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Abstract. In this paper we study R-reversible area-preserving maps f : M →M on a two-dimensional Riemannian closed
manifold M , i.e. diffeomorphisms f such that R ◦ f = f−1 ◦R where R : M →M is an isometric involution. We obtain
a C1-residual subset where any map inside it is Anosov or else has a dense set of elliptic periodic orbits. As a consequence
we obtain the proof of the stability conjecture for this class of maps. Along the paper we also derive the C1-closing lemma
for reversible maps and other perturbation toolboxes.
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1. Introduction

1.1. Symplectic and reversing symmetry invariants. Symmetries, like equivariance and reversibility, play
an important role in determining the behavior of a dynamical system. Equivariant symmetries have been
studied extensively in connection with bifurcation theory; see [11, 14]. The general theory for reversible
symmetries in dynamical systems had a more recent development as described in the thorough surveys [17,
27]. Indeed, symmetries are geometric invariants which play an important role through several applications
in Physics, from the Classical [5] and Quantum Mechanics [22] to Thermodynamics [16]. However, there
is still a gap in the literature concerning the area-preserving reversible systems and the question about the
validity of classic results in the this setting arises.

The main object of the present paper is twofold: we intend to study dynamical systems which keep invariant
a reversing symmetry and a symplectic form at the same time. As reported in [17], the interconnection
between these two types of geometrical invariants is much common since there is a large class of Hamiltonians
which come equipped with a reversing symmetry. A paradigmatic example relies on the Chirikov-Taylor
standard map [19]. In the present article, after a scrupulous examination of properly chosen examples, we
would like to systematize their features and consider the general family of area-preserving maps which display
a reversing symmetry. The area-preserving maps appear naturally when considering time-one maps of a
Hamiltonian with 2 degrees of freedom which is the base of Celestial and Classical Mechanics. In what
follows, we characterize the maps that we are going to consider along the paper.

Let M denote a compact, connected, boundaryless, C∞ Riemannian two-dimensional manifold, let ω be
a smooth symplectic form on M and µ the measure associated to ω that we call Lebesgue measure or area.
Setting by Diff1(M) the set of C1 diffeomorphisms on M , let Diff 1

µ (M) ⊂ Diff1(M) stand for the set of
C1 diffeomorphisms on M such that if f ∈ Diff1

µ(M), then for every borelian subset A of M , the following
property holds: µ(f−1(A)) = µ(A). These maps are often called area-preserving diffeomorphisms on M .
A diffeomorphism f : M →M is Anosov if M is a uniformly hyperbolic set for f , i.e. there are m ∈ N and
σ ∈ (0, 1) such that, for every x ∈ M , there is a Df -invariant continuous splitting TxM = Eu

x ⊕ Es
x such

that ‖Dfmx |Es
x
‖ ≤ σ and ‖(Dfmx )−1|Eu

x
‖ ≤ σ.
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We are considering the C1-Whitney topology where a property is said C1-generic if it holds on a C1-
residual set. A C1-residual set is a countable intersection of C1-open and C1-dense sets. Observe that
both sets Diff1(M) and Diff 1

µ (M) endowed with the C1-topology are Baire spaces [28, Sect. 3.5]: so every
residual set is dense.

In this paper we address the existence of elliptic periodic orbits far from the Anosov maps within the space
Diff 1

µ (M) which exhibit some reversing symmetry. Roughly speaking, a reversing symmetry is a diffeomor-
phism R : M → M such that for all x ∈ M , DRx ∈ SL(2,R) and R ◦ R = IdM . A diffeomorphism
f : M →M is calledR-reversible if there exists an isometryR : M →M , which conjugates f to its inverse
f−1, i.e., such that the following equality holds:

(1.1) R ◦ f = f−1 ◦R.

The set of diffeomorphisms that are area-preserving andR-reversible will be denoted by Diff 1
µ,R(M). The

fixed-point subspace of the involution R, defined as Fix(R) = {x ∈ M : R(x) = x}, is a central object of
analysis. While fixed point subspaces of preserving symmetries are invariant under the dynamics, in general
they are not setwise invariant for reversing symmetries. Throughout this article, this set is assumed to be a
smooth one-dimensional submanifold of M .

1.2. Elliptic closed points. Let f ∈ Diff 1(M). We say that p ∈ M is an elliptic periodic orbit of period
n ∈ N for the diffeomorphism f if the following conditions hold:

• fn(p) = p (p ∈ Per(f) i.e. p is periodic for f ),
• f i(p) 6= p, for all i = 1, ..., n− 1 and
• the map Dfnp ∈ SL(2,R) has non-real spectrum with modulus 1.

Starting with Birkhoff [5], the dynamic structure of symplectic maps near an elliptic periodic orbit has
been studied intensively in the context of Hamiltonian mechanics. Going back in to the seventies, in the
generic theory of area-preserving diffeomorphisms, we find the seminal result of Newhouse [21] that says
that C1-generic diffeomorphisms in surfaces are Anosov or else the elliptical points are dense. The proof
is supported in the symplectic structure and on the finding of homoclinic tangencies associated to periodic
orbits. The extension of the Newhouse dichotomy for the reversible context is not so straightforward as
we may expect due to the technical difficulties that the reversibility entails: there is no guarantee that the
construction of theR-reversible and conservative perturbation, through homoclinic tangencies, may be done
in a reversible way. This is why our proof does not run along the same lines to that of [21] but rather to those
of [3, 4].

The present article gives a proof of Newhouse’s dichotomy in the reversible and area-preserving setting;
we also obtain the abundance of elliptic closed orbits C1-far from the Anosov maps and the proof of the
stability conjecture for this class. A consequence of the latter result is that the only symplectic reversible
diffeomorphisms on a compact manifold which are structurally stable (among symplectic reversible diffeo-
morphisms) are the Anosov diffeomorphisms. Anosov diffeomorphisms within the class Diff 1

µ,R(M) were
studied with detail in [4, §4]. In the dissipative context, using the concept of heteroclinic tangencies, the
authors of [18] establish a new type of Newhouse domains, in which there is a dense set of diffeomorphisms
having simultaneously sinks, sources and elliptic periodic orbits.

1.3. Statement of the main results. In order to extend the dichotomy of [21] for area-preserving reversible
maps, we first state and prove a new version of theC1-Closing Lemma, one of the classic results in dynamical
systems. This is meant to refer to a bifurcation problem in which there is a recurrent (or non-wandering) non-
closed orbit. Recall that a point x ∈ M is non-wandering for f if for all neighbourhood U of x, there exists
n ∈ N such that fn(U) ∩ U 6= ∅.
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By perturbing the original system, we obtain a C1-near system that has a periodic orbit passing near the
non-wandering point. Several papers deal with the classicC1-Closing Lemma and improvements thereof. We
refer the reader to the survey [1] that consider numerous kinds of closing lemmas. Using similar arguments
to those of [25] combined with [4], we state and prove the following version of the C1-Closing Lemma:
Theorem A (The Reversible C1-Closing Lemma). Let R be an isometric involution on M . There exists a
residual set D ⊂ Diff 1

µ,R(M) such that if f ∈ D , then for Lebesgue almost every point x ∈ M , r > 0 and
ε > 0, there exists g ∈ D such that g is ε-C1-close to f and y ∈ Per(g) for some y ∈ B(x, r).

Using some perturbation lemmas that will be developed in Section 3, the proof of Theorem A will be
addressed in Section 4. A direct corollary of the Reversible C1-Closing Lemma together and the Poincaré
Recurrence Theorem is the following:
Corollary 1.1. (General Density Theorem) There exists a residual subset P ⊂ Diff 1

µ,R(M) such that the
closure of the set of hyperbolic or elliptic periodic points of any f ∈P is the whole manifold M .

Let f ∈ Diff 1
µ,R(M). Extending the Bochi-Mañé Theorem ([6]), the authors of [4] proved that there exists

a C1- residual subset Diff 1
µ,R(M), say R, such that every f ∈ R either is Anosov or have zero Lyapunov

exponents at Lebesgue almost every point. If f is non-Anosov, the result says nothing with respect to the
existence of elliptic periodic points. In this paper, we are able to prove that if f is far from being Anosov,
thus for any open setO ⊂M and ε > 0, there exists g ∈ Diff 1

µ,R(M) such that g is ε-C1-close to f and g has
an elliptic periodic orbit through O. This is the content of the following reversible version of Newhouse’s
dichotomy ([21, Theorem 1.1]):
Proposition 1.2. If f ∈ Diff 1

µ,R(M) be a map in the C1-interior of the complement of the Anosov maps, then
for any (non-empty) open set O ⊂ M and ε > 0, there exists g ∈ Diff 1

µ,R(M) such that g is ε-C1-close to f
and g has an elliptic periodic orbit through O.

An interesting consequence of Proposition 1.2 relies on the denseness of elliptic periodic orbits:
Theorem B. There exists a C1-residual R ⊂ Diff 1

µ,R(M) such that any f ∈ Diff 1
µ,R(M) is Anosov or else

the elliptic periodic orbits of f are dense in M .

Recalling that the only surface that admits Anosov diffeomorphisms is the torus T2 = R2/Z2 (see [13]),
when M 6= T2, the previous result can be stated in a more powerful way:
Corollary 1.3. If M 6= T2, then there exists a C1-residual R ⊂ Diff 1

µ,R(M) such that any f ∈ Diff 1
µ,R(M)

the elliptic periodic orbits of f are dense in M .

We also obtain the proof of the stability conjecture for area-preserving reversible maps. Recall, that f ∈
Diff 1

µ,R(M) is said to be C1-structurally stable if there exists a C1-neighbourhood U ⊂ Diff 1
µ,R(M) such

that, for any g ∈ U , there exists a homeomorphism h : M → M (not necessarily in Diff 1
µ,R(M)) such that

f ◦ h = h ◦ g.
Theorem C. A map f ∈ Diff 1

µ,R(M) is C1-structurally stable if and only if f is Anosov.

More precise statements of the results will be given throughout the article.
Since there is a gap in the classic literature concerning the reversible systems, in the present paper we

revisit the construction of perturbation toolboxes, namely local perturbations lemmas [4] and the Franks-
type lemma [4] in Section 3, after having provided some preliminaries and notation in Section 2. The proof
of Theorem A is done is Section 4 and those of Proposition 1.2, Theorems B and C are addressed in Section
5. We also revisit Newhouse’s proof [21] that obtained a dense set of elliptic points via the existence of
homoclinic tangencies of the invariant manifolds of periodic orbits. At the end of this section, the reader will
realize why the proof of Proposition 1.2 does not run along the same lines to that of [21].
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2. Preliminaries

In this section, we describe precisely the ambient space and properties of the maps under consideration in
the article. We introduce some general features and the property of reversibility for a map on the surface M .

2.1. Generalities. We will use the canonical norm of a bounded linear mapA given by ‖A‖ = sup‖v‖=1 ‖Av‖.
By Darboux’s theorem (see e.g. [20, Theorem 1.18]) there exists an atlas {ϕj : Vj → R2}, where Vj is an
open subset of M , satisfying ϕ∗jω0 = ω with ω0 = dx ∧ dy. Since M is compact we can always take an
atlas with a finite number of charts, say k. We fix once and for all the finite atlas {ϕj : Vj → R2}kj=1. Given
x ∈ Vj , for some j ∈ {1, ..., k}, let B(ϕj(x), r) stands for the open ball of radius r centered in ϕj(x).
Clearly, if r is small enough we get that ϕ−1

j (B(ϕj(x), r)) ⊂ Vj . In this case we will refer to B(x, r) the
set ϕ−1

j (B(ϕj(x), r)). We notice that all the estimates along the present paper are made in using the Dar-
boux coordinate charts ([20]). Hence, we may assume that M = R2, TxM = R2, and the exponential map
expx : TxM → M , which do not preserve necessarily a symplectic structure, is, under these assumptions,
the identity.

2.2. Reversibility. Here, we introduce basic definitions and recall some results on symmetric systems,
whose proof can be found in [17, 27], where it has been presented a compact survey of the literature on
reversible dynamical systems. We say that the diffeomorphism R : M → M has n-degree if Rn = Id,
where n ∈ N is the lower positive integer that satisfy the previous equality and Id the identity map. In the
case n = 2 we have that R is an involution, i.e., R2 = R ◦ R = Id. We say that R is a reversing symmetry
of a diffeomorphism f : M →M if we have:
(2.1) R ◦ f = f−1 ◦R.

Identity (1.1) implies that if O(x) is an orbit of x ∈ M , then R(O(x)) is also an orbit where the time is
reverted. In other words, a reversing symmetry maps orbits into orbits reversing time direction. The definition
of reversibility is algebraic and does not rely on any differentiability property of the diffeomorphism f . Note
that saying that f is R-reversible means that R conjugates f and f−1.

The reversing symmetries that we are going to consider along the paper will be isometries meaning that
given the metric g related to the Riemannian structure inM we have g = R∗g, that is, the pull-back of g, viaR,
leave the metric g invariant. Since the tangent map ofR is a linear isometry it is clear thatR ∈ Diff1

µ(M). In
addition, we also assume that the closed subset of fixed points ofR, that is Fix(R) := {x ∈M : R(x) = x},
has dimension equal to one as is the most common in several examples of the literature – see for instance
[17] and references therein.

3. Perturbation Lemmas

In the present section, we revisit certain general perturbation statements that are at the basis of most results
referred in the article. These perturbation lemmas have been proved in the C1-topology.

More precisely, we state two useful perturbation lemmas that are the basis of most results mentioned in the
text: the first one, adapted from [4], gives a way to perform local perturbations among reversible systems.
The second relies on the Franks Lemma [12], allowing to realize locally small abstract perturbations of
the derivative along periodic or non-periodic orbits. The two types of results combine perturbations in the
area-preserving setting that leave a reversing symmetry invariant.

The next result shows how to perform a local perturbation in the world of reversible systems in order to
keep the perturbations inside this setting. Two general assumptions about the point x ∈M around where we
are doing a R-reversible perturbation are required: f(x) 6= R(x) and x /∈ Fix(R). Later on Proposition 3.4
we will se that these conditions are generic in our context.

4



Lemma 3.1. ([4, Lemma 7.1]) Given f ∈ Diff 1
µ,R(M) and η > 0, there exist ρ > 0 and ζ > 0 such that,

for any point x ∈ M , whose orbit by f is not periodic and f(x) 6= R(x), and every C1 area-preserving
diffeomorphism h : M → M , coinciding with the Identity in M\B(x, ρ) and ζ-C1-close to the Identity,
there exists g ∈ Diff 1

µ,R(M) which is η-C1-close to f and such that g = f outside C and g = f ◦ h in
B(x, ρ).

Remark 3.2. The local perturbation h can be done in such a way that we get g ∈ Diff 1
µ,R(M) satisfying

g = h ◦ f . In fact, by Lemma 3.1 we can build g̃ = f−1 ◦ h−1 supported in a ball B̃ and follow the same
idea. Finally, we obtain g := g̃−1 = h ◦ f such that g = f outside B̃ ∪ f(R(B̃)) and g = h ◦ f in B̃.

Another perturbation lemma which is a key step in order to obtain several results in dynamics is a per-
turbation which provides an abstract tangent action by a given map C1-close to an initial one, and was first
considered in [12] for dissipative diffeomorphisms as a contribution to the solution of the Stability Conjec-
ture; it will also be used to prove Theorem C.

We will consider a finite segment of a given orbit and a small perturbation of the derivative along that
segment. Then, we ask if there exists a dynamical system close to the initial one such that its derivative
equals the perturbations we considered.

The following result is the version of Franks’ lemma (see [12, Lemma 1.1]) for reversing symmetric dif-
feomorphisms. Since f is area-preserving, we make use of the conservative Franks’ lemma proved in [9].
As in [4], we should impose some restrictions.

Definition 3.3. Given a subset X of M , we say that X is (R, f)-free if:

(3.1) for all x, y ∈ X we have f(x) 6= R(y).

It has been proved in [4, Lemma 3.4] that if f ∈ Diff 1
µ,R(M), x ∈ M and R(x) does not belong to the

f -orbit of x, then this orbit is (R, f)-free. Thom Transversality Theorem allows us to conclude that:

Proposition 3.4. There exists a residual D ⊂ Diff 1
µ,R(M) such that for any f ∈ D the set of orbits outside

Fix(R) which are not (R, f)-free is countable.

See the proof in [4]. As a trivial conclusion of the previous result and the fact that dim(Fix(R)) = 1 we
obtain that generically in Diff 1

µ,R(M) the set of (R, f)-free orbits has full Lebesgue measure.

We will now consider an area-preserving reversible diffeomorphism, a finite set in M and an abstract
tangent action that performs a small perturbation of the derivative along that set. Then we will search for an
area-preserving reversible diffeomorphism, C1 close to the initial one, whose derivative equals the perturbed
cocycle on those iterates. To find such a perturbed diffeomorphism, we will benefit from the argument,
suitable for area-preserving systems, presented in [9].

Lemma 3.5. [4, Lemma 7.4] Fix an isometric involution R and f ∈ Diff 1
µ,R(M). Let Θ := {x1, x2, ..., xk}

be a finite set of distinct points in M . Asume that Θ is (R, f)-free. Denote by Q = ⊕x∈ΘTxM and Q′ =
⊕x∈ΘTf(x)M . Let G : Q → Q′ be a linear area-preserving map. For every ε > 0, there exists δ > 0, such
that if ‖G − Df‖ < δ, then there exists g ∈ Diff 1

µ,R(M) ε-C1-close to f and satisfying Dgx = G|TxM for
every x ∈ Θ. Moreover, ifK ⊂M is a compact onM andK ∩Θ = ∅ then g can be chosen such that g = f
in K.

The following result is the peak of the well known Mañé dichotomies on periodic orbits - the dominated
splitting is the only obstruction to obtain trivial spectrum on periodic orbits. The abstract general result for
dissipative systems was obtained in [10, Corollary 2.19]. Here we consider the area-preserving reversible
version.
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Theorem 3.6. Let f ∈ Diff 1
µ,R(M). Then for any ε > 0 there are two integers m and n such that, for any

periodic point x of period p(x) ≥ n:
(1) the orbit of x is an (R, f)-free set or either;
(2) f admits an m-uniform hyperbolic splitting along the orbit of x or else;
(3) for any neighbourhood U of the orbit of x, there exists g ∈ Diff 1

µ,R(M) ε-C1-close to f , coinciding
with f outsideU and on the orbit of x, and such that x is a parabolic point of g for which the differential
Dg

p(x)
x has all eigenvalues real and with the same modulus, thus equal to ±1.

The proof of Theorem 3.6 follows closely the steps of the work [10], this is why we shall omit it. However,
we point out the key points that we have to be careful about:

(a) Firstly, in [10], the authors need not be worried about perturbation obstructions as the ones we are
considering due to the reversibility: the periodic orbits in their perturbations need not to be (R, f)-
free. In our case, since the Lebesgue measure cannot “see” the set of the orbits that are not (R, f)-free,
we may exclude them of the scenario.

(b) Secondly, it is worth to stress that the item (2) of Theorem 3.6 refers to obtaining dominated split-
ting. By [6, Lemma 3.11], in a two-dimensional area-preserving setting, m-uniform hyperbolicity is
equivalent to m-dominated splitting.

(c) Finally, in the absence of uniform hyperbolicity, we will combine the arguments in [10] with Lemma 3.5,
when perturbations are requested to obtain (3). The perturbations that are used in [10] are rotations
which are clearly area-preserving (see also [8, Lemme 6.6] performed for SL(2,R) cocycles). These
transformations are used to obtain real spectrum with the same modulus (i.e. ±1).

If D ⊂ Diff 1
µ,R(M) is the C1-residual set of Proposition 3.4, the Kupka-Smale theorem in Diff 1

µ,R(M)
allows us to conclude that:

Lemma 3.7. There exists a C1-residual D ⊂ Diff 1
µ,R(M) such that for any f ∈ D the set of periodic orbits

satisfying (2) or (3) of Theorem 3.6 are dense in Per(f).

If Q = D ∩P , where P is the C1-residual given in Corollary 1.1, we easily obtain:

Lemma 3.8. There exists a C1-residual Q ⊂ Diff 1
µ,R(M) such that for any f ∈ Q the set of periodic orbits

satisfying (2) or (3) of Theorem 3.6 are dense in M .

4. The Reversible C1-Closing Lemma

A fundamental result on dynamical systems, which goes back to Poincaré, is the well known Closing
Lemma. In rough terms, we intend to close, in a sense that we turn it into a periodic orbit, a given recurrent or
non-wandering orbit by making a small perturbation on the original system. Until now, there are satisfactory
answers to this problem if the small perturbations are with respect to lower topologies (C0 and C1). Despite
the fact that the C0-closing lemma is a quite simple exercise, the C1 statement reveals several difficulties.
The C1-closing lemma was first established by Pugh [24, 23] in the late 1960’s and, in the early 1980’s, by
Pugh and Robinson [25] for a large class of systems as volume-preserving, symplectic diffeomorphisms as
also for Hamiltonians. In what follows, we present the reversing symmetric version of it. But before that we
will introduce two core tools developed in [25].

(A) A fundamental key step to obtain the closing of trajectories is the Lift Lemma, proved for area-
preserving diffeomorphisms in [25] (see §8 b) or a) because our area-preserving context is both
symplectic and volume-preserving). If very brief terms, lifting implies that we can push points in
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a given direction, acting only locally and supported in a given small ball. The intensity of this per-
turbation is uniform from point to point and also proportional to the size of the ball. Due to our area-
preserving and reversing symmetric restrictions the previous push must be done within this class.
The area-preserving push is guaranteed by Pugh and Robinson judicious perturbations. To treat the
R-invariance of the perturbations adapted very carefully the ideas of [25].

(B) The other tool has more to do with the drawbacks intermediate recurrences and how we can use
them in our favor and also to obtain some conformal behavior. In fact, given y and its iterate fn(y),
very close to one another, if we intend to push y to fn(y) by a small C1-perturbation, two kind of
problem occur: first a C1-perturbation may not allow a sufficiently large shift as we have seen in (A),
and second, nothing assures us that we have a clean scenario in their neighbourhood, say free from
intermediate recurrences formed by points f i(y) with i = 1, ..., n−1. Fortunatly, the ingenious ideas
developed in [25] solve this hard obstructions. For that we have the Fundamental Lemma in [25, §4],
which assures that we can always find two intermediate isolated recurrences:
• f i(y) and f j(y) with i < j inside a box B and
• if we inflate B a little bit there are no elements in fk(y) for k = {0, ..., n} \ {i, j}.

It has been proved in [4] that if f ∈ Diff 1
µ,R(M), x ∈ M and O(x) ∩ {R(x)} = ∅ then, the set O(x) is

(R, f)-free. Recall Proposition 3.4 that says that generically in Diff 1
µ,R(M) the set of (R, f)-free orbits has

full Lebesgue measure. The proof of Theorem A will be done in several steps, using arguments of [25]. We
suggest that the reader follows the proof observing Figure 1.

Proof. LetR be an isometric involution and f ∈ D ⊂ Diff 1
µ,R(M) where D is the residual set given Proposi-

tion 3.4. Following Pugh and Robinson [25], we will perform an ε-perturbation of f supported on small disks
that will be specified later. We recall the Axiom Lift Lemma proved in [25] that says that, in the pattern given
by a basis E of TM , one can shift the orbit through p on the orbit through p̃ in N steps, without changing f
out of the N first iterates of the “square” which is (1 + η)-times the smallest square containing both p and p̃
with η > 0 very small. The proof of the Axiom Lift is related to the Selection Theorem [25, Th. (3.2)].

The key to the proof of the C1-Closing Lemma is the following technical result on linear algebra (on the
tangent bundle). It combines two crucial tools namely the Selection theorem and the Fundamental lemma
([25, Lemma (4.1)]).

Lemma 4.1. Given ε > 0, η > 0 and K > 1 there is N ∈ N such that: for any set of linear maps
A0, . . . , AN−1 in SL(R2) satisfying ‖A±1

i ‖ < K, there is an orthogonal basis E = (e1, e2) of R2 such that,
for every pair of points a, b in the unitary square with respect to E (Q = [−1, 1]2E), there is a sequence gi,
i = 0, . . . , N − 1, of area-preserving diffeomorphisms gi : R2

i → R2
i+1 with:

(1) ‖gi − Ai‖ < ε;
(2) gi is equal to Ai out of the image of Ai−1 ◦ Ai−2 ◦ . . . ◦ A0([−1− η, 1 + η]2E) and
(3) gn−1 ◦ gn−2 ◦ . . . g0(a) = An−1 ◦ An−2 ◦ . . . A0(b).

Before we continue the proof, it is worth to interpret the meaning of the previous powerful result. Condition
(2) means that, up to a dimensional constant, we can specify the proportions of the squareQ with respect to
the basis E inside which a “gradual” perturbation occurs.

The performed perturbations occur in the tangent bundle. To “go down” to the manifold M , we need to
realize the perturbation onM . This is the goal of the Lift Axiom Lemma ([25, Def. pp. 265]), which ensures
that for each f ∈ Diff 1

µ (M) and each C1 neighbourhood N of f , there exists a uniform σ > 0 such that for
all p ∈ M , v ∈ TpM with ||v||E = 1, we have an area-preserving perturbation h of the identity satisfying
the following properties:
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Figure 1. There is a finite set of points yi, i ∈ Λ, in the disk D . Fundamental Lemma shows that there
exists two of these points f i(y) and f j(y), i < j < n0, and a square Q containing them such that the
homothetic square (1 + η)Q does not contain any other point fk(y) where k ∈ {1, . . . , n0}\{i, j}.

• h ◦ f ∈ N ;
• h(p) = expp(σv) : TpM →M and
• the topological closure of the set where h differs from the identity is contained in the ball centered on
p and radius ||v||.

This means that the perturbation h can lift points p in a prescribed direction v with results σ-proportional to
the support.

Let us fix the size ε > 0 of the perturbations we allow and pick some small numbers η > 0 and K > 1.
Remark 3.2 allows to fix, once and for all, an integer N such that:

N >
40B
σ
,
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where B is a uniform bound for the global distortion along Dff i(p), i = 1, . . . , N where, for all i ∈
{1, . . . , N}we have ‖Df±1

f i(p)
‖ < K; the constant B ≥ 1 is what the authors of [25] call the altitude bolicities

of Dff i(p) for i = 0, . . . , N − 1.

Let x ∈ Ω\Per(f) be a non-wandering point with respect to f . By definition of non-wandering point,
there exists y ∈ M arbitrarily close to x ∈ Ω, and n0 ∈ N such that n0 > N and the iterate fn0(y) is
arbitrarily close to x. The points y and fn0(y) are so close to x that we may assume that the restrictions of
f i to D? = D(x, r1) is governed by the linear map Df along the f -iterates of D (if necessary, shrink the
neighbourhood of x), obeying the hypothesis of Lemma 3.1.

Lemma 4.1 provides local coordinates on the disk D? given by the basis E. Now, we concentrate our
attention at the set Υ = {0, . . . , n} of all the return times of y in the disk D?:

i ∈ Υ⇔ f i(y) ∈ D?.

So we get a finite set of points yi, i ∈ Υ, in the diskD?. Lemma 4.1 shows that there exists two of these points
f i(y) and f j(y), i < j < n0, and a squareQ containing them such that the homothetic square (1 +η)Q does
not contain any other point fk(y) where k ∈ {1, . . . , n0}\{i, j}.

Since the orbit is (R, f)-free, it follows that f(x) 6= R(x) and thus the hypothesis of Lemma 3.1 holds.
Using now Lemmas 4.1 and 3.1 (acting together) we may perform two balanced local perturbations in order
to obtain a resultant map inside the class of R-reversible maps. More precisely, both results build a ε-C1-
perturbation

g := gN−1 ◦ . . . ◦ g0

of f which is equal to f out of the N first f -iterates of the square (1 + η)Q, and such that

g(f j(y)) = g(f i(y)).

As f has not been changed on fN+i(y) with i ≥ 0, one gets that f j(y) is a periodic orbit of g of period j− i.
A “twin” perturbation is automatically constructed in the following sense: taking into account Lemma 3.1,
we may define additional perturbations in

⋃N−1
i=0 R(f i(Q)) and one obtains ĝ ∈ Diff 1

µ,R(M) ε-C1-close to g
such that ĝ = g outside

⋃N−1
i=0 R(f i(Q)) and ĝ = R ◦ g inside

⋃N−1
i=0 R(f i(Q)). Please note that we did not

overlap the two perturbations during both perturbations because we have started with a small neighbourhood
D? of x such that for all i ∈ {0, 1, . . . , N}, f i(D?) does not intersect R(x).

�

By the C1-Closing Lemma, one knows that very non-wandering point can be made periodic by a small
C1-perturbation. This periodic point can be made hyperbolic or elliptic by a new perturbation, persisting
under small perturbations.

5. Proof of Proposition 1.2 and Theorems B and C

The main goal of this section is the proof of Proposition 1.2 and Theorems B and C. We first revisit the
Newhouse proof [21] that obtained a dense set of elliptic points via the existence of homoclinic tangencies
of the invariant manifolds of periodic orbits.

5.1. Elliptic points from homoclinic tangencies: revisiting Newhouse’s proof. The approach followed by
Newhouse in [21] was to obtain elliptic points near homoclinic tangencies, when the stable and the unstable
manifolds associated to a hyperbolic periodic orbit intersect in a non-transversal way.
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Let us see how the elliptic points are obtained: extending a result of Zehnder [29], in [21], it is first proved
that if f is non-Anosov, then homoclinic tangencies associated to hyperbolic periodic orbits are created for g
C1-close to f – more details in [21, pp.1078]. The perturbations are not explicit. The homoclinic tangencies
are created near the point where no transversality exists and they are done in such a way that the angle between
the stable and the unstable direction of a periodic hyperbolic point has a homoclinic tangency.

We point out that, in the dissipative case, an explicit relationship between homoclinic tangencies and the
angle of the stable and unstable subspaces of periodic points has been given in [26, Lemma 2.2.1], which
cannot be directly extended to our study. Secondly, in [21, Lemma 4.1], the author shows that a symplectic
diffeomorphism with a non-transverse homoclinic point (for some hyperbolic periodic orbit) can be perturbed
to produce an elliptic periodic orbit nearby. For a small ε > 0 and N ∈ N, the idea is to construct an isotopy
gt ( −ε ≤ t ≤ ε) of perturbing maps in Diff1

µ(M) such that:
• g0 = f
• there is a point s ∈ [−ε, ε] for which gNs has a bifurcation (a fixed point appears).

It implies that (DgNs )p has 1 as an eigenvalue of multiplicity two (for the map DgN ) and thus an elliptic
periodic point. The combination of these two results constitutes the proof of the dichotomy.

5.2. Proof of Proposition 1.2. In this section, we put together the previous information about and we show
Proposition 1.2. Let f ∈ Diff 1

µ,R(M) be a map in the C1-interior of the complement of the Anosov maps,
O ⊂ M a non-empty open set and ε > 0. We will show that there exists g ∈ Diff 1

µ,R(M) such that g is
ε-C1-close to f and g has an elliptic periodic orbit through O.

Before proceeding the proof, we need to recall a basic result on topological dimension. There are sev-
eral different ways of defining the topological dimension of topological space A, which we shall denote by
dim(A). For separable metrizable spaces, all these definitions are equivalent. The topological dimension is
a topological invariant. For full details on this concept see [15], where it is proved that:

Lemma 5.1. (Szpilrajn Theorem [15]) Given A ⊂ R2. If A has zero Lebesgue measure, then dim(A) < 2.

In order to show Proposition 1.2, we start by proving the following result:

Theorem 5.2. Given f ∈ Diff 1
µ,R(M) and Λf ⊆ M a uniformly hyperbolic set, then either Λf = M

(Anosov) or else Λf has empty interior.

Proof. Let f ∈ Diff 1
µ,R(M), Λf ⊂ M be a uniformly hyperbolic set and Λ 6= M (i.e. f is not Anosov). We

want to prove that Λf has empty interior. We may assume that f is not on the boundary of Anosov reversible
maps on M .

By contradiction, suppose that Λf has positive interior. This means that there is an open set ∅ 6= Uf ⊂M
such that Uf ⊂ Λ. Any open set has the topological dimension of the ambient space, thus dim(Λf ) = 2.

Hyperbolic sets have a hyperbolic continuation by any smallC1 perturbation of f , which is also hyperbolic.
Denote by g any small C1 perturbation of f and Λg the hyperbolic continuation of Λf (by g). Since the
conjugacy maps non-empty open sets into non-empty open sets, then the set Λg should contain a non-empty
open set and therefore dim(Λg) = 2.

By Zehnder [30, Section 2] we may smoothing out the map f i.e. there exists g? ∈ Diff ∞µ (M) C1-close
to f . Notice that there is no need g? being R-reversible. If Λg? is the hyperbolic continuation of Λf , then it
is clear that dim(Λg?) = 2. Using now [7, Appendix B], either µ(Λg?) = 0 or Λg? = M . The second case
does not hold because f is far from the Anosov maps. Therefore, µ(Λg?) = 0. By Lemma 5.1 we conclude
that dim(Λg?) < 2 which is a contradiction because it should contain an open set.

�
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Proof. (of Proposition 1.2) Let f ∈ Diff 1
µ,R(M), let f be C1-far from the Anosov maps and let O be a non-

empty open set of M . Through a C1-small perturbation we may assume that f ∈ Q and f is not Anosov,
where Q is the C1-residual set given in Lemma 3.8. Now, two situations should be taken in consideration:

(1) if some parabolic periodic orbit of f goes through O we are over by just using Lemma 3.5 to turn it
into an elliptic periodic point;

(2) otherwise, if a dense subset of m-uniformly hyperbolic periodic orbits of f go through O, then its
closure defines a hyperbolic set Λ ⊃ O. Since f is C1-far from the Anosov maps, by Theorem 5.2,
we get that Λ has empty interior, which is a contradiction.

�

5.3. Proof of Theorem B. In order to prove Theorem B, we strongly make use of Proposition 1.2. We are
going to exhibit a residual set R1 such that R = A ∪ R1 is a residual set of Diff 1

µ,R(M) for which the
dichotomy of Theorem B holds. Denote by

P = Diff 1
µ,R(M) \A ,

the C1-open set defined by the complement of the C1-closure of the set of Anosov maps A in Diff 1
µ,R(M),

where A denotes the C1-closure of the set A.
Let Φ stands for the subset of Diff 1

µ,R(M)×M ×R+ such that (f, x, ε) ∈ Φ if and only if f has an elliptic
periodic orbit intersecting the open ball B(x, ε). Observe that if U ⊂ P is an open set, then Φ(U , x, ε)
defined by:

Φ(U , x, ε) := {g ∈ U : (g, x, ε) ∈ Φ}

is an open set for the product topology of Diff 1
µ,R(M)×M × R+.

Let (xn)n∈N be a dense sequence in M (it exists because M is a compact set) and (εn)n∈N a sequence of
positive real numbers converging to zero. Now, for n ∈ N, define U1 = P and Un+1 = Φ(Un, xn, εn). The
set R1 =

⋂
n∈N Un is the countable union of open sets and if f ∈ R1 then the elliptic periodic orbits of f are

dense in M .

5.4. Proof of Theorem C. In order to prove Theorem C, we use Theorem B.
(⇐) If f is Anosov, it is known that f is C1-structurally stable. (⇒) Suppose, by contradiction, that is C1-

structurally stable and non-Anosov. By Theorem B there exists a C1-residual set R ⊂ Diff 1
µ,R(M) such that

any f ∈ Diff 1
µ,R(M), elliptic periodic orbits of f are dense in M . Bearing in mind that an elliptic periodic

point x0 on the plane is conjugated to a rotation around an open neighbourhood V of x0, by the Pasting
Lemma proved in [2, Theorem 3.6], for any ε > 0 we may construct two perturbations of f , say g1 and g2,
inside Diff 1

µ,R(M), which are in the C1-domain of topological conjugacy of f (note that we are assuming
that f is C1-structurally stable). Therefore, there exist homeomorphisms h1, h2 : M →M such that

h1 ◦ g1 = f ◦ h1 and h2 ◦ g2 = f ◦ h2.

Those perturbations can be made such that g1 is a rotation of rational angle centered at x0 and g2 is a rotation
of irrational angle centered at x0. Then, there exists h := h−1

1 ◦ h2 conjugating g1 and g2, i.e.,

h ◦ g2 = h−1
1 ◦ h2 ◦ g2 = h−1

1 ◦ f ◦ h2 = g1 ◦ h−1
1 ◦ h2 = g1 ◦ h,

which is a contradiction.
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