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Abstract
Water is becoming a scarce resource and its use has attained, in more advanced countries, a certain degree
of sophistication. This has had impact also in the way water is used to produceelectric energy specially
if there is a possibility of reusing the downstream water and there is a situation of drought even if mild.
This may be implemented in modern reversible hydroelectric power stations, associated with reservoirs
along a river basin with a cascade structure, where it is possible both to turbine water from upstream to
produce electric power and to pump from downstream to help to refill an upstream reservoir. Here we
present a possible model for a cascade of four hydro-electric powerstations where two of the stations
have reversible turbines. There are constant restrictions on the water level and water volumes of the
reservoirs, and on specified river inflows that are time functions; market prices of the produced electric
energy and flow rates which are also time functions. The objective is to optimizethe profit of producing
power providing at the same time some guidelines on when, how much and in whatdirection to allow
the water flow, whenever possible. The situation is modeled as an optimal control problem, solved itera-
tively using derivative free numerical methods. Even with software that was not written specifically for
the situation, the problem was solved with realistic data. The results are promising enough to encourage
a more ambitious process of finding better software to solve the much bigger real problem faced by an
energy producing enterprise (REN).

Keywords: Capacity Planning, Energy Policy and Planning, Enterprise Resource Planning Systems,
Environmental Management Facilities Planning and Design, Natural Resources, Production, Variational
Problems.

1 Introduction

Water is becoming a scarce resource and its use has attained, in more advanced countries, a certain
degree of sophistication. This has had impact also in the way water is used to produce electric energy
and for some time the operation of multireservoir systems has attracted the attentionof those responsible
for its rational management and operational decisions (Labadie, 2004; Ladurantaye et al, 2009). This is
especially important if there is also a possibility of reusing the downstream water and there is a situation
of drought even if mild. This may be implemented in modern reversible hydroelectric power stations,
associated with reservoirs along a river basin with a cascade structure,where it is possible both to turbine
water from upstream to produce electric power and to pump from downstream to help to refill an upstream
reservoir. Here we present a model for a cascade of hydro-electricpower stations where some of the
stations have reversible turbines. There are constant restrictions on thewater level and water volumes
of the reservoirs, and on specified river inflows that are functions oftime; market prices of the produced
electric energy and flows which are also functions of time. The objective is tooptimize the profit of
producing power providing at the same time some guidelines on when, how much, and in what direction
to allow the water flow, whenever possible. The problem is considered in theframework of a discrete-
time optimal control problem and is solved using numerical methods. The simulationuses real data from
Rede Eĺectrica Nacional (REN) and is a development of a basic model already studied at REN.

The paper is organized as follows: in section 2, the problem is stated and themodel is presented; in
section 3 the computational experience is described and presented the results obtained; section 4 contains
some conclusions.
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2 Problem Statement

Consider the following discrete-time optimal control problem with mixed constraints. The functional has
the form

P (q, s, V in) =

∫ T

0

price(t)

(

I
∑

i=1

ri(t)

)

dt

whereV in = (V in
1 , . . . , V in

I ) is the vector of initial stored water volumes in the reservoirsi = 1, . . . , I;
q(t) = (q1(t), . . . , qI(t)) ands(t) = (s1(t), . . . , sI(t)), t = 1, 2, . . . , T , are the controls, representing
the turbined/pumped volumes of water and spillways for each reservoir attimet. The functionsri(t), i =
1, 2, . . . , I, are given by

ri(t) =







9.8 ∗ qi(t) ∗
(

hi(t) − ∆hT
i (t)

)

∗ µT
i ∗ (1 − φi) if qi(t) ≥ 0

9.8 ∗ qi(t) ∗
(

hi(t) − ∆hP
i (t)

)

∗ 1/µP
i ∗ (1 − φi) if qi(t) < 0

where thehi(t) are the differences in water levels (see Figure 1) and∆hi(t) are head losses. The
functionsri(t) connect the amounts of turbined water and the values of the gross head. The dynamics

Figure 1: Two cascade reservoirs.

of water volumes in the reservoirs,Vi(t), i = 1, 2, . . . , I, is described by the following discrete-time
control system

Vi(t) = Vi(t − 1) + ai − qi(t) − si(t) +
∑

m∈Mi

qm(t) +
∑

n∈Ni

sn(t), t = 1, 2, . . . , T, i = 1, 2, . . . , I,

Vi(0) = V in
i i = 1, 2, . . . , I.

whereMi represents the set of reservoir indices from which comes the water flow toreservoiri , from
pumping or turbining andNi is the set of reservoir indices contributing to the spillway from reservoiri.
Moreover, the controls and the water volumes satisfy the following constraints

hi(t) = Z0
i + αi

(

Vi(t)

V 0
i

− 1

)βi

− max







Z0
i+1 + αi+1

(

Vi+1(t)

V 0
i+1

− 1

)βi+1

, ξi







,

Zi(t) = Z0
i + αi

(

Vi(t)

V 0
i

− 1

)βi

,
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ζi

(

hi(t) − h0
i

)

− q0P
i ≤ qi(t) ≤ q0T

i

(

hi(t)/h0
i

)
1

2 ,

Zmin
i ≤ Zi(t) ≤ Zmax

i ,

V in
i − ai ≤ Vi(T ).

HereV 0
i , i = 1, 2, . . . , I are the minimal water volumes;Zi(t), i = 1, 2, . . . , I are the water levels in

the reservoirs;Z0
i , Zmin

i , andZmax
i stand for nominal, minimal and maximal water levels (meters above

sea level) respectively;h0
i , i = 1, 2, . . . , I are nominal heads, andξi, i = 1, 2, . . . , I are tailwater levels;

q0T
i , i = 1, 2, . . . , I andq0P

i , i = 1, 2, . . . , I are the nominal turbined and pumped water volumes;
ai, i = 1, 2, . . . , I are the incomming flows; finallyαi, βi, ζi, i = 1, 2, . . . , I are positive constants. The
optimal valuesV in

i , i = 1, 2 . . . , I, give the mean volumes of water that are necessary to keep in the
reservoirs when the incomming flows areai, i = 1, 2, . . . , I.

A typical one day price function,price(t), is shown in Figure 2. It should be noted the high variability

Figure 2: One day real market prices of electricity.

of those prices which certainly has a great influence on the economically efficient use of the water in the
reservoirs to produce that form of energy. The restrictions are determined not only by economical reasons
of producing electricity, but also by ecological reasons and other usesof the reservoir water by the nearby
population.

Consider an example of a two reservoir system shown in Figure 3.

Figure 3: Two cascade reservoirs.

The optimization problem has the form

P (q, s, V0) =

∫ T

0

price(t)

(

2
∑

i=1

ri(t)

)

dt → max,

V1(t) = V1(t − 1) + a1 − q1(t) − s1(t),

V2(t) = V2(t − 1) + a2 − q2(t) − s2(t) + q2(t) + s2(t),
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Vi(0) = V in
i i = 1, 2,

h1(t) = Z0
1 + α1

(

V1(t)

V 0
1

− 1

)β1

− max

{

Z0
2 + α2

(

V2(t)

V 0
1

− 1

)β2

, ξ1

}

,

h2(t) = Z0
2 + α2

(

V2(t)

V 0
2

− 1

)β2

− ξ2,

Zi(t) = Z0
i + αi

(

Vi(t)

V 0
i

− 1

)βi

, i = 1, 2

ζ1

(

h1(t) − h0
1

)

− q0P
1 ≤ q1(t) ≤ q0T

1

(

h1(t)/h0
1

)
1

2 ,

0 ≤ q2(t) ≤ q0T
2

(

h2(t)/h0
2

)
1

2 ,

Zmin
i ≤ Zi(t) ≤ Zmax

i , i = 1, 2

V in
i − ai ≤ Vi(T ) , i = 1, 2.

wheret = 1, 2, . . . , T .
In the next section we study this two reservoir system as well as a more involved four reservoir sys-
tem shown in Figure 4. The main issue addressed in that section is the effectiveness of introduciong a
turbining/pumping a linkL between reservoirs 2 and 4.

Figure 4: Four cascade reservoirs.

3 Computacional experience and results.

A computational experience with the two models was done in a hypothetical, but realistic, situation with
real data of the water levels and flows, as well as the market prices of electricity.

The time period considered was one day, 24 hours, because of the great variability of intra-day
electricity prices. Several type of days were tried, such dry, mildly wet and wet days, as well as different
days of the week and days of different months. Only a sample of these results is presented.

The optimization problems were solved using a penalty function method. The problem had to be
solved numerically because the complexity of the situation does not allow for ananalytical solution to
be found. In the case of two reservoirs the results are shown in Figure 5.
The calculations were done with the market prices of electricity shown in Figure 2. It should be noticed
that the hydroelectric power stations associated with the two reservoirs onlyproduce electricity when the
price is high enough to justify that production. The system chooses to turbine the little water there is
mainly at meals time. Nevertheless, as reservoir 1 is reversible, it turbines during a more enlarged period
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Figure 5: Example for two reservoirs.

Figure 6: The optimal trajectory.

because even if the used volume of water exceeds the diary affluence, the excess is compensated at dawn
when the price is lower.

It is interesting to see the optimal trajectory of the volume of water in the reservoirs which in Figure 6.

For the more complex cascade of four reservoirs, again with the same day market prices for the
electricity, the obtained results are presented in Figure 7. It can be noticeda similar behaviour as in the
previous case: electricity is produced when high prices justify the production. Now, reservoirs 3 and 4
are reversible and because of that water is pumped at dawn as in the previous case.

We also consider an intuitive water management model, that is, all the water is used to produce
electricity when its price reaches the highest value and pumping is the option when the price is low
enough, allowing later to use a bigger volume of water for production. The results with this intuitive
policy are presented in Figure 8. For a 24 hour period the profit obtainedusing the ”optimal” policy,
was 255348.32e and the profit with the intuitive policy was 136033.05e.

The study was also done when link L (see Figure 4) was not present. Theresults are summarized in
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Figure 7: Four cascade reservoirs.

Figure 8: A simple policy and four cascade reservoirs.

Figure 9: Comparison with a simple policy.

the following table:
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Wet Average Dry
Cascade Inflow (m3) 555.6 277.8 95.2

Profit (ke) 387.6 359.1 261.9
With link L Turbined Flow (m3) 1095.9 1277.2 1140.8

Pumped Flow (m3) 892.6 832.3 1001.6
Profit (ke) 329.7 320.7 112.5

Without link L Turbined Flow (m3) 1102.2 924.5 785.8
Pumped Flow (m3) 713.0 535.3 646.6

The profit in case with link L, with two possible situations of pumping and turbiningto the same
reservoir, has better values than in the case where link L is out, even if there is no lack of water. For a dry
day, the profit obtained with linkL has approximately doubled the one without linkL. Since the water
to be managed by the system is very little and as such, the inclusion of a reversible reservoir is essential
to its reuse. For a wet day, the disposable water is enough. Since the levelof water in each reservoir
is nearer of the maximum admissible level, it is more difficult to manage the water andthe situation
becomes less flexible. Anyway, the link is advantageous because the system continues to reuse the water
of the reservoir 2 having always a bigger profit.

We can than conclude that the inclusion of a reversible reservoir is always advantageous, and it shall
be as more advantageous as less water the system has, that is, as far away is the volume of water from its
upper limit.

4 Conclusions

A hypothetical situation of a cascade of hydroelectric power stations was considered with a possibility
of turbining and pumping in some of the power stations. This is translated into a discrete-time optimal
control problem which is solved numerically. The data used was real whichgave a realistic situation.
The developed model can be used to plan and to manage cascade power stations.
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