A BOTTOM-UP MINIMIZATION DFA ALGORITHM AND APPLICATIONS

JORGE ALMEIDA AND MARC ZEITOUN

ABSTRACT. We establish linear-time reductions between the minitigreof a deterministic finite automaton (DFA)
and the conjunction of three subproblems: the minimizatba strongly connected DFA, the isomorphism problem
for a set of strongly connected minimized DFAs, and the mirétion of a connected DFA consisting in two strongly
connected components, both of which are minimized. We aftyidyprocedure to minimize, in linear time, automata
whose nontrivial strongly connected components are cycles

1. INTRODUCTION

Finite automata have been successfully used in numerods fifcomputer science such as pattern matching,
compilation, natural language processing, databasegmsyerification. They can represent a broad range of ob-
jects, from dictionaries to models of transition systemeprties expressed in high-level description formalisms
must also often be “compiled” into automata before algonhcan be applied. For real-world applications, such
automata may have a huge number of states, and reducingstbeioften proves to be crucial for subsequent
treatment. Finite automata on finite words have a minimalpo&al representation with respect to the language
they determine. This paper focuses on the process to cortipsitminimal representation, calledinimization

Under the usual assumption that letters and states areseypiegl by integers that can be comparedn)-
time, the best-known algorithm for minimizing a determiitidinite automaton (DFA) is Hopcroft's [11], with
a O(¢mlogm) worst case time complexity wheikis the number of letters anch the number of states (see
[10,113,38] for complexity analyses). Brzozowski's algbrit |5] works theoretically in exponential time, but has
in practice a surprisingly good behavior (see [7]).

Minimization algorithms usually start from the equivalerseparating final and non-final states, and refine it
until stabilization occurs. In this paper, starting frone #iquality relation, we merge states which are detected to
be equivalent. We reduce the minimization problem of a DFEAubproblems involving its strongly connected
components on one hand, and its directed acyclic structutheother hand. More precisely, for any functipn
such thatf(n)/n is nondecreasing, we show that the minimization problembzsolved in timeO(f(d + ¢)),
whered is the number of transitions, if and only if three subprolddrave the same worst case complexity. These
subproblems are (1) the minimization of a strongly conrg&tEA (2) the computation of isomorphisms between
strongly connected, minimized DFAs, and (3) the minimizatdf connected DFAs having exactly two strongly
connected components, both of which are already minimiZée. reduction is presented by a generic algorithm
using subroutines solving the subproblems.

Using pattern matching technigues, we obtain as an apjolicatO(d + ¢)-time minimization algorithm for
automata whose non-trivial strongly connected comporaetsycles (this particular application was announced,
without proof, in [2]). This extends Revuz’s minimizatiolgarithm [14] for acyclic DFAs, which was designed
to compress dictionaries and worksi{d + ¢)-time with O(m + £) memory. Other algorithms for minimizing
acyclic DFAs in linear timel[17] or to maintain a minimal DFA&er adjunction of one word to its language have
also been developed, seq, [€].

2. AUTOMATA AND DATA STRUCTURES

We work on afinite alphabet = {0, ...,¢—1} with £ > 2 letters. We denote by* the free monoid generated
by A, and by|z| the length of a word: € A*. We assume that is known, and can be used as index set for arrays.
In Sectior[#, we also use the usual total orderyviewed as a set of integers. deterministic finite automaton
(DFA)is atupleA = (A, S, F, 6, so) whereA is the alphabet$ is a finite set of stated;’ C S is the set of final

Date: November 14, 2006.

Key words and phrasesFinite automaton, minimization, algorithms, formal laages.

2000 MSC68Q45.

JA & MZ: work partly supported by the Essoaproject Egide-Grices 11113YMutomata, profinite semigroups and symbolic dynamics.

JA: work partly supported by the Centro de Matematica da &hsidade do Porto, financed by FCT through the programmesTPa@
POSI, with Portuguese and European Community structuralsu

1

statesy : S x A — S'is a partial mapping called the transition function, agds the initial state. We let, = ||
be the number of stateg,= |§| be the number of transitions, and= d + ¢.

The state’(s, a), when it exists, is also writtes - a. We represent the transitiq, a, s - a) by s = s - a.

We use the wore@dgeto mean a transition. An automaton defines a directed gragfhwertex setS and edge
set{(s,s-a)| s € S,a € A}. A strongly connected component (sof)A is a strongly connected component of
this graph, and is strongly connected so is its associated graph. We retain the terminology ff §strongly
connected component (saf)a graph is an equivalence class for the mutual reachabgliation. In particular, a
vertexu such that the only path fromato u is empty is an scc, which is said to bevial.

Given a state € S, the language recognized byfrom s is the setl 4 (s) C A* of words labeling a path from
s to some final state. Two statest are(Nerode) equivalenit L 4(s) = L4 (t). We write[s] for the class ok in
this equivalence. Thminimizationprocedure consists in computing this equivalence relafiberging the states
of each class into a single state produces the minimal adtommacognizing the same language from the initial
state, see [12]. A DFA iminimal or minimized if no two distinct states are equivalent. We are interesidtle
complexity of minimization in terms of the parametérsn, d andn.

We assume that the DFA is accessible and co-accessible, that is, all states achabk froms, and can
reach a final state. Other states are useless regardingdbptad language, and removing them can be done in
O(d + m)-time. Further, the initial state is irrelevant for the coutgition of equivalent states (it just serves for
determining the initial state of the minimized DFA). Fordhéason, we drop the initial state, keeping in mind that
we started from an accessible automaton, so that wehaved + 1 andO(d + m) = O(d).

For a clas€® of DFAs, we study the following problem.

C-MINIMIZATION Minimizing a DFA of the clasg.

Input: A finite deterministic automaton froi.
Output: Its minimal automaton given by the equivalence relationtates.

The automaton can be given by a matriX6£){_})%*4 whose(s, a) entry iss-a if itis defined, or _ otherwise.
Using lists yields a smaller representation: for each S, we are given a list of the forrtuy, s1, ..., ak, sk),
with a; € A ands; € S, describing all outgoing transitions—- s;. (These lists can be computed from the matrix
in O(¢m)-time.) Alist (a1, s1,...,ax, si) of (A.5)* is sortedif a1 < az < --- < ai. We write Oufs) for the
sorted list of outgoing transitions efe S.

We first sort outgoing transitions. Recall that, given a éirsiétX, one can sort a sequengeg, ..., u; € X*in
time O(|uy - - - ug| + | X|) using radix-sort[1].

Lemma 2.1. Let A be an accessible classical DFA (with an initial state). Givior each state ofl, a list of all
its outgoing transitions, one can computeliin)-time all sorted lists of outgoing transitions of statesAof

Proof. Foreach list Outs) = (as, s1, - . ., ak, sk), first build the transition list(s, a1, 1), . - ., (s, ag, sx)). Since
A is accessible, we hawe < d + 1, so this step take®(d + m) = O(d)-time. One then uses radix sort on
the list ofall such transitions to order them lexicographically accogdmthe first two components, which costs
O(d +m) + O(d + ¢) = O(n). In the sorted list obtained, the transitiofss a, t) with the same state are
consecutive and sorted according to the second componergmains to scan this list to break it into pieces
corresponding to the same stateto build each of the sorted lists. Altogether, this reqaitéd + ¢) = O(n)-
time. O
The complexityO(d) is the best possible for minimization algorithms, since naeds to visit all transitions.
Note thatO(n) = O(d) if each letter ofA labels at least one transition. Therefore, from Lenim& 2nk can
start with a sorted list representation for DFAs. We assumaelists are doubly linked: one can access each of the
predecessors of a state, individually(j1)-time.

3. AREDUCTION FOR THE MINIMIZATION PROBLEM

3.1. Minimizing acyclic DFAs. Our algorithm is inspired by Revuz’s algorithm [14] for atigautomata, which
we briefly recall. We associate with each statsuch that Outs) = (a1, s1,...,ax, sk) the tupler(s) =
(esya1,[s1]y ..., ak, [sk]), wheree;, = 1if s € F ande = 0 otherwise. The algorithm first computes the
heightof each state, which is the length of the longest path to a §itsaé. Note that equivalent states must have
the same height. At stage= 0, 1,..., up to the maximal height/, the algorithm merges states of height
Since[s] = [t] if and only if 7(s) = 7(t), radix sorting the words(s) for states of height yields a list with equal
words at consecutive places, which allows identifying ealgint states of heiglt. A minor complication is that
usingH times radix sort produces a complexity@fd + H¢). This motivates the following statement, appearing
in [14, Theorem 2 and page 187].

Lemma3.1. GivenasetX anduy,...,u; € X*, one can compute in tim@(|u; - - - u|) the equality classes on
(u1,...,ux), using an already allocated O-initializel -indexed array which is reset after the computation.

Proof. Let K = |u; - - - ux|. We donotwant X, which may be huge compared#if many letters are unused, to
appear in the complexity bound. In one scan, one rewritesdfjgence, . . ., ux using onlyconsecutiv@ositive
integer letters, thus obtaining word$, . . ., uj,, as follows. We store the encodingofe X in T[], whereT is
the O-initialized array. We replace the occurrence of eaeimsed letter: by its encodindl’[x] if « has already
been encodedI{[z] # 0). Otherwise, we first increment the number of distinct let@lready encountered, we
assign the result t@'[z], and we push: on a stack (which therefore contains the nonzero entrieg)ofThis
rewriting requiresD(K) operations. The size of the alphabet of consecutive insagér(K), so applying radix-
sort tou ..., uj, determines equality classes in tirf0g¢ K') (sinceu; = w if and only if u; = u;). Finally, using
the stack, one switches back to 0 all nonzero entriés inftime O(K). O

Using the algorithm of Lemnia33.1 instead of radix sort diseftt minimize acyclic automata yields the desired
O(n) time complexity:O(¢) time is needed to allocate the O-indexed array, Ahe O(d + m) = O(d) time to
determine equality classes.

3.2. Thebottom-up minimization algorithm.

3.2.1. Description. The same scheme applied to arbitrary DFAs brings additidiffdulties. First, the notion of
height has to be modified, since there may be paths of ampigagth to a final state. We define theightof

a state by considering each scc as a single state. This esghat one first compute the directed acyclic graph
(DAG) of scc’s of the automaton, which can be donéifi)-time with Tarjan’s algorithm([16./8]. We maintain
this DAG along the algorithm. (Expressions suclaasscc is below another secefer to the partial order induced
by this DAG.) In the rest of the paper, we identify each sccvilis set of states. We use an array of size
storing, for each state the number of its scc. Conversely for each scc, we recolfisitsf states. We also use the
same data structures for all equivalence relations, to hagess irO(1)-time to the equivalence class of a state
computed so far. To define heights, we assign weight 0 to ae bdlpnging to an scc and weight 1 to all other
edges. Thaveightof a path is the sum of the weights of all edges in the path. figightof a state is then the
maximal weight of some path to a final state, which is well dedinBy definition, all states of a given scc have
the same height.

One could compute the height along one traversal, as for a,AGhe problem is that two states at different
heights may well be equivalent. For instance, consider tibenaatons; = s, — so with both sy, s final. The
height ofs; is 1 and the height of; is 0. Howevers; is equivalent tay. We say that; can be wrapped onto the
scc ofsg. In this example, our algorithm shall wrap onto the cycles, (identifying so ands;). However, doing
so changes the height ef (from 1 to 0) and more generally, wrapping states may deerdasheight of states
that lie above them. The other difficulty is that both comfiotes are linked: the height is needed to determine
which state to wrap at some point in the algorithm, and one r¢®ds to modify the heights after a wrapping.

To avoid recomputing the heights several times, we do notpeaenthem beforehand, and we maintain infor-
mation to determine on the fly, before stagewhich states must be treated at this stage. Nonethelebglfo
understanding the computation on-the-fly, we give a desorippf how we would precompute the height of all
states inO(n)-time: one assigns massto each state (stored in its data structure). A state witlatgoing 1-
weighted edges has initially mags The mass of an scc is the maximal mass of its states. The rhasstate
decreases during the execution of the algorithm. We reaar@dich scc its number of states and its number of
states of mass 0. Initially, these two numbers are equalfonigninimal scc (in the DAG of scc). Each time we
decrease the mass of a state, we check whether it reache® nibss, we increment the number of states having
mass 0 for its scc. If this number reaches the total numbetatés in the scc, then the scc itself reaches mass 0,
and we add it to a list of scc of mass 0.

Initially, we assign height 0 to all states in scc of mass Gttar heights will be computed later on, at different
steps of the algorithm. When states of height less thanl have been treated, we need to compute the set of
states of height. These states are obtained, at that stage, as those bejéagirc’s of mass 0. Then, these states
are not considered anymore for the height computation (weve the corresponding scc from the list of scc’s of
mass 0). Moreover, for each transitioA> s ending in a state to which we just assigned height we decrease
the mass of stateby 1, increase the count of mass 0 states of its seeghiches mass 0, and put its scc in the
list of scc’s of mass 0 if this count reaches its number oestaDbserve that each transition is considered at most
once, so that the overall time complexity, for the height paation, isO(d).

An outline of a generic minimization algorithm is describiedAlgorithm . It uses 3 subroutines, IM-
IMIZESCC, MERGHSOMORPHICSCC and WAP, assumed to be given, and described below. It computes a
sequence of automaté_; = A, Ao, Ay, ..., Ax such thatdy is the minimal automaton od. Stageh € [0, H]

3

merges equivalent states of heighof A;,_; to produceA;. The automatom;, is obtained at the end of the
h!" iteration of the main loop of Algorithrll1, after that all mang of states of height at moatwill have been
performed.

The variableX always holds (states of) a subset of the set of scc’s of thregtautomaton, for which merging
should occur at lines 4-6. It is initialized, at line 2, withscc's of mass 0 (precomputed by Tarjan’s algorithm).
At line 7, it receives the candidate states for merging atiiad iteration, that is, the part of;,_, consisting of
states of height, at that stage.

Let us explain the calls of lines 4-7. The first two of them amigrge states ak. The call of line 6 possibly
merges states of the part aff,_; not yet treated (cf. Figd1) with states &f. The call MiNIMIZE SCC(X)

Algorithm 1 Minimization algorithm (outline)

1: procedure MINIMIZE (AutomatonA)
2: X < ZEROHEIGHT(A)

3 while X # () do

4 MINIMIZE SCC(X)

5: MERGH SOMORPHICSCC(X)
6: WRAP(A, X)
7

8

9:

X «— NEXTHEIGHT(A, X)
end while
end procedure

minimizes separately each s€g, . . ., C), of X, taking also into account the transitions going to an scovee{ .

Let C be an scc ofX. Some states af’ may have transitions to scc’s bel@win the DAG of scc. However, since
the algorithm proceeds bottom-up, the part of the automiag¢bow C' is already minimized whe@' is considered.
Therefore, one can first use a minimization algorithmcdas if it were an automaton by itself, not considering
the transitions falling below’. This gives us a patrtition into equivalence classesWe then refine this partition
according to the equivalenee; induced by the transitions going bela: two states are-s-equivalent if and
only if they reach the same states of the part already tréatdte algorithm, by the same transition labels. The
call MiINIMIZE SCC(X) computes the equivalenee, N ~,. To refine~;, once computed, by, we associate

{Part ofAj_1 notyet treate}j

X: NGCS)

States of height h — 1in Ap_1

FIGURE 1. AutomatonA;_; during the algorithm

to a states € C with transitionss 2% s; (1 < i < k) falling belowC the word(es, [s]1, a1, [s1]2, - - - ; ak, [Sk]2)-

By Lemma 3L, one can sort these words in tihgl;) whered; is the number of such transitions, assuming that
an array of sizenax(2, m, ¢) has been allocated at the beginning of the algorithm, oncalfoThe overall cost

is thereforeO(d 4+ max(2,m, ¢)) = O(n).

LetC1,...,C, be the scc’s ofX after line 4. The call MRGH SOMORPHICSCC(X) merges all scc’s inX
that are isomorphic, and” gets modified accordingly: it then contains a set of repreedimes{C; ,...,C; },

j < p, of isomorphic scc’s (so that we make coarser the equivalencstates computed so far). As in the previous
case, we then have to refine this partition according to #iesttions falling belowX .

The call WRAP(A, X') occurs whenX is already minimized. It consists in possibly identifyirtgtes of scc’s
that are locatedboveone of theC;, to an already minimized scc of, as explained earlier in the example
51 5 so — so. Note that if some stateaboveX in the DAG of scc’s is equivalent to some statedify, then all
states belonging to scc's betweeand X are also equivalent to some stateCif) . The procedure WAP(A, X)
precisely merges these sccXa Again, to validate that two states are equivalent, we hawake into account
transitions falling belowX .

The last step in each iteration of the main loop, line 7, isupdateX «— NEXTHEIGHT(A, X) computing the
set of scc’s to consider during the next iteration. The hiedfistates, as defined above, is not invariant through the
call WRAP(A, X): a state may have its height lowered. For that reason, watepathe call NXTHEIGHT(A, X)
the weights of edges as follows: all edges leading to a sfale are assigned weight O (instead of 1 previously).
The weights of all other edges remain unchanged. We then gtampnly at this point, the mass of each state
having an outgoing edge whose weight has been affected. t&tes seaching mass 0 are put in a list. They are
exactly those we need for the next iteration, and are retubiyethe call to NEXTHEIGHT. Since the weight of
each edge is modified at most once, the overall cost of al t@lNEXTHEIGHT is O(d).

3.2.2. Correctness.We prove that Algorithnfill indeed computes the minimal autmmaFirst, we only identify

equivalent states, since merging is only done by the mirdtion subroutines of lines 4—6 assumed to be correct.
We have to prove that, whenever two states are equivaletaie merged in the last automatég . Arguing

by contradiction, assume that two equivalent state®f A have not been merged and suppose that the(patiy

is minimal in the DAG of scc’s for this property. That is sifis belows, ¢’ is belowt, ands’, ¢’ are equivalent and

distinct, thens = s’ andt = ¢’. Statess and¢ cannot occur in the same value of the variaKleince, otherwise,

they would be merged at line 4 if they belong to the same scat tine 5 otherwise. Suppose thais the first

to occur in the value ofX. Then, two cases may arise. One case is thatwrapped to another state at line 6

while s belongs toX. This is impossible since, as has been previously minimized (lines 4 and 5), no state of

X \ {s} is equivalent tos. It remains the case wheset occur in X in two different iterations, i; of the main

loop, withis < i;. Observe that, for every lettersuchs - a falls belows or t - o falls belowt, sinces - a andt - a

are equivalent, by the minimality of the pdis, t), they will be merged by the algorithm befoseappears in the

value of X. Since the remaining edges do not intervene in determinimgna/ will appear inX, it follows thats

andt will be found in the same value df, a case which has already been excluded. This proves thatitim[l

is correct.

3.2.3. Reductions.We have isolated in our algorithm three subroutines to mexgévalent states in three dif-
ferent situations: (1)ninimizing a strongly connected componei) merging isomorphic strongly connected
componentsand (3)wrapping We formulate these subproblems for a cl&ss strongly connected DFAs.

C-MScA Minimizing strongly connected automata ©f

Input: A strongly connected DFA belonging @
Output: Its minimal automaton given by the equivalence relationtates.

C-Mmscc Merging minimized DFAs fron€ which are strongly connected.

Input: A set of minimized and strongly connected DF@%;)1<;<m, Of C.

Output: (a) A partition|J,. ; I; of [1,m] such that4,,, A, are isomorphic if and only i, ¢ are in the samé;.
(b) A representative of each clasé&:) For each element in a class different from the chosen reptaee, an
isomorphism to the representative.

C-wRAPPINGWrapping on a minimized scc @f.

Input: A DFA consisting of a minimized scé, from € of height 0 and an scd; from € of height 1.
Output: Its minimal DFA given by the equivalence relation on states.

For a clas® of DFAs, letdfa(C) be the class of DFAs whose scc’s areCifior some choice of final states.

If there is anO(f (n))-time algorithm fordfa(C)-MINIMIZATION , thenC-MSCA, C-MMSCC andC-WRAPPING
also have a(f(n))-time solution. This is clear fat-msca andC-wRAPPINGWhich are the minimization prob-
lem on particular instances. FBrMMSCC, assume we are given several strongly connected nonHantamata
(Ai)1<i<m from €. Leta, b ¢ A be two distinct letters. Choose a statén eachA; and consider the DFA built
by adding states, . .., s,, to the disjoint union of the automatg;, where thes;’s are new states, and transitions
5i = si41 ands; 5, t; (see Fig[R). The disjoint union of automata = (A4;,S;, F;,d;), 1 < i < n, is the
automatord = (|J A;, 14 S, 1t Fi, 1) 6;) (whose state set is the disjoint unighS;). Obviously,A is in dfa(@)

So a S1 q
—»0 o —>»
b b

FIGURE 2. Merging minimal sc-automata
5

and hagO(D) transitions, wheré is the total number of transitions of all;’s. Minimizing A exactly merges
thoseA,; that are isomorphic, since th&;’s are minimal.

3.2.4. Complexity. We have shown in Sectidn3:P.3 thatlfa(C)-MINIMIZATION can be solved i®(f(n)) time,
then so car2-MMscc, C-MSCA, andC-WRAPPING

Conversely, we use the algorithm of Section3.2.1, whiclsaalbroutines solving these subproblems in order
to solvedfa(@)-MINIMIZATION . Assume that the subroutines runin ti@éf (n)), wheref (z+y) > f(z)+ f(y)
(whichis the casee.qg, if f(n)/nis nondecreasing). The time complexity for minimizing thicamaton is the sum
of (1) the complexity of all calls to the three subroutinéy the overhead to compute heights, and (3) the overhead
to refine relations€.g, to compute~; N ~3). For (1), each subroutine is called several times, on Siopaata
of sizesny,...,n,, where)_ n, = n, yielding an overall complexity of (n1) + --- + f(n,) = O(f(n)) by
the assumption otf. We have seen in Secti@ 3P.1 that the complexity for (2)(8) = O(f(n)). Finally,
for (3), note that the refinements occur at most three timesawh state (after the calls of lines 6, 4 and 5). The
equivalence is computed by storing the clessiss[s] of states and the listSt at es[¢] of states of class,
using arrays. Merging two statesand¢ amounts to removing, say, from St at es[O ass[s]] , appending
itto St at es[d ass|[¢]] , and changing the value @ ass| s] . These operations can be donelfl)-time
(Implementing the removal i®(1)-time is done by maintaining a pointer for each state its position in the list
St at es[O ass[s]] .) Hence the overall complexity 8(f(n)). We can state our main result.

Theorem 3.2. Let@ be a class of strongly connected DFAs containing the tribiBAs (one state, no edge) and
let f be a function such thaf(n)/n is nondecreasing. Then, tla(C)-MINIMIZATION problem is solvable in
O(f(n))-time if and only ife-MMscc, €-MSCA, andC-WRAPPINGare solvable inD(f(n))-time.

We have to include trivial components@for the wrapping, since we need to be able to wrap a single stat
a (non-trivial) scc. Note that if we take f@the class of trivial scc’s, we reobtain the linear complekar the
minimization of acyclic automata_[14]. In the next sectioa apply Theorefi 312 to a larger subclass of automata
which one can still minimize in timé&(n).

4. MINIMIZING DISJOINT-CYCLE AUTOMATA

A disjoint-cycle automatois an automaton such that all strongly connected compoieatgossibly trivial)
cycles. In other words, two cycles on distinct sets of vegishare no vertices. One can detect whether an
automaton is disjoint-cycle, by checking for each statédahenost one outgoing edge remains in the same strongly
connected component.

We show in this section that themscc, MSCA andwWRAPPING problems for strongly connected components
of this class are solvable i@(n)-time (Lemma$§4]1213 ad #.4 below). In view of Theofem thia, will entail
the following result.

Theorem 4.1. One can minimize a disjoint-cycle automatonddetters withd transitions in timeO(d + /).

The fact that scc’s of a disjoint-cycle automaton are cyeléswvs us to work on words instead of working
directly on automata. Recall that the conjugates of a word - b, (whereb; are letters) are the words of the form
bibiy1---bp-b1---b;—1. Acircular word is a conjugation class. Slightly abusingatmn, we represent a circular
word by any word of its class.

We can associate to the cyclg *% s; 2% .- 25 s, the circular word(eg, ao)(e1,a1) - - - (€x, ax) Where
e; = 1if s; is final ands; = 0 otherwise. Conversely, from such a circular word, one caowver a unigue cycle
(up to the name of the states).

Lemma4.2. MscA is solvable in linear time for disjoint-cycle automata.

Proof. Recall that the primitive root of a word is the shortest word such thaty = r* for somek. It is easy to
see that minimizing a cycle, — s; — --- %, s, amounts to finding a primitive root of its associated circula
word: this primitive root is itself a circular word, and thgate associated to it is the minimal automaton of the
original cycle. It is classical that this computation carpeeformed in linear time (seeg.[d] for instance). O

Lemma4.3. mMsccis solvable in linear time for disjoint-cycle automata.

Proof. The problem can be formulated as follows in terms of circuards: we are givert circular words and
we want to merge them into equality classes in linear timeh weéspect to the sum of their lengths. For that
purpose, we compute for each circular word its associatediay word, that is its smallest representant, in the
lexicographic order. (This is the place where we use thetfadtthe alphabet is ordered.) Since we assumed that
comparisons take linear time, the computation of the aasettiLyndon word can be performed in linear time for

6

each word, in terms of its lengthl[4.115]. It remains to grooplasses circular words having the same Lyndon
word, which can be done using Lemfnal3.1. O

Lemma 4.4. WRAPPINGIs solvable in linear time for disjoint-cycle automata.

Proof. Let A be an automaton having a single minimal scc in the DAG of gfisononnected components. We
distinguish two cases, depending on whether the highess ¢deial (Fig.[d (a)) or not (Fig [B(b)). In case(a),

Case(a) Case(b)

FIGURE 3. Two cases for thevRAPPING problem

s can be wrapped on the cycle if and onlysifs equivalent ta, that is ifa = b. In case(b), the only possible
wrapping would identifys and¢, hencen = b. Therefore, there should exist a transition froabelede, where
c labels the transition from inside its scc. This is not the case since, as the automattgtésministic, we have
¢ # a, and the only transition fromis labeled by.. Hence no wrapping occurs in this case. O

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. UllmanThe design and analysis of computer algorithmsldison-Wesley, 1975.
Second printing.
[2] J. Almeida and M. Zeitoun. The equational theorywsferms for finiteR-trivial semigroups. IrProceedings of Semi-
groups and Languages (Lisbon 20pgages 1-23. World Scientific, 2004.
[3] D. Beauquier, J. Berstel, and Ph. ChrétienB&ments d’AlgorithmiqueMasson, 1992. In French.
NtLp://WW- I gmuniv-mVv.Tr/~pberstel/ kel enents/ el enents. ntm.
[4] K.S. Booth. Lexicographically least circular subsg# Inform. Process. Lett10:240-242, 1980.
[5] J. Brzozowski. Canonical regular expressions and matistate graphs for definite eventdViRl Symposia Series
12:529-561, 1962. Polytechnic Press, Polytechnic IntstifiBrooklyn.
[6] R. Carrasco and M. Forcada. Incremental constructiahnaaintenance of minimal finite-state automaamputational
Linguistics 28(1):207-216, 2002.
[7] J.-M. Champarnaud and D. Ziadi. Canonical derivatiyestial derivatives and finite automaton constructiombeor.
Comput. Scj.289(1):137-163, 2002.
[8] T.H. Cormen, C. Stein, R. L. Rivest, and C. E. Leisersimtroduction to AlgorithmsMcGraw-Hill, 2001.
[9] M. Crochemore and W. Rytteilext Algorithms Oxford University Press, 1994. With a preface by Zvi Galil.
[10] D. Gries. Describing an algorithm by Hopcroficta Inform, 2:97-109, 1973.
[11] J. E. Hopcroft. Am log n algorithm for minimizing states in a finite automaton. In Zhévi, editor,Theory of machines
and computations (Proc. Internat. Sympos., Technion,a&1a®71) pages 189-196. Academic Press, 1971.
[12] J. E. Hopcroft, R. Motwani, and J. D. Ullmarintroduction to Automata Theory, Languages, and Computa?nd
Edition). Addison Wesley, 2000.
[13] T. Knuutila. Re-describing an algorithm by Hopcrcftheoret. Comput. S¢i250:333—-363, 2001.
[14] D. Revuz. Minimisation of acyclic deterministic autata in linear timeTheoret. Comput. S¢i92:181-189, 1992.
[15] Y. Shiloach. Fast canonization of circular strings Algorithms 2:107-121, 1981.
[16] R. E. Tarjan. Depth first search and linear graph alpang. SIAM J. Comput.1(2):146-160, 1972.
[17] B. W. Watson. A new algorithm for the construction of rimval acyclic DFAs. Sci. Comput. Program48(2-3):81-97,
2003.

E-mail address| al mei da@ c. up. pt

E-mail addressnz @ abri . fr

CENTRO DE MATEMATICA E DEPARTAMENTO DE MATEMATICA PURA, FACULDADE DE CIENCIAS,, UNIVERSIDADE DO PORTO,
RUA DO CAMPO ALEGRE, 687, 4169-007 BRTO, PORTUGAL.

LABRI, UNIVERSITEBORDEAUX 1 & CNRS UMR 5800. 35X 0URS DE LALIBERATION, 33405 TALENCE CEDEX, FRANCE.

http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.html
mailto:jalmeida@fc.up.pt
mailto:mz@labri.fr

	1. Introduction
	2. Automata and data structures
	3. A reduction for the minimization problem
	3.1. Minimizing acyclic DFAs
	3.2. The bottom-up minimization algorithm

	4. Minimizing disjoint-cycle automata
	References

