
A BOTTOM-UP MINIMIZATION DFA ALGORITHM AND APPLICATIONS

JORGE ALMEIDA AND MARC ZEITOUN

ABSTRACT. We establish linear-time reductions between the minimization of a deterministic finite automaton (DFA)
and the conjunction of three subproblems: the minimizationof a strongly connected DFA, the isomorphism problem
for a set of strongly connected minimized DFAs, and the minimization of a connected DFA consisting in two strongly
connected components, both of which are minimized. We applythis procedure to minimize, in linear time, automata
whose nontrivial strongly connected components are cycles.

1. INTRODUCTION

Finite automata have been successfully used in numerous fields of computer science such as pattern matching,
compilation, natural language processing, databases, system verification. They can represent a broad range of ob-
jects, from dictionaries to models of transition systems. Properties expressed in high-level description formalisms
must also often be “compiled” into automata before algorithms can be applied. For real-world applications, such
automata may have a huge number of states, and reducing theirsize often proves to be crucial for subsequent
treatment. Finite automata on finite words have a minimal, canonical representation with respect to the language
they determine. This paper focuses on the process to computethis minimal representation, calledminimization.

Under the usual assumption that letters and states are represented by integers that can be compared inO(1)-
time, the best-known algorithm for minimizing a deterministic finite automaton (DFA) is Hopcroft’s [11], with
a O(ℓm log m) worst case time complexity whereℓ is the number of letters andm the number of states (see
[10, 13, 3] for complexity analyses). Brzozowski’s algorithm [5] works theoretically in exponential time, but has
in practice a surprisingly good behavior (see [7]).

Minimization algorithms usually start from the equivalence separating final and non-final states, and refine it
until stabilization occurs. In this paper, starting from the equality relation, we merge states which are detected to
be equivalent. We reduce the minimization problem of a DFA tosubproblems involving its strongly connected
components on one hand, and its directed acyclic structure on the other hand. More precisely, for any functionf
such thatf(n)/n is nondecreasing, we show that the minimization problem canbe solved in timeO(f(d + ℓ)),
whered is the number of transitions, if and only if three subproblems have the same worst case complexity. These
subproblems are (1) the minimization of a strongly connected DFA (2) the computation of isomorphisms between
strongly connected, minimized DFAs, and (3) the minimization of connected DFAs having exactly two strongly
connected components, both of which are already minimized.The reduction is presented by a generic algorithm
using subroutines solving the subproblems.

Using pattern matching techniques, we obtain as an application aO(d + ℓ)-time minimization algorithm for
automata whose non-trivial strongly connected componentsare cycles (this particular application was announced,
without proof, in [2]). This extends Revuz’s minimization algorithm [14] for acyclic DFAs, which was designed
to compress dictionaries and works inO(d + ℓ)-time with O(m + ℓ) memory. Other algorithms for minimizing
acyclic DFAs in linear time [17] or to maintain a minimal DFA after adjunction of one word to its language have
also been developed, seee.g., [6].

2. AUTOMATA AND DATA STRUCTURES

We work on a finite alphabetA = {0, . . . , ℓ−1}with ℓ ≥ 2 letters. We denote byA∗ the free monoid generated
by A, and by|x| the length of a wordx ∈ A∗. We assume thatA is known, and can be used as index set for arrays.
In Section 4, we also use the usual total order onA, viewed as a set of integers. Adeterministic finite automaton
(DFA) is a tupleA = (A, S, F, δ, s0) whereA is the alphabet,S is a finite set of states,F ⊆ S is the set of final

Date: November 14, 2006.
Key words and phrases.Finite automaton, minimization, algorithms, formal languages.
2000 MSC:68Q45.
JA & MZ: work partly supported by the PESSOAproject Egide-Grices 11113YMAutomata, profinite semigroups and symbolic dynamics.
JA: work partly supported by the Centro de Matemática da Universidade do Porto, financed by FCT through the programmes POCTI and

POSI, with Portuguese and European Community structural funds.

1

states,δ : S×A→ S is a partial mapping called the transition function, ands0 is the initial state. We letm = |S|
be the number of states,d = |δ| be the number of transitions, andn = d + ℓ.

The stateδ(s, a), when it exists, is also writtens · a. We represent the transition(s, a, s · a) by s
a
−→ s · a.

We use the wordedgeto mean a transition. An automaton defines a directed graph with vertex setS and edge
set{(s, s · a) | s ∈ S, a ∈ A}. A strongly connected component (scc)of A is a strongly connected component of
this graph, andA is strongly connectedif so is its associated graph. We retain the terminology of [8]: a strongly
connected component (scc)of a graph is an equivalence class for the mutual reachability relation. In particular, a
vertexu such that the only path fromu to u is empty is an scc, which is said to betrivial .

Given a states ∈ S, the language recognized byA from s is the setLA(s) ⊆ A∗ of words labeling a path from
s to some final state. Two statess, t are(Nerode) equivalentif LA(s) = LA(t). We write[s] for the class ofs in
this equivalence. Theminimizationprocedure consists in computing this equivalence relation. Merging the states
of each class into a single state produces the minimal automaton recognizing the same language from the initial
state, see [12]. A DFA isminimal, or minimized, if no two distinct states are equivalent. We are interestedin the
complexity of minimization in terms of the parametersℓ, m, d andn.

We assume that the DFAA is accessible and co-accessible, that is, all states are reachable froms0 and can
reach a final state. Other states are useless regarding the accepted language, and removing them can be done in
O(d + m)-time. Further, the initial state is irrelevant for the computation of equivalent states (it just serves for
determining the initial state of the minimized DFA). For this reason, we drop the initial state, keeping in mind that
we started from an accessible automaton, so that we havem ≤ d + 1 andO(d + m) = O(d).

For a classC of DFAs, we study the following problem.

C-MINIMIZATION Minimizing a DFA of the classC.

Input: A finite deterministic automaton fromC.
Output: Its minimal automaton given by the equivalence relation on states.

The automaton can be given by a matrix of(S∪{_})S×A whose(s, a) entry iss·a if it is defined, or _ otherwise.
Using lists yields a smaller representation: for eachs ∈ S, we are given a list of the form(a1, s1, . . . , ak, sk),
with ai ∈ A andsi ∈ S, describing all outgoing transitionss

ai−→ si. (These lists can be computed from the matrix
in O(ℓm)-time.) A list (a1, s1, . . . , ak, sk) of (A.S)∗ is sortedif a1 < a2 < · · · < ak. We write Out(s) for the
sorted list of outgoing transitions ofs ∈ S.

We first sort outgoing transitions. Recall that, given a finite setX , one can sort a sequenceu1, . . . , uk ∈ X∗ in
timeO(|u1 · · ·uk|+ |X |) using radix-sort [1].

Lemma 2.1. Let A be an accessible classical DFA (with an initial state). Given, for each state ofA, a list of all
its outgoing transitions, one can compute inO(n)-time all sorted lists of outgoing transitions of states ofA.

Proof. For each list Out(s) = (a1, s1, . . . , ak, sk), first build the transition list((s, a1, s1), . . . , (s, ak, sk)). Since
A is accessible, we havem ≤ d + 1, so this step takesO(d + m) = O(d)-time. One then uses radix sort on
the list ofall such transitions to order them lexicographically according to the first two components, which costs
O(d + m) + O(d + ℓ) = O(n). In the sorted list obtained, the transitions(s, a, t) with the same states are
consecutive and sorted according to the second component. It remains to scan this list to break it into pieces
corresponding to the same states, to build each of the sorted lists. Altogether, this requires O(d + ℓ) = O(n)-
time. �

The complexityO(d) is the best possible for minimization algorithms, since oneneeds to visit all transitions.
Note thatO(n) = O(d) if each letter ofA labels at least one transition. Therefore, from Lemma 2.1, one can
start with a sorted list representation for DFAs. We assume that lists are doubly linked: one can access each of the
predecessors of a state, individually, inO(1)-time.

3. A REDUCTION FOR THE MINIMIZATION PROBLEM

3.1. Minimizing acyclic DFAs. Our algorithm is inspired by Revuz’s algorithm [14] for acyclic automata, which
we briefly recall. We associate with each states such that Out(s) = (a1, s1, . . . , ak, sk) the tupleτ(s) =
(εs, a1, [s1], . . . , ak, [sk]), whereεs = 1 if s ∈ F and ε = 0 otherwise. The algorithm first computes the
heightof each state, which is the length of the longest path to a finalstate. Note that equivalent states must have
the same height. At stageh = 0, 1, . . . , up to the maximal heightH , the algorithm merges states of heighth.
Since[s] = [t] if and only if τ(s) = τ(t), radix sorting the wordsτ(s) for states of heighth yields a list with equal
words at consecutive places, which allows identifying equivalent states of heighth. A minor complication is that
usingH times radix sort produces a complexity ofO(d + Hℓ). This motivates the following statement, appearing
in [14, Theorem 2 and page 187].

2

Lemma 3.1. Given a setX andu1, . . . , uk ∈ X∗, one can compute in timeO(|u1 · · ·uk|) the equality classes on
(u1, . . . , uk), using an already allocated 0-initializedX-indexed array which is reset after the computation.

Proof. Let K = |u1 · · ·uk|. We donotwantX , which may be huge compared toK if many letters are unused, to
appear in the complexity bound. In one scan, one rewrites thesequenceu1, . . . , uk using onlyconsecutivepositive
integer letters, thus obtaining wordsu′

1, . . . , u
′
k, as follows. We store the encoding ofx ∈ X in T [x], whereT is

the 0-initialized array. We replace the occurrence of each scanned letterx by its encodingT [x] if x has already
been encoded (T [x] 6= 0). Otherwise, we first increment the number of distinct letters already encountered, we
assign the result toT [x], and we pushx on a stack (which therefore contains the nonzero entries ofT). This
rewriting requiresO(K) operations. The size of the alphabet of consecutive integers isO(K), so applying radix-
sort tou′

1..., u
′
k determines equality classes in timeO(K) (sinceu′

i = u′
j if and only if ui = uj). Finally, using

the stack, one switches back to 0 all nonzero entries ofT in timeO(K). �

Using the algorithm of Lemma 3.1 instead of radix sort directly to minimize acyclic automata yields the desired
O(n) time complexity:O(ℓ) time is needed to allocate the 0-indexed array, andK = O(d + m) = O(d) time to
determine equality classes.

3.2. The bottom-up minimization algorithm.

3.2.1. Description. The same scheme applied to arbitrary DFAs brings additionaldifficulties. First, the notion of
height has to be modified, since there may be paths of arbitrary length to a final state. We define theheightof
a state by considering each scc as a single state. This requires that one first compute the directed acyclic graph
(DAG) of scc’s of the automaton, which can be done inO(d)-time with Tarjan’s algorithm [16, 8]. We maintain
this DAG along the algorithm. (Expressions such asan scc is below another sccrefer to the partial order induced
by this DAG.) In the rest of the paper, we identify each scc with its set of states. We use an array of sizem
storing, for each states, the number of its scc. Conversely for each scc, we record itslist of states. We also use the
same data structures for all equivalence relations, to haveaccess inO(1)-time to the equivalence class of a state
computed so far. To define heights, we assign weight 0 to an edge belonging to an scc and weight 1 to all other
edges. Theweightof a path is the sum of the weights of all edges in the path. Theheightof a state is then the
maximal weight of some path to a final state, which is well defined. By definition, all states of a given scc have
the same height.

One could compute the height along one traversal, as for a DAG, but the problem is that two states at different
heights may well be equivalent. For instance, consider the automatons1

a
−→ s0

a
−→ s0 with boths1, s0 final. The

height ofs1 is 1 and the height ofs0 is 0. However,s1 is equivalent tos0. We say thats1 can be wrapped onto the
scc ofs0. In this example, our algorithm shall wraps1 onto the cycles0 (identifyings0 ands1). However, doing
so changes the height ofs1 (from 1 to 0) and more generally, wrapping states may decrease the height of states
that lie above them. The other difficulty is that both computations are linked: the height is needed to determine
which state to wrap at some point in the algorithm, and one also needs to modify the heights after a wrapping.

To avoid recomputing the heights several times, we do not compute them beforehand, and we maintain infor-
mation to determine on the fly, before stagek, which states must be treated at this stage. Nonetheless, tohelp
understanding the computation on-the-fly, we give a description of how we would precompute the height of all
states inO(n)-time: one assigns amassto each state (stored in its data structure). A state withi outgoing 1-
weighted edges has initially massi. The mass of an scc is the maximal mass of its states. The mass of a state
decreases during the execution of the algorithm. We record for each scc its number of states and its number of
states of mass 0. Initially, these two numbers are equal onlyfor minimal scc (in the DAG of scc). Each time we
decrease the mass of a state, we check whether it reaches mass0. If so, we increment the number of states having
mass 0 for its scc. If this number reaches the total number of states in the scc, then the scc itself reaches mass 0,
and we add it to a list of scc of mass 0.

Initially, we assign height 0 to all states in scc of mass 0. Further heights will be computed later on, at different
steps of the algorithm. When states of height less thanh − 1 have been treated, we need to compute the set of
states of heighth. These states are obtained, at that stage, as those belonging to scc’s of mass 0. Then, these states
are not considered anymore for the height computation (we remove the corresponding scc from the list of scc’s of
mass 0). Moreover, for each transitiont

a
−→ s ending in a states to which we just assigned heighth, we decrease

the mass of statet by 1, increase the count of mass 0 states of its scc ift reaches mass 0, and put its scc in the
list of scc’s of mass 0 if this count reaches its number of states. Observe that each transition is considered at most
once, so that the overall time complexity, for the height computation, isO(d).

An outline of a generic minimization algorithm is describedin Algorithm 1. It uses 3 subroutines, MIN-
IMIZE SCC, MERGEISOMORPHICSCC and WRAP, assumed to be given, and described below. It computes a
sequence of automataA−1 = A, A0, A1, . . . , AH such thatAH is the minimal automaton ofA. Stageh ∈ [0, H]

3

merges equivalent states of heighth of Ah−1 to produceAh. The automatonAh is obtained at the end of the
hth iteration of the main loop of Algorithm 1, after that all merging of states of height at mosth will have been
performed.

The variableX always holds (states of) a subset of the set of scc’s of the current automaton, for which merging
should occur at lines 4–6. It is initialized, at line 2, with all scc’s of mass 0 (precomputed by Tarjan’s algorithm).
At line 7, it receives the candidate states for merging at thenext iteration, that is, the part ofAh−1 consisting of
states of heighth, at that stage.

Let us explain the calls of lines 4–7. The first two of them onlymerge states ofX . The call of line 6 possibly
merges states of the part ofAh−1 not yet treated (cf. Fig. 1) with states ofX . The call MINIMIZE SCC(X)

Algorithm 1 Minimization algorithm (outline)

1: procedure M INIMIZE (AutomatonA)
2: X ← ZEROHEIGHT(A)
3: while X 6= ∅ do
4: M INIMIZE SCC(X)
5: MERGEISOMORPHICSCC(X)
6: WRAP(A, X)
7: X ← NEXTHEIGHT(A, X)
8: end while
9: end procedure

minimizes separately each sccC1, . . . , Cp of X , taking also into account the transitions going to an scc below X .
Let C be an scc ofX . Some states ofC may have transitions to scc’s belowC in the DAG of scc. However, since
the algorithm proceeds bottom-up, the part of the automatonbelowC is already minimized whenC is considered.
Therefore, one can first use a minimization algorithm onC as if it were an automaton by itself, not considering
the transitions falling belowC. This gives us a partition into equivalence classes∼1. We then refine this partition
according to the equivalence∼2 induced by the transitions going belowC: two states are∼2-equivalent if and
only if they reach the same states of the part already treatedby the algorithm, by the same transition labels. The
call MINIMIZE SCC(X) computes the equivalence∼1 ∩ ∼2. To refine∼1, once computed, by∼2 we associate

Part ofAh−1 not yet treated

States of height≤ h− 1 in Ah−1

X : C1 C2 · · · Cp

FIGURE 1. AutomatonAh−1 during the algorithm

to a states ∈ C with transitionss
ai−→ si (1 ≤ i ≤ k) falling belowC the word(εs, [s]1, a1, [s1]2, . . . , ak, [sk]2).

By Lemma 3.1, one can sort these words in timeO(di) wheredi is the number of such transitions, assuming that
an array of sizemax(2, m, ℓ) has been allocated at the beginning of the algorithm, once for all. The overall cost
is thereforeO(d + max(2, m, ℓ)) = O(n).

Let C′
1, . . . , C

′
p be the scc’s ofX after line 4. The call MERGEISOMORPHICSCC(X) merges all scc’s inX

that are isomorphic, andX gets modified accordingly: it then contains a set of representatives{C′
i1

, . . . , C′
ij
},

j ≤ p, of isomorphic scc’s (so that we make coarser the equivalence on states computed so far). As in the previous
case, we then have to refine this partition according to the transitions falling belowX .

The call WRAP(A, X) occurs whenX is already minimized. It consists in possibly identifying states of scc’s
that are locatedaboveone of theC′

ik
to an already minimized scc ofX , as explained earlier in the example

s1

a
−→ s0

a
−→ s0. Note that if some statet aboveX in the DAG of scc’s is equivalent to some state inC′

ik
, then all

states belonging to scc’s betweent andX are also equivalent to some state inC′
ik

. The procedure WRAP(A, X)
precisely merges these scc toX . Again, to validate that two states are equivalent, we have to take into account
transitions falling belowX .

4

The last step in each iteration of the main loop, line 7, is theupdateX ← NEXTHEIGHT(A, X) computing the
set of scc’s to consider during the next iteration. The height of states, as defined above, is not invariant through the
call WRAP(A, X): a state may have its height lowered. For that reason, we update in the call NEXTHEIGHT(A, X)
the weights of edges as follows: all edges leading to a state of X are assigned weight 0 (instead of 1 previously).
The weights of all other edges remain unchanged. We then compute, only at this point, the mass of each state
having an outgoing edge whose weight has been affected. The states reaching mass 0 are put in a list. They are
exactly those we need for the next iteration, and are returned by the call to NEXTHEIGHT. Since the weight of
each edge is modified at most once, the overall cost of all calls to NEXTHEIGHT is O(d).

3.2.2. Correctness.We prove that Algorithm 1 indeed computes the minimal automaton. First, we only identify
equivalent states, since merging is only done by the minimization subroutines of lines 4–6 assumed to be correct.

We have to prove that, whenever two states are equivalent, they are merged in the last automatonAH . Arguing
by contradiction, assume that two equivalent statess, t of A have not been merged and suppose that the pair(s, t)
is minimal in the DAG of scc’s for this property. That is, ifs′ is belows, t′ is belowt, ands′, t′ are equivalent and
distinct, thens = s′ andt = t′. Statess andt cannot occur in the same value of the variableX since, otherwise,
they would be merged at line 4 if they belong to the same scc, orat line 5 otherwise. Suppose thats is the first
to occur in the value ofX . Then, two cases may arise. One case is thatt is wrapped to another state at line 6
while s belongs toX . This is impossible since, asX has been previously minimized (lines 4 and 5), no state of
X \ {s} is equivalent tos. It remains the case wheres, t occur inX in two different iterationsis, it of the main
loop, with is < it. Observe that, for every lettera suchs · a falls belows or t · a falls belowt, sinces · a andt · a
are equivalent, by the minimality of the pair(s, t), they will be merged by the algorithm befores appears in the
value ofX . Since the remaining edges do not intervene in determining whent will appear inX , it follows thats
andt will be found in the same value ofX , a case which has already been excluded. This proves that Algorithm 1
is correct.

3.2.3. Reductions.We have isolated in our algorithm three subroutines to mergeequivalent states in three dif-
ferent situations: (1)minimizing a strongly connected component, (2) merging isomorphic strongly connected
components, and (3)wrapping. We formulate these subproblems for a classC of strongly connected DFAs.

C-MSCA Minimizing strongly connected automata ofC.

Input: A strongly connected DFA belonging toC.
Output: Its minimal automaton given by the equivalence relation on states.

C-MMSCC Merging minimized DFAs fromC which are strongly connected.

Input: A set of minimized and strongly connected DFAs(Ai)1≤i≤m of C.
Output: (a) A partition

⋃
j∈J Ij of [1, m] such thatAp, Aq are isomorphic if and only ifp, q are in the sameIj .

(b) A representative of each class.(c) For each element in a class different from the chosen representative, an
isomorphism to the representative.

C-WRAPPINGWrapping on a minimized scc ofC.

Input: A DFA consisting of a minimized sccA0 from C of height 0 and an sccA1 from C of height 1.
Output: Its minimal DFA given by the equivalence relation on states.

For a classC of DFAs, letdfa(C) be the class of DFAs whose scc’s are inC for some choice of final states.
If there is anO(f(n))-time algorithm fordfa(C)-MINIMIZATION , thenC-MSCA, C-MMSCC andC-WRAPPING

also have anO(f(n))-time solution. This is clear forC-MSCA andC-WRAPPINGwhich are the minimization prob-
lem on particular instances. ForC-MMSCC, assume we are given several strongly connected non-trivial automata
(Ai)1≤i≤m from C. Leta, b /∈ A be two distinct letters. Choose a stateti in eachAi and consider the DFAA built
by adding statess1, . . . , sm to the disjoint union of the automataAi, where thesi’s are new states, and transitions

si
a
−→ si+1 andsi

b
−→ ti (see Fig. 2). The disjoint union of automataAi = (Ai, Si, Fi, δi), 1 ≤ i ≤ n, is the

automatonA = (
⋃

Ai,
⊎

Si,
⊎

Fi,
⊎

δi) (whose state set is the disjoint union
⊎

Si). Obviously,A is in dfa(C)

s0 s1 . . . sk−1 sk

A0 : t0 A1: t1 . . .
Ak−1: tk−1 Ak: tk

a a a a

b b b b

FIGURE 2. Merging minimal sc-automata

5

and hasO(D) transitions, whereD is the total number of transitions of allAi’s. Minimizing A exactly merges
thoseAi that are isomorphic, since theAi’s are minimal.

3.2.4. Complexity.We have shown in Section 3.2.3 that ifdfa(C)-MINIMIZATION can be solved inO(f(n)) time,
then so canC-MMSCC, C-MSCA, andC-WRAPPING.

Conversely, we use the algorithm of Section 3.2.1, which calls subroutines solving these subproblems in order
to solvedfa(C)-MINIMIZATION . Assume that the subroutines run in timeO(f(n)), wheref(x+y) ≥ f(x)+f(y)
(which is the case,e.g., if f(n)/n is nondecreasing). The time complexity for minimizing the automaton is the sum
of (1) the complexity of all calls to the three subroutines, (2) the overhead to compute heights, and (3) the overhead
to refine relations (e.g., to compute∼1 ∩ ∼2). For (1), each subroutine is called several times, on subautomata
of sizesn1, . . . , np, where

∑
ni = n, yielding an overall complexity off(n1) + · · · + f(np) = O(f(n)) by

the assumption onf . We have seen in Section 3.2.1 that the complexity for (2) isO(n) = O(f(n)). Finally,
for (3), note that the refinements occur at most three times oneach state (after the calls of lines 6, 4 and 5). The
equivalence is computed by storing the classClass[s] of states and the listStates[c] of states of classc,
using arrays. Merging two statess andt amounts to removing, says, from States[Class[s]], appending
it to States[Class[t]], and changing the value ofClass[s]. These operations can be done inO(1)-time
(Implementing the removal inO(1)-time is done by maintaining a pointer for each states to its position in the list
States[Class[s]].) Hence the overall complexity isO(f(n)). We can state our main result.

Theorem 3.2. Let C be a class of strongly connected DFAs containing the trivialDFAs (one state, no edge) and
let f be a function such thatf(n)/n is nondecreasing. Then, thedfa(C)-MINIMIZATION problem is solvable in
O(f(n))-time if and only ifC-MMSCC, C-MSCA, andC-WRAPPINGare solvable inO(f(n))-time.

We have to include trivial components inC for the wrapping, since we need to be able to wrap a single state to
a (non-trivial) scc. Note that if we take forC the class of trivial scc’s, we reobtain the linear complexity for the
minimization of acyclic automata [14]. In the next section we apply Theorem 3.2 to a larger subclass of automata
which one can still minimize in timeO(n).

4. MINIMIZING DISJOINT-CYCLE AUTOMATA

A disjoint-cycle automatonis an automaton such that all strongly connected componentsare (possibly trivial)
cycles. In other words, two cycles on distinct sets of vertices share no vertices. One can detect whether an
automaton is disjoint-cycle, by checking for each state that at most one outgoing edge remains in the same strongly
connected component.

We show in this section that theMMSCC, MSCA andWRAPPINGproblems for strongly connected components
of this class are solvable inO(n)-time (Lemmas 4.2, 4.3 and 4.4 below). In view of Theorem 3.2,this will entail
the following result.

Theorem 4.1. One can minimize a disjoint-cycle automaton onℓ letters withd transitions in timeO(d + ℓ).

The fact that scc’s of a disjoint-cycle automaton are cyclesallows us to work on words instead of working
directly on automata. Recall that the conjugates of a wordb1 · · · bp (wherebi are letters) are the words of the form
bibi+1 · · · bp · b1 · · · bi−1. A circular word is a conjugation class. Slightly abusing notation, we represent a circular
word by any word of its class.

We can associate to the cycles0

a0−→ s1

a1−→ · · ·
ak−→ s0 the circular word(ε0, a0)(ε1, a1) · · · (εk, ak) where

εi = 1 if si is final andεi = 0 otherwise. Conversely, from such a circular word, one can recover a unique cycle
(up to the name of the states).

Lemma 4.2. MSCA is solvable in linear time for disjoint-cycle automata.

Proof. Recall that the primitive root of a wordw is the shortest wordr such thatw = rk for somek. It is easy to
see that minimizing a cycles0

a0−→ s1

a2−→ · · ·
ak−→ s0 amounts to finding a primitive root of its associated circular

word: this primitive root is itself a circular word, and the cycle associated to it is the minimal automaton of the
original cycle. It is classical that this computation can beperformed in linear time (seee.g.[9] for instance). �

Lemma 4.3. MMSCC is solvable in linear time for disjoint-cycle automata.

Proof. The problem can be formulated as follows in terms of circularwords: we are givenk circular words and
we want to merge them into equality classes in linear time, with respect to the sum of their lengths. For that
purpose, we compute for each circular word its associated Lyndon word, that is its smallest representant, in the
lexicographic order. (This is the place where we use the factthat the alphabet is ordered.) Since we assumed that
comparisons take linear time, the computation of the associated Lyndon word can be performed in linear time for

6

each word, in terms of its length [4, 15]. It remains to group in classes circular words having the same Lyndon
word, which can be done using Lemma 3.1. �

Lemma 4.4. WRAPPING is solvable in linear time for disjoint-cycle automata.

Proof. Let A be an automaton having a single minimal scc in the DAG of strongly connected components. We
distinguish two cases, depending on whether the highest sccis trivial (Fig. 3 (a)) or not (Fig. 3(b)). In case(a),

s

t

Case(a)

a
b

s

t

Case(b)

a
b

c

FIGURE 3. Two cases for theWRAPPINGproblem

s can be wrapped on the cycle if and only ifs is equivalent tot, that is if a = b. In case(b), the only possible
wrapping would identifys andt, hencea = b. Therefore, there should exist a transition fromt labeledc, where
c labels the transition froms inside its scc. This is not the case since, as the automaton isdeterministic, we have
c 6= a, and the only transition fromt is labeled bya. Hence no wrapping occurs in this case. �

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.The design and analysis of computer algorithms. Addison-Wesley, 1975.
Second printing.

[2] J. Almeida and M. Zeitoun. The equational theory ofω-terms for finiteR-trivial semigroups. InProceedings of Semi-
groups and Languages (Lisbon 2002), pages 1–23. World Scientific, 2004.

[3] D. Beauquier, J. Berstel, and Ph. Chrétienne.Éléments d’Algorithmique. Masson, 1992. In French.
http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.html.

[4] K. S. Booth. Lexicographically least circular substrings. Inform. Process. Lett., 10:240–242, 1980.
[5] J. Brzozowski. Canonical regular expressions and minimal state graphs for definite events.MRI Symposia Series,

12:529–561, 1962. Polytechnic Press, Polytechnic Institute of Brooklyn.
[6] R. Carrasco and M. Forcada. Incremental construction and maintenance of minimal finite-state automata.Computational

Linguistics, 28(1):207–216, 2002.
[7] J.-M. Champarnaud and D. Ziadi. Canonical derivatives,partial derivatives and finite automaton constructions.Theor.

Comput. Sci., 289(1):137–163, 2002.
[8] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.Introduction to Algorithms. McGraw-Hill, 2001.
[9] M. Crochemore and W. Rytter.Text Algorithms. Oxford University Press, 1994. With a preface by Zvi Galil.

[10] D. Gries. Describing an algorithm by Hopcroft.Acta Inform., 2:97–109, 1973.
[11] J. E. Hopcroft. Ann log n algorithm for minimizing states in a finite automaton. In Z. Kohavi, editor,Theory of machines

and computations (Proc. Internat. Sympos., Technion, Haifa, 1971), pages 189–196. Academic Press, 1971.
[12] J. E. Hopcroft, R. Motwani, and J. D. Ullman.Introduction to Automata Theory, Languages, and Computation (2nd

Edition). Addison Wesley, 2000.
[13] T. Knuutila. Re-describing an algorithm by Hopcroft.Theoret. Comput. Sci., 250:333–363, 2001.
[14] D. Revuz. Minimisation of acyclic deterministic automata in linear time.Theoret. Comput. Sci., 92:181–189, 1992.
[15] Y. Shiloach. Fast canonization of circular strings.J. Algorithms, 2:107–121, 1981.
[16] R. E. Tarjan. Depth first search and linear graph algorithms.SIAM J. Comput., 1(2):146–160, 1972.
[17] B. W. Watson. A new algorithm for the construction of minimal acyclic DFAs.Sci. Comput. Program., 48(2-3):81–97,

2003.

E-mail address: jalmeida@fc.up.pt

E-mail address: mz@labri.fr

CENTRO DE MATEMÁTICA E DEPARTAMENTO DE MATEMÁTICA PURA, FACULDADE DE CIÊNCIAS,, UNIVERSIDADE DO PORTO,
RUA DO CAMPO ALEGRE, 687, 4169-007 PORTO, PORTUGAL.

LABRI, UNIVERSITÉBORDEAUX 1 & CNRS UMR 5800. 351COURS DE LAL IBÉRATION, 33405 TALENCE CEDEX, FRANCE.

7

http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.html
mailto:jalmeida@fc.up.pt
mailto:mz@labri.fr

	1. Introduction
	2. Automata and data structures
	3. A reduction for the minimization problem
	3.1. Minimizing acyclic DFAs
	3.2. The bottom-up minimization algorithm

	4. Minimizing disjoint-cycle automata
	References

