, we chose to
estimate ⇢ and � using ⌧ = 0 for GPD and ⌧ = 0.5 for Burr distribution,
both computed at the same level kh1 or kh2. The correct estimation of
these parameters is crucial in order to get better estimates of the tail
index using corrected estimators.

Now we have the necessary tools to estimate the tail index using
the bias corrected tail index estimators. In this way, the illustrations
that follow contain a graphical representation of the behaviour of the
estimators corrected according to the choices on ⌧ made for each dis-
tribution.

From the asymptotic normality we construct confidence intervals for
the tail index, with (1 � ↵)-level, in the usual way:

IdGT
(k,↵) =

⇢
� :

1p
2�

k1/2|dGT � �|  ��1
⇣
1 � ↵

2

⌘�
.

The confidence bounds for the corresponding geometric-type bias
corrected estimators are similar to the previous ones.
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Figure 6. Mean estimates (left) and RRMSE (right) of dGT , dGT and dGT , with

b⇢ and b� computed at the levels kh1 =
⌅
n0.995

⇧
and kh2 =

⌅
n0.999

⇧
, for a sample

size n=1000 (and 2000 replicates), as a function of k, from a GPD given by

F (x) = 1 � (1 + �x)�1/� , x � 0 with � = 1 (⇢ = �1, � = 1; ⌧ = 0).
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Figure 7. Mean estimates (left) and RRMSE (right) of dGT , dGT and dGT , with

b⇢ and b� computed at the levels kh1 =
⌅
n0.995

⇧
and kh2 =

⌅
n0.999

⇧
, for a sample

size n=1000 (and 2000 replicates), as a function of k, from a Burr distribution

given by F (x) = 1�
�
1 + x�⇢/�

�1/⇢
, x � 0, with � = 1, ⇢ = �2 (� = 1; ⌧ = 0.5).

From the Figures 6 and 7, in which the geometric-type estimator is
confronted with its new corrected versions, we observe that using both
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GPD and Burr distribution, the performance of the geometric-type
estimator was improved by bias correction and the resulting geometric-
type bias corrected estimators shows a very good behaviour.

We also note that the performance of the corrected estimators are
slightly better when we calculate the second order parameters using the
level kh2 instead of using the kh1 level. The corresponding 95% confi-
dence bounds of the geometric-type estimator and of the corresponding
bias corrected estimators are reported in Tables 1 and 2. We present
three values of k for the illustration of the influence of the choice of k.

Table 1. Confidence bounds (↵ = 0.05) using the geometric-type estimator

and the corresponding bias corrected estimators, with b⇢ and b� computed at the
levels kh1 =

⌅
n0.995

⇧
and kh2 =

⌅
n0.999

⇧
, for a sample size n=1000 (and 2000

replicates), as a function of k. GPD F (x) = 1 � (1 + �x)�1/� , x � 0 with � = 1
(⇢ = �1, � = 1; ⌧ = 0).

k dGT dGT b⇢(kh1),b�(kh1)
dGT b⇢(kh2),b�(kh2)

dGT b⇢(kh1),b�(kh1)
dGT b⇢(kh2),b�(kh2)

300 1.125 ± 0.180 1.013 ± 0.162 1.002 ± 0.160 1.018 ± 0.163 1.008 ± 0.161
500 1.198 ± 0.149 1.011 ± 0.125 0.997 ± 0.124 1.025 ± 0.127 1.013 ± 0.126
700 1.310 ± 0.137 1.037 ± 0.109 1.020 ± 0.107 1.063 ± 0.111 1.050 ± 0.110

Table 2. Confidence bounds (↵ = 0.05) using the geometric-type estimator

and the corresponding bias corrected estimators, with b⇢ and b� computed at the
levels kh1 =

⌅
n0.995

⇧
and kh2 =

⌅
n0.999

⇧
, for a sample size n=1000 (and 2000

replicates), as a function of k. Burr distribution F (x) = 1 �
�
1 + x�⇢/�

�1/⇢
,

x � 0, with � = 1 and ⇢ = �2 (� = 1; ⌧ = 0.5).

k dGT dGT b⇢(kh1),b�(kh1)
dGT b⇢(kh2),b�(kh2)

dGT b⇢(kh1),b�(kh1)
dGT b⇢(kh2),b�(kh2)

300 1.044 ± 0.167 1.026 ± 0.164 1.022 ± 0.164 1.026 ± 0.164 1.022 ± 0.164
500 1.055 ± 0.131 1.012 ± 0.125 1.005 ± 0.125 1.013 ± 0.126 1.006 ± 0.125
700 1.089 ± 0.114 1.011 ± 0.106 1.000 ± 0.105 1.014 ± 0.106 1.004 ± 0.105

We note that when using corrected estimators, the amplitude of the
asymptotic confidence intervals is smaller.

In order to have an idea of the good behaviour of the geometric-type
bias corrected estimators, we compare them with the corresponding
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Hill bias corrected estimators (see e.g. Caeiro et al. (2005)), given by

bH (k) = bH (k)

0

B@1 �
b�
⇣
n
k

⌘b⇢

1 � b⇢

1

CA

and

bH (k) = bH (k) exp

(
�

b�
1 � b⇢

⇣n
k

⌘b⇢
)
,

where b⇢ and b� are the estimators of the shape and scale parameters,
respectively.
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Figure 8. Mean estimates (left) and RRMSE (right) of dGT , dGT , bH and bH,

with b⇢ and b� computed at the levels kh1 =
⌅
n0.995

⇧
and kh2 =

⌅
n0.999

⇧
, for a

sample size n=1000 (and 2000 replicates), as a function of k, from a GPD given

by F (x) = 1 � (1 + �x)�1/� , x � 0 with � = 1 (⇢ = �1, � = 1; ⌧ = 0).

From Figures 8 and 9, we observe that using GPD and Burr dis-
tribution, both the geometric-type and the Hill bias corrected estima-
tors present a good performance. Particularly, we note that for GPD
the geometric-type estimator has a better posture for intermediate k-
values, while the best behaviour of Hill estimator takes place at low
values of k. In the case of Burr distribution, a greater distance from
the target value is notable at low k-values for the geometric-type esti-
mators, whereas for the Hill estimators the same it is visible for high
k-values.

The Hill estimator exhibits in general a lower RRMSE than the
geometric-type estimator, which can be understood considering that
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the asymptotic variance of the Hill estimator is half of the one of the
geometric-type estimator.
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Figure 9. Mean estimates (left) and RRMSE (right) of dGT , dGT , bH and bH,

with b⇢ and b� computed at the levels kh1 =
⌅
n0.995

⇧
and kh2 =

⌅
n0.999

⇧
, for

a sample size n=1000 (and 2000 replicates), as a function of k, from a Burr

distribution given by F (x) = 1 �
�
1 + x�⇢/�

�1/⇢
, x � 0, with � = 1 and ⇢ = �2

(� = 1; ⌧ = 0.5).

In addition, for GPD and for large k, the estimates based on bH clearly

show far better results than those conducted with bH. Unlike what
happens with the corrected geometric-type estimators, the corrected
Hill ones have the best estimates when the second order parameters
are computed using the level kh1 instead of using the kh2 level, except
for very high k-values in which prevails the use of kh2.

We may conclude that the behaviour of the geometric-type estimator
is improved by bias correction. The corrected versions show a good
performance and for some cases it is even highlighted.
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