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The Ulysses mission has been sampling the Solar Wind (SW) plasma, measur-
ing the velocity and magnetic fields while orbiting the Sun, for the first time
on a polar orbit, from 1 A.U., with the mean magnetic field almost parallel to
the stream, to 6 A.U., with magnetic field almost perpendicular to the stream.
This dataset allows to study properties of anisotropic MHD turbulence in SW
streams and its evolution with distance, latitude and mean-field direction.

Suppression of turbulence has long been observed in the direction aligned
with the large–scale mean field, by studying 2nd order longitudinal and trans-
verse structure functions (SF). Several MHD models incorporate at various
levels asymmetry of spectral indices in the field-aligned and transverse direc-
tions. For a selected bibliography in SW turbulence see [1] and [5].

1 Anisotropy of field fluctuations

Statistics of magnetic field fluctuations is reconstructed via the nth order

correlation, S
(n)
α1,...,αn

(r), which depends on separation (r),

S(n)
α1,...,αn

(r) = 〈δrBα1
δrBα2

· · · δrBαn
〉, (1)

where δrBα ≡ Bα(x+r)−Bα(x), and is the main quantity directly available
from spacecraft data. Brackets 〈·〉 in (1) indicate average over the locations
x. In (1) homogeneity is assumed, but not isotropy. This correlation function
includes both isotropic and anisotropic contributions:

S(n)
α1,...,αn

(r) = S(n),iso
α1,...,αn

(r) + S(n),aniso
α1,...,αn

(r). (2)

For n = 2 and α1 = α2, we get the 2nd order SF, connected to the energy
spectrum Eα,α(k) = 〈|B̂α(k)|2〉 via a Fourier transform. Another widely used
form of (1) is the longitudinal SF, obtained by projecting all field increments
along the separation versor, r̂: Sn

L(r) = 〈(δrB · r̂)n〉.
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SO(3) decomposition of correlations (1), makes it possible to analize the
anisotropic structure of magnetic field fluctuation. However, such an analysis
requires the whole field in a 3D volume, to be systematically worked out.
Spacecraft data are instead inherently one-dimensional. However, for such

data it is still possible to extract those correlation functions, such as S
(2)
xy (rx)

and S
(2)
xz (rx), whose isotropic contributions are by symmetry identically zero

[2]. Their measure shall therefore quantify the degree of anisotropy of magnetic
field fluctuations. A recent review on SF decomposition in hydrodynamics, for
experimental and numerical data analysis can be found in [5].
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Fig. 1. Second order longitudinal, transverse and purely anisotropic SF. Low lati-
tude dataset. Upper three curves: longitudinal and tranverse SF: solid line — S

(2)
xx ;

empty cirles ◦ S
(2)
yy ; filled circles • S

(2)
zz . Errorbars are superimposed on — S

(2)
xx .

Reference slope has angular coefficient of 0.7. Lower curves: purely anisotropic SF:
S

(2)
xy , N filled triangles; S

(2)
xz , △ empty triangles; S

(2)
yz , � empty squares. Errorbars

are superimposed on △ S
(2)
xz . Inset: fourth order SF, longitudinal, transverse and

purely anisotropic. Solid line, — S
(4)
xxxx; empty circles ◦ S

(4)
yyyy; filled circles • S

(4)
zzzz.

Purely anisotropic SF are: S
(4)
xyyy, N filled triangles; S

(4)
xzzz, △ empty triangles; S

(4)
yzzz,

� empty squares.

Let us therefore compare the undecomposed 2nd order SF with its anisotropic

content. In Fig.1 we plot the longitudinal SF of 2nd order, S
(2)
x,x(rx) and the

two transverse SF in the directions perpendicular to the x̂ axis, S
(2)
yy (rx) and

S
(2)
zz (rx). All these functions have both isotropic and anisotropic contribution:

S(2)
α,α(rx) = S(2),iso

α,α (rx) + S(2),aniso
α,α (rx). (3)
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The two purely anisotropic 2nd order SF S
(2)
xy (rx) and S

(2)
xz (rx), are plotted

in the same figure. A few comments are in order. First, we notice that the
anisotropic correlations have a smaller amplitude with respect to the full cor-
relation functions. This suggests that the isotropic contribution in the decom-
position (2) is dominant. Moreover, we see that the anisotropic curves decay
slightly faster than the full correlation at small scales. In other words, isotropic
fluctuations become more leading proceeding to small scales, although they do
so very slowly. This is consistent with the recovery-of-isotropy assumption in
some MHD models However, it is important to also control higher order sta-
tistical objects, i.e. the whole shape of the probability density distribution, at
all scales. In the inset of Fig. 1 we show the same comparison between longitu-

dinal, S
(4)
xxxx(rx), transverse, S

(4)
αααα(rx) (with α = y, z) and purely anisotropic

correlations of fourth order (see caption in the figure). Now the situation is
quite different. First, the intensity of some purely anisotropic components are
much closer to those with mixed isotropic and anisotropic contributions, i.e.
the longitudinal and transverse SF. Second, the decay rate as a function of
the scale is almost the same: no recovery of isotropy is detected for fluctua-
tions of this order any more. This is the signature that anisotropy is mainly
due to intense but rare events affecting high order moments more than 2nd
order moments [3]. This important conclusion is confirmed by a consistent
behaviour of other statistical indicators [1].

Strong anisotropic fluctuations persist at all scales in the fast solar wind. In
the equatorial region, where data of Fig. 1 belong to, the anisotropic contents
of fourth order correlation function is roughly of the same order as its isotropic
part, at all scales, indicating that small scale isotropy is never achieved. In
the polar region, anisotropies are smaller and highly fluctuating in time, but
with a spatial dependencies compatible, within statistical errors, with the
one observed at low latitudes. This would indicate some universal features of
anisotropic solar fluctuations independently of the latitude, at least for what
concerns their scaling properties. Our results therefore point toward a crucial
role played by anisotropic fluctuations in the small scales statistics.

References

1. Bigazzi A.,Biferale L.,Gama S.M.A,Velli M.: ApJ, 638, 499 (2006)
2. S. Kurien and K. R. Sreenivasan, Phys. Rev. E (2000) 62, 2206.
3. L. Biferale and F. Toschi, Phys. Rev. Lett. (2001) 86, 4831.
4. Tu, C.-Y. & Marsch, E. 1995, Space Science Reviews, 73, 1
5. Biferale, L. & Procaccia, I., 2005, Phys. Rep. 414, Issues 2-3, 43.


