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Abstract

We show that the word problem for an amalgam [S1, S2;U,ω1, ω2]
of inverse semigroups may be undecidable even if we assume S1 and S2

(and therefore U) to have finite R-classes and ω1, ω2 to be computable
functions, interrupting a series of positive decidability results on the
subject. This is achieved by encoding into an appropriate amalgam
of inverse semigroups 2-counter machines with sufficient universality,
and relating the nature of certain Schützenberger graphs to sequences
of computations in the machine.

1 Introduction

If S1, S2 and U are semigroups (groups) such that U embeds into S1, S2

via two monomorphisms ω1, ω2 then [S1, S2; U, ω1, ω2] is called an amalgam
of semigroups (groups). The amalgamated free product S1 ∗U S2 associ-
ated with this amalgam in the category of semigroups (groups) is defined
by the usual universal diagram. The amalgam [S1, S2; U, ω1, ω2] is said to be
strongly embeddable in a semigroup (group) S if there exist injective homo-
morphisms φi : Si → S such that φ1|ω1(U) = φ2|ω2(U) and φ1(S1) ∩ φ2(S2) =
φ1(ω1(U)) = φ2(ω2(U)). It is well known that every amalgam of groups em-
beds in a group (and hence in the amalgamated free product of the group
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amalgam) [7]. However there are many examples showing that in the cat-
egory of semigroups not every amalgam of two semigroups is embeddable
into a semigroup, see [6, 12]. On the other hand, T.E. Hall [5] showed that
every amalgam of inverse semigroups (in the category of inverse semigroups)
embeds in an inverse semigroup, and so in the corresponding amalgamated
free product in the category of inverse semigroups. In general the class of
embeddable amalgams of infinite semigroups behaves badly from the algo-
rithmic point of view. In the paper [3], Birget, Margolis, and Meakin proved
that the amalgamated free product of two finitely presented semigroups with
solvable word problems and a nice common subsemigroup may have undecid-
able word problem. This result has been further strengthened by Sapir [12]
by showing that an amalgamated free product of finite semigroups may have
undecidable word problem. These results are in contrast to the situation for
amalgamated free products of groups where the word problem is decidable
(see [7]) assuming general nice conditions on the amalgam. The decidability
result is a consequence of a normal form theorem for the free product with
amalgamation of groups. A sort of normal form, but with a more geometric
flavor, can be defined in the case of lower bounded or finite amalgams of
inverse semigroups, see [2, 4]. In [2] Bennett showed that the word problem
for lower bounded amalgam of inverse semigroups has decidable word prob-
lem, this is achieved by giving an ordered way to build the Schützenberger
automata in such structure. Taking inspiration from Bennett’s paper, Cheru-
bini, Meakin and Piochi in [4], quite in contrast with Sapir’s result, showed
that the word problem for any amalgamated free product of finite inverse
semigroups is decidable in the category of inverse semigroups. As already
pointed out, this result has been achieved adapting nontrivially the work of
Bennett to the finite case to obtain a sort of geometric normal form of a
word w, called by the authors Core(w). This fact, along with other lifting
properties of Schützenberger automata for amalgams of finite inverse semi-
groups, gave rise to a series of papers [1, 10, 11] in the decidability direction.
Although these clues can push toward a decidability result for amalgams of
inverse semigroups with nice conditions, in this paper we give a result which
goes in the opposite direction:

Theorem 1. The word problem for an amalgam [S1, S2; U, ω1, ω2] of inverse
semigroups may be undecidable even if we assume S1 and S2 (and therefore
U) to have finite R-classes and ω1, ω2 to be computable functions.

This is achieved by encoding into an appropriate amalgam of inverse
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semigroups a 2-counter machine having the right property, but still general
enough to hold universality properties with respect to Turing machines. Then
we show how the nature of certain Schützenberger graphs relates to sequences
of computations in the machine.

2 Inverse semigroups

A semigroup S is said to be inverse if, for each element a ∈ S, there is
a unique element a−1 ∈ S such that a = aa−1a and a−1 = a−1aa−1. A
consequence of the definition is that idempotents commute in any inverse
semigroup. Moreover, a natural partial order can be defined on S by a ≤ b
if and only if a = eb for some idempotent e of S.

Inverse semigroups may be regarded as semigroups of partial one-to-one
transformations closed under inversion, so they arise very naturally in several
areas of mathematics. More recently, also computer scientists have been
paying attention to inverse semigroups for different reasons. First, the inverse
of an element in an inverse semigroup can be seen as the “undo” of the
action represented by the element. Second, algorithmic problems for inverse
semigroups have received considerable attention in the literature during the
past 30-35 years and in the cases where such problems are decidable, the
analysis of the complexity of these algorithms is a quite natural issue.

The natural geometric framework to deal with algorithmic problems in
an inverse semigroup generated by X is the class of inverse X-graphs. Write
X̃ = X ∪ X−1, where X−1 = {x−1 : x ∈ X} is a set of formal inverses of X.

We can extend ·−1 to an involution on X̃∗ through (x−1)−1 = x (x ∈ X) and

(uv)−1 = v−1u−1 (u, v ∈ X̃∗).
An inverse X-graph is a pair Γ = (V, E) where V = V (Γ) denotes the

vertex set and E = E(Γ) ⊆ V × X × V the edge set. We say that Γ is:

• involutive if (p, x, q) ∈ E ⇒ (q, x−1, p) ∈ E for all p, q ∈ V and x ∈ X̃;

• deterministic if (p, x, q), (p, x, r) ∈ E ⇒ q = r for all p, q, r ∈ V and

x ∈ X̃;

• connected if any two vertices can be connected through a path in Γ;

• inverse if it is involutive, deterministic and connected.
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An inverse X-automaton is a triple A = (α, Γ, β) where Γ is an inverse
X-graph and α, β ∈ V (Γ) are respectively the initial and final state of the
automaton.

The free inverse semigroup on a set X, denoted by FIS(X), is the quo-

tient of the free semigroup X̃+ by the least congruence ρ that makes the
resulting quotient semigroup inverse (Vagner congruence). Its elements may
be seen as finite birooted inverse X-trees usually known as Munn trees (see
[9]).

An inverse semigroup presentation is a formal expression of the form
Inv〈X | R〉, where R ⊆ X̃+ × X̃+. The presentation is finite if both X
and R are finite. The inverse semigroup defined by this presentation is the
quotient of X̃+ by the congruence τ generated by ρ∪R. We often represent
the elements of R as equalities of the form w1 = w2.

In the paper [13], Stephen has extended the notion of Munn tree introduc-

ing the Schützenberger automaton A(X, R; w) for a word w ∈ Ã+ relative
to the presentation Inv〈X | R〉 of S. The underlying graphs SΓ(X, R; w)
of these automata are the strongly connected components of the Cayley
graph of the presentation, which has S as vertex set and edges (s, x, s(xτ))

(s ∈ S, x ∈ X̃. More precisely, SΓ(X, R; w) is the restriction of this Cayley
graph to the Green R-class of wτ in S. It turns out that SΓ(X, R; w) is an
inverse X-graph and we can now define the Schützenberger automaton

A(X, T ; w) = ((ww−1)τ, SΓ(X, T ; w), wτ).

The importance of these automata stems from the fact that any two words
w, w′ ∈ X̃+, represent the same element of S if and only if A(X, R; w) =
A(X, R; w′), equivalent also to

w ∈ L(A(X, R; w′)) and w′ ∈ L(A(X, R; w)).

Hence Schützenberger automata are crucial for dealing with algorithmic
problems. In [13] it is also provided an iterative procedure for approximating
the Schützenberger automaton relative to a given presentation Inv〈X | R〉

of a word w ∈ X̃+ via two operations, R-expansions and foldings. Let A
be a finite inverse X-automaton. An R-expansion of A consists in adding a
nonexisting path p

r′

−→q to A (and the corresponding inverse edges) when-
ever p

r
−→q is a path in A but no path p

r′

−→q is present (r, r′) ∈ R ∪ R−1.
A folding consists in identifying two edges starting at the same vertex and
labeled by the same letter of the alphabet X̃. We say that A is R-closed if
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no R-expansion can be performed. The iterative sistematic application of R-
expansions (considering all possible instances simultaneously) and complete

folding to the Munn tree of a word w ∈ X̃+ (obtained itself as the complete
folding of the linear automaton → •

w
−→• →) produces a (possibly infinite)

sequence of finite inverse X-automata

A1 → A2 → . . . → Aj → . . .

whose colimit is A(X, R; w). This colimit procedure can in fact be applied
starting from any finite inverse X-automaton A, producing as its colimit
the R-closure of A, i.e., the smallest (with respect to language) R-closed
X-inverse automaton recognizing all words in L(A) (see [14]). Any finite
inverse X-automaton obtained from the Munn tree of w by R-expansions
and foldings is said to be a finite approximation of A(X, R; w).

We close this section by fixing some notation for amalgams to be preserved

through the whole paper. Let Si = X̃i

+
/τi be the inverse semigroup defined

by Inv〈Xi | Ri〉 for i = 1, 2 with X1 ∩ X2 = ∅. Let λi : Si → X̃i

+
be a map

such that, for each s ∈ Si, (λi(s))τi = s (i = 1, 2). Finally, let U be an inverse
semigroup and ωi : U → Si a monomorphism for i = 1, 2. The free product
with amalgamation S1 ∗U S2 associated to the amalgam [S1, S2; U, ω1, ω2] is
the inverse semigroup presented by

Inv〈X1 ∪ X2 | R1 ∪ R2 ∪ R3〉,

where R3 = {(λ1(ω1(u)), λ2(ω2(u))) | u ∈ U}.

3 Counter machines

Definition 1. A k-counter machine (for short, CM(k)) is a system

M = (Q, δ, ι, f)

where k is the number of tapes, Q is the nonempty finite set of internal states,
ι ∈ Q is the initial state, and f ∈ Q is the final (halting) state. The machine
M uses A = {⊥, a} as a tape alphabet (⊥ is a blank symbol), δ is a move
relation which is a subset of (Q×{1, . . . , k}×A×Q)∪(Q×{1, . . . , k}×D×Q)
where D = {−, 0, +} and the symbols −, 0, + denote respectively left-shift, no-
shift, and right-shift of a head of the machine. Tapes are one-way (rightward)
infinite. The leftmost squares of the tapes contain the blank symbol ⊥, and
all the other squares contain the symbol a.
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Each element of δ is thus a quadruple of one of the two forms:

(q, i, s, q′), (q, i, d, q′)

where q, q′ ∈ Q, i ∈ {1, . . . , k}, s ∈ A and d ∈ D. A quadruple of the
form (q, i, s, q′) means that if M is in the state q and the ith-head is reading
the symbol s then the machine changes its state into q′. This instruction is
used to test whether the content of a counter is zero (the head is reading the
symbol ⊥) or positive (the head is reading a square with symbol a). We call
this kind of instructions test instructions. On the other hand an instruction
(q, i, d, q′) means that if M is in the state q then:

• it shifts the ith-head one cell to the right if d = +,

• it shifts the ith-head one cell to the left if d = −,

• it keeps the ith-head at the same cell if d = 0,

and changes its state into q′. The evolution of a CM(k) M can be followed
through instantaneous descriptions of the machine:

Definition 2. An instantaneous description (for short, ID) of a CM(k)
M = (Q, δ, ι, f) is a (k +1)-tuple (q, n1, . . . , nk) ∈ Q×Nk. It represents that
M is in state q and the ith-head is in position ni for i = 1, . . . , k, where we
assume the position of the leftmost square of a tape to be 0. The transition
relation ⊢M is defined as follows:

(q, nl, . . . , ni−1, ni, ni+1 . . . , nk) ⊢M (q′, nl, . . . , ni−1, n
′
i, ni+1 . . . , nk)

holds if one of the following conditions is satisfied:

1. (q, i,⊥, q′) ∈ δ and ni = n′
i = 0.

2. (q, i, a, q′) ∈ δ and ni = n′
i > 0.

3. (q, i,−, q′) ∈ δ and ni − 1 = n′
i.

4. (q, i, 0, q′) ∈ δ and ni = n′
i.

5. (q, i, +, q′) ∈ δ and ni + 1 = n′
i.

We denote the reflexive and transitive closure of ⊢M by ⊢∗
M and the n-step

transition relation by ⊢n
M.
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Definition 3. Let M = (Q, δ, ι, f) be a CM(k). We say that the k-tuple
(n1, . . . , nk) ∈ Nk is accepted by M if

(ι, n1, . . . , nk) ⊢
∗
M (f, n′

1, . . . , n
′
k)

for some (n′
1, . . . , n

′
k) ∈ Nk.

Definition 4. Let M = (Q, δ, ι, f) be a CM(k) and αi = (pi, ji, xi, p
′
i) with

i ∈ {1, 2} be two distinct quadruples in δ. We say that α1, α2 overlap in
domain if

p1 = p2 ∧ (j1 6= j2 ∨ x1 = x2 ∨ x1 ∈ D ∨ x2 ∈ D).

We say that α1, α2 overlap in range if

p′1 = p′2 ∧ (i1 6= i2 ∨ x1 = x2 ∨ x1 ∈ D ∨ x2 ∈ D).

A quadruple α ∈ δ is called deterministic (reversible respectively) if there
is no other quadruple in δ which overlaps in domain (range) with α. The
machine M is called deterministic (reversible respectively) if every quadruple
in δ is deterministic (reversible). It is clear from the definitions that every
ID of a deterministic (reversible, respectively) CM(k) has at most one ID
that immediately follows (precedes) it in some computation. In this paper
we focalize on reversible deterministic 2-counter machines because of their
universality property. Indeed, the following Theorem holds:

Theorem 2. [8] For any deterministic Turing machine T there is a deter-
ministic reversible CM(2) M that simulates T .

Remark 1. A 2-counter machine M = (Q, δ, ι, f) can be sketched as a
labeled graph G (M) with set of vertices Q and labeled edges δ where we picture
(q1, i, h, q2) ∈ δ as an arrow from q1 to q2 labelled by i, h with i ∈ {1, 2} and
h ∈ {a,⊥, +, 0,−}. It is clear from the definition that if M is deterministic
then the only case where a vertex q of G (M) may have two outgoing edges is
when we have tests instructions (Fig. 1), i.e. (q, i, a, q1), (q, i,⊥, q2) are two
edges of G (M) with i ∈ {1, 2}. Dually, if M is reversible then the only case
where a vertex q of G (M) may have two ingoing edges is when they are of
the form (q1, i, a, q), (q2, i,⊥, q) for some i ∈ {1, 2} (Fig. 1).

For our purpose we are interested in deterministic 2-counter machines
with the following property.
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Figure 1: The deterministic case (on the left) and the reversible case (on the
right).

Definition 5 (alternating 2-counter machine). Let M = (Q, δ, ι, f) be a de-
terministic CM(2). We say that M is alternating if, for all pairs of different
instructions (q, i, h, q′), (q′, j, h′, q′′) ∈ δ, we have j = 3 − i.

We can prove the following proposition:

Proposition 1. Let M = (Q, δ, ι, f) be a deterministic reversible CM(2).
Then there is a deterministic reversible and alternating CM(2) M′ that sim-
ulates M.

Proof. What we actually do is to add some dummy states whenever there
occur two instructions (p, i, h, q), (q, i, x1, r1) ∈ δ. Formally M′ = (Q′, δ′, ι, f)
is obtained applying iteratively the following procedure. Whenever (p, i, h, q),
(q, i, x1, r1) ∈ δ, we substitute in δ all the instructions (q, i, xk, rk) ∈ δ (at
most two since M is deterministic) by the pairs of instructions

(q, 3 − i, 0, q(q,i,xk,rk)), (q(q,i,xk,rk), i, xk, rk)

where q(q,i,xk,rk) is the dummy state added. It is easy to see that the ob-
tained CM(2) M′ is an alternating deterministic and reversible CM(2) that
simulates M.

Note that we can always replace an instruction (p, i, 0, q) by the couple of
instructions (p, i, a, q), (p, i,⊥, q) and on doing so the CM(2) remains deter-
ministic, reversible and alternating. Therefore, we shall assume henceforth
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that our CM(2) have no instructions of type (p, i, 0, q). A CM(2) which is
deterministic, reversible, alternating and has no instructions of the form type
(p, i, 0, q) is said to be normalized. Taking in particular a universal Turing
machine in Theorem 2 and being undecidable whether or not a universal Tur-
ing machine can accept a given input, it follows that there exists a CM(2)
M0 such that it is undecidable whether or not a given (m, n) ∈ N2 is accepted
by M0. Therefore by Proposition 1 we have the following Corollary.

Corollary 1. There exists a normalized CM(2) M∗ such that it is undecid-
able whether or not a given (m, n) ∈ N2 is accepted by M∗.

4 Amalgam associated to a 2-counter machine

In this section we associate an amalgam [S1, S2; U ] of inverse semigroups to
a deterministic reversible alternating 2-counter machine

M = (Q, δ, ι, f)

The rough idea is depicted in Fig. 2: we encode the two tapes of the machine
M by two inverse semigroups S1, S2 and the control of M is handled through
a common inverse subsemigroup U .
We start by associating to M two inverse semigroups S1, S2, representing the
two tapes, called respectively the left tape inverse semigroup and the right
tape inverse semigroup of M.

Definition 6 (left and right tape inverse semigroups). Let M = (Q, δ, ι, f)
be a deterministic reversible alternating 2-counter machine. The left and
right tape inverse semigroups associated to M are the inverse semigroups Si

(i = 1, 2) presented by Inv〈Xi | Ti〉, where:

Xi = {⊥i, ai, ti} ∪ {qi : q ∈ Q},

Ti = T c
i ∪ T t

i ∪ T w
i ∪ T e

i ∪ T f
i

and:

• T c
i are the commuting relations, used to keep track of the instantaneous

description of the machine;

• T t
i are the test relations (corresponding to the test instructions);
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Figure 2: The rough idea of the encoding.

• T w
i are the writing relations (corresponding to instructions that move

the head of the ith tape to the right);

• T e
i are the erasing relations (corresponding to instructions that move

the head of the ith tape to the left);

• T f
i are the finiteness relations (designed to enforce some finiteness

properties on the semigroup Si).

More precisely the relations are defined in the following way:

(i) T d
i consists of all the relations of the form tix = xti, for x ∈ {ai, a

−1
i ,⊥i

,⊥−1
i } and i = 1, 2.

(ii) For each test instruction (p, 1, s, q) ∈ δ (s ∈ A), we add to T t
1 the

relation sp1 = st1q1t
−1
1 .

(iii) For each test instruction (p, 2, s, q) ∈ δ (s ∈ A), we add to T t
2 the

relation p2s = t2q2t
−1
2 s.
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(iv) For each right move instruction (p, 1, +, q) ∈ δ, we add to T w
1 the

relations sp1 = st1a1q1t
−1
1 (s ∈ A).

(v) For each right move instruction (p, 2, +, q) ∈ δ, we add to T w
2 the

relations p2s = t2q2a2t
−1
2 s (s ∈ A).

(vi) For each left move instruction (p, 1,−, q) ∈ δ, we add to T w
1 the rela-

tions sa1p1 = st1q1t
−1
1 (s ∈ A).

(vii) For each left move instruction (p, 2,−, q) ∈ δ, we add to T w
2 the rela-

tions p2a2s = t2q2t
−1
2 s (s ∈ A).

(viii) The set of relations T f
1 is formed by

f1x = xf1 = f1 (x ∈ X̃1),

q1x = f1 (q ∈ Q, x ∈ X̃1 \ {q
−1
1 }),

p−1
1 q1 = f1 (p, q ∈ Q distinct),

a1 ⊥
−1
1 =⊥−1

1 a1 = f1.

(ix) The set of relations T f
2 is formed by

f2x = xf2 = f2 (x ∈ X̃2),

xq2 = f2 (q ∈ Q, x ∈ X̃2 \ {q
−1
2 }),

p2q
−1
2 = f2 (p, q ∈ Q distinct),

a2 ⊥
−1
2 =⊥−1

2 a2 = f2.

Remark 2. Clearly fi is a zero element for the inverse semigroup Si. Note
also that in cases (iv)-(vii) we have added two relations for a single move to
force ai or ⊥i to be present on both sides of each relation. This is done for
reasons which will become clear when we shall introduce the inverse semigroup
U . Indeed, this way the embeddability of U into the tape inverse semigroups
is verified since we avoid any nontrivial relations having only generators of
U in one side. On the other hand, each test instruction gives birth to a single
relation (cases (ii)-(iii)).

We associate to M another inverse semigroup U which represents its
control unit:
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Definition 7 (core inverse semigroup). Let M = (Q, δ, ι, f) be a determin-
istic reversible alternating 2-counter machine. The core inverse semigroup of
M is the inverse semigroup U presented by Inv〈XU | TU〉, where XU = Q∪{t}
and the set of relations TU is formed by

fx = xf = f (x ∈ X̃U),
pq = f (p, q ∈ Q),
pq−1 = p−1q = f (p, q ∈ Q distinct).

Similarly to the previous cases, U has a zero f . With the notation of
Definitions 6 and 7 we can prove the following result:

Proposition 2. Let M be a deterministic reversible alternating 2-counter
machine and let S1, S2, U be respectively the left-right tape inverse semigroups
and the core inverse semigroup of M. The map ωi defined by

ωi(t) = ti, ωi(q) = qi (q ∈ Q)

can be extended to a monomorphism ωi : U →֒ Si for i = 1, 2.

Proof. Let u, v ∈ X̃U

+
and assume that ωi(u) = ωi(v) in Si. Suppose first

that ωi(u) is not the zero element of Si. Then we are forbidden to use
relations from T f

i to transform ωi(u) into ωi(v). Since all the other relations
of Ti involve ai or ⊥i, it follows that ωi(v) must actually equal ωi(u) in the
free inverse semigroup over XU , and so we definitely have u = v in U . Hence
we may assume that ωi(u) = fi in Si. But the unique relations in Ti where
neither ai nor ⊥i occur are precisely (up to subscript i) those of TU , hence
we may apply one of the latter relations to u (possibly after some Vagner
congruence relations) to get an occurrence of f . Thus u = f in U . Similarly,
also v = f in U and so u = v holds in U as required.

In view of Proposition 2 we can associate to a deterministic reversible
alternating 2-counter machine an amalgam:

Definition 8. Let M = (Q, δ, ι, f) be a deterministic reversible alternating
2-counter machine. The amalgam of inverse semigroups associated to M is
the 5-tuple [S1, S2; U, ω1, ω2] where S1, S2 are the left-right tape inverse semi-
groups of M, U is the core inverse semigroup of M and ωi : U →֒ Si are the
embeddings of Proposition 2. In this way the free product with amalgamation
of the amalgam [S1, S2; U, ω1, ω2] associated to M can be presented by

Inv〈X1 ∪ X2 | T1 ∪ T2 ∪ T3〉
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where
T3 = {(q1, q2) : q ∈ Q} ∪ {(t1, t2)}

The left-right tape inverse semigroups Si have the following important
property:

Proposition 3. Let M be a deterministic reversible alternating 2-counter
machine and let S1, S2 be respectively the left-right tape inverse semigroups
of M. Then the Green R-classes of Si are finite for i = 1, 2.

Proof. First of all, let M′ be the machine M with counters 1 and 2 reversed.
It is easy to check that t2 → t−1

1 , q2 → q1, a2 → a1, ⊥2→⊥1 induces an
isomorphism from S2 onto the dual of S ′

1, hence it suffices to show that the
Green R-classes of S1 are finite. This is of course equivalent to say that the
Schützenberger graphs of S1 are finite. To simplify notation, we drop all the
subscripts 1 in S1, T1, X1 and its letters.

Let w ∈ X̃+ and let (Ak)k be the Stephen’s sequence whose colimit is
A(X, T ; w). We can of course assume that w does not represent the zero
element of S, which is the single element of its R-class. Let m0 be the total
number of edges labeled by letters of Q in the Munn tree of w. We claim
that there are at most m0 expansions in the sequence (Ak)k featuring edges
labeled by elements of Q (Q-edges).

Indeed, let Q′ consist of all p ∈ Q such that there exists some instruction
(p, 1, . . . , . . .) ∈ δ, and let Q′′ consist of all q ∈ Q such that there exists some
instruction (. . . , 1, . . . , q) ∈ δ. Since M is alternating, we have Q′ ∩ Q′′ = ∅.
Moreover, since M is deterministic (respectively reversible), each element of
Q′ (respectively Q′′) can feature a unique expansion: this is true for relations
of type (ii), which are the unique outcome of a test instruction, and even if
two test instructions (p, 1, a, q), (p, 1,⊥, r) are present in δ, the corresponding
relations can never be used simultaneously for the same p-edge in view of
the forbidden relations a ⊥−1= f (we are assuming that w 6= f in S).
Similarly, the same Q-edge cannot feature two expansions involving relations
of type (iv) or (vi), where application of both relations arising from a single
instruction would ensure the appearance of a factor a ⊥−1. And of course,
the relations of (viii) are altogether forbidden since w 6= f in S.

Therefore there exists some m1 ∈ N such that all expansions and foldings
involving Q-edges in (Ak)k have taken place before we reach Am1 .
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Given Y ⊆ X, let σY : X̃∗ → Z be the homomorphism defined by

σY (x) =





1 if x ∈ Y
−1 if x ∈ Y −1

0 if x ∈ X̃ \ Ỹ

We claim that

If u labels a loop in some Ak, then σt(u) = 0. (1)

Indeed, this holds trivially for the Munn tree A1. Since σt(r) = σt(r
′) for

every (r, r′) ∈ T \ T f , this property is inherited through expansions in the
Stephen’s sequence (expansions featuring relations of T f are forbidden since
w 6= f in S). Finally, the property is inherited through foldings as well: if
A′ is obtained from A folding two edges of label x, then every loop in A′

can be lifted to a loop in A by successively inserting factors of the form
x−1x. Therefore (1) holds. We complete now the proof of our proposition by
showing that the T c-closure of Am1 is finite. Note that the T c-closure of Am1

is also its T -closure: we cannot use relations of T t ∪ T w ∪ T e by definition
of m1, and we cannot use relations of T f since u 6= f in S.

Let C1, . . . , Cℓ be the connected components of the automaton obtained
by removing all Q-edges from Am1 (the c-components). Clearly, performing
T c-expansions cannot merge c-components, neither can folding edges with

label in Ã ∪ t (and folding of Q-edges will not occur after Am1 . Therefore
we only need to prove that the T c-closure of a c-component Cj is finite for
j = 1, . . . , ℓ. In view of (1), it is enough to prove that

(P) If A is a finite inverse Ã ∪ t-automaton where every u ∈ Ã ∪ t
∗
labelling

a loop satisfies σt(u) = 0, then the T c-closure B of A is finite.

Let n = |V (A)| and suppose that there is a path i
v

−→j in A with |σt(v)| ≥ n.
We may assume that v is shortest possible. Since |v| ≥ n, the path i

v
−→j

must contain a loop, hence we may factor it as

i
v1−→i1

u
−→i1

v2−→j

with v = v1uv2 and u 6= 1. Now σt(u) = 0 yields σt(v1v2) = σt(u) and so v1v2

is a shorter alternative to u, a contradiction. Thus |σt(v)| < n whenever v
labels a path in A. We claim that also

|σt(v)| < n whenever v labels a path in B. (2)
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Indeed, it suffices to remark that this property is inherited through T c-
expansions and foldings, using the same argument in the proof of (1).

Assume that i1, . . . , ir are the vertices of B corresponding to the starting
points of edges labelled by a or ⊥ in A. We claim that if i

s
−→j is an edge of

B with s ∈ A, then there exists a path ik
v

−→i in B for some k ∈ {1, . . . , r}
and v ∈ t̃∗. Once again, it suffices to check that this property is inherited
through T c-expansions and foldings, a quite trivial observation. Since B is
inverse, we may in fact assume that v ∈ t∗ ∪ (t−1)∗. In view of (2), it follows
that there are only finitely many A-edges in B, and again by (2), the number
of t-edges must also be finite. Therefore (P) holds and the proposition is
proved.

5 Undecidability of the word problem for amal-

gams

In this section we prove that the word problem for an amalgam
[S1, S2; U, ω1, ω2] of inverse semigroups is undecidable even if we assume S1

and S2 (and therefore U) to have finite R-classes and ω1, ω2 to be com-
putable functions. The idea is to relate the computation of a deterministic
reversible alternating 2-counter machine with the Schützenberger graphs of
the associated amalgam.

We fix now a normalized CM(2) M = (Q, δ, ι, f) and consider the semi-
group S defined by the associated amalgam [S1, S2; U, ω1, ω2]. Write X =
X1 ∪ X2 and T = T1 ∪ T2 ∪ T3. Clearly f1 and f2 represent both the zero of
S. Let (m, n) ∈ N2 and write wm,n =⊥1 am

1 ι1a
n
2 ⊥2. Suppose that

(ι, m, n) = (q(0), m0, n0) ⊢M . . . ⊢M (q(k), mk, nk).

Since M is deterministic, there is at most one such sequence of a given length
starting with (ι, m, n). Write m′

k = max{m0, . . . , mk}, n′
k = max{n0, . . . , nk}.

We define a finite inverse X-automaton B
(k)
m,n as follows (describing only the

edges with positive label):

• The vertices are of the form ci,j and di,ℓ for i = 0, . . . , k and j =
0, . . . , m′

k + 1 and ℓ = 0, . . . , n′
k + 1.

• c0,0 is initial and d0,0 is final.
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Figure 3: The automaton B
(k)
m,n

• There exist edges ci−1,j

t1,t2
−−→ci,j for all i = 1, . . . , k and j = 0, . . . , m′

k+1.

• There exist edges di−1,ℓ

t1,t2
−−→di,ℓ for all i = 1, . . . , k and ℓ = 0, . . . , n′

k+1.

• There exist edges ci,0
⊥1−→ci,1 for all i = 0, . . . , k.

• There exist edges ci,j
a1−→ci,j+1 for all i = 0, . . . , k and j = 1, . . . , m′

k.

• There exist edges di,1
⊥2−→di,0 for all i = 0, . . . , k.

• There exist edges di,j+1
a2−→di,j for all i = 0, . . . , k and j = 1, . . . , n′

k.

• There exist edges ci,mi+1

q
(i)
1 ,q

(i)
2−−−→di,ni+1 for all i = 0, . . . , k.

Lemma 1. Let M be a normalized CM(2) and let m, n, k ∈ N. Then B(k)
m,n

is a finite approximation of A(X, T ; wm,n).

Proof. We use induction on k. Clearly, B
(0)
m,n is the Munn tree of wm,n with

the edge c0,m+1
ι2−→d0,n+1 adjoined. Since ι1 = ι2 is a relation of T , the lemma

holds for k = 0.
Assume now that k > 0 and B

(k−1)
m,n is a finite approximation of the

Schützenberger automaton A(X, T ; wm,n). Assume that

(ι, m, n) ⊢k−1
M (q(k−1), mk−1, nk−1) ⊢M (q(k), mk, nk).
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Then (q(k−1), i, x, q(k)) ∈ δ for some i ∈ {1, 2} (assume i = 1 for simplicity,
the case i = 2 being analogous) and

x =





a if mk = mk−1 > 0
⊥ if mk = mk−1 = 0
+ if mk = mk−1 + 1
− if mk = mk−1 − 1

The instruction (q(k−1), 1, x, q(k)) produces a relation syq
(k−1)
1 = st1zq

(k)
1 t−1

1

in T t
1 ∪ T w

1 ∪ T e
1 with y = a1 if x = − and y = 1 otherwise, and z = a1

if x = + and z = 1 otherwise. Using s =⊥1 or a1 according to the values
of mk−1 and y, we can now use this relation to perform an expansion of the
path

ck−1,mk−1−|y|

syq
(k−1)
1−−−→dk−1,nk−1+1

to get after subsequent folding the edges

ck,mk+1

q
(k)
1−→dk,nk+1, ck−1,mk+ε

t1−→ck,mk+ε

for ε = 0 or 1, dk−1,nk+1
t1−→dk,nk+1 and possibly also an edge of the form

ck,mk

a1−→ck,mk+1. It is straightforward to check that, applying now the rela-

tions from T c
1 ∪T c

2 , followed by t1 = t2 and q
(k)
1 = q

(k)
2 , we get precisely B

(k)
m,n.

Note that if mk = m′
k−1 + 1, we get an edge ck,m′

k−1+1
a1−→ck,m′

k
+1 through

the expansion, and the application of the relations from T c
1 yields indeed the

required extra column of B
(k)
m,n with respect to B

(k−1)
m,n . Therefore B

(k)
m,n is a

finite approximation of A(X, T ; wm,n) and the lemma is proved.

It follows from the definition that B
(k−1)
m,n embeds in B

(k)
m,n for every k ≥ 1.

Therefore we can define Bm,n as the colimit of the sequence (B(k)
m,n)k, where all

the B
(k)
m,n embed. This colimit may be finite or infinite, depending on whether

or not the computation in M halts when we start with the configuration
(ι, m, n).

Let C denote the finite complete inverse X-automaton with a single ver-
tex.

Proposition 4. Let M be a normalized CM(2) and let m, n ∈ N. Then

A(X, T ; wm,n) =

{
C if (m, n) is accepted by M
Bm,n otherwise
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Proof. First of all, we claim that Bm,n is closed under all relations of T \

(T f
1 ∪ T f

2 ). This is immediate for all the relations in T c
1 ∪ T c

2 ∪ T3. Since
M is deterministic, reversible and alternating, it is also true for relations
in T t

i ∪ T w
i ∪ T e

i : no Q-edge can be involved in more than one expansion.
For instance, reversibility prevents the appearance in line i − 1 of some new
Q-edge obtained through an expansion of a Q-edge in line i.

Now, if (m, n) is accepted by M, then f labels some edge in B
(k)
m,n for some

k and so the relations of T f
1 ∪T f

2 eventually collapse B
(k)
m,n into C. Since B

(k)
m,n

is a finite approximation of A(X, T ; wm,n), it follows that A(X, T ; wm,n) = C.
Finally, assume that (m, n) is not accepted by M. It is straightforward

to check that in this case Bm,n must be also closed under T f
1 ∪ T f

2 , hence

Bm,n is T -closed. Since B
(k)
m,n is a finite approximation of A(X, T ; wm,n), we

have L(B
(k)
m,n) ⊆ L(A(X, T ; wm,n)) for every k. Hence

L(Bm,n) =
⋃

k≥0

L(B(k)
m,n) ⊆ L(A(X, T ; wm,n)).

Since A(X, T ; wm,n) is the smallest T -closed inverse X-automaton recogniz-
ing wm,n, it follows that A(X, T ; wm,n) = Bm,n as claimed.

Since C is the Schützenberger automaton of the zero of S, we immediately
get:

Theorem 3. Let M be a normalized CM(2) and let m, n ∈ N. Then wm,n =
0 in the associated amalgam [S1, S2; U, ω1, ω2] if and only if (m, n) is accepted
by M.

We can now prove our main result:

Theorem 4. The word problem for an amalgam [S1, S2; U, ω1, ω2] of inverse
semigroups may be undecidable even if we assume S1 and S2 (and therefore
U) to have finite R-classes and ω1, ω2 to be computable functions.

Proof. If the word problem would be decidable in these circumstances, then,
in view of Proposition 3 and Theorem 3, we could decide whether or not a
normalized CM(2) accepts a given (m, n) ∈ N2. And the latter is undecid-
able, even when we consider the single CM(2) M∗ of Corollary 1.

As a consequence of Theorem 3 we have also the following:
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Theorem 5. Checking finiteness for a D-class of an amalgam [S1, S2; U, ω1, ω2]
of inverse semigroups may be undecidable even if we assume S1 and S2 (and
therefore U) to have finite D-classes.

Proof. Clearly, checking the finiteness of a D-class of a word w in S1 ∗U

S2 is equivalent to check whether or not the corresponding Schützenberger
automaton is finite. Consider again the CM(2) M∗ of Corollary 1 and the
associated amalgam. By Proposition 4, if A(X, T ; wm,n) would be infinite,
then (m, n) is not accepted by M∗. On the other hand, if A(X, T ; wm,n)
would be finite, we could use the Stephen’s sequence to actually compute
it [13] and decide whether or not M∗ accepts (m, n). Therefore we cannot
decide whether or not A(X, T ; wm,n) is finite.
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