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Abstract. We show that, for every pseudovariety of groups H, the
pseudovariety H̄, consisting of all finite semigroups all of whose sub-
groups lie in H, is irreducible for join and the Mal’cev and semidirect
products. The proof involves a Rees matrix construction which moti-
vates the study of iterated Mal’cev products with the pseudovariety of
bands. We further provide a strict infinite filtration for H̄ using such it-
erated Mal’cev products, in which the decidability of each level depends
only on the decidability of H.

1. Introduction

Since the establishment of Eilenberg’s correspondence between varieties
of regular languages and pseudovarieties of semigroups [4], the theory of fi-
nite semigroups has evolved mostly in the direction of their classification in
pseudovarieties. The most recent account on this topic is [11], which con-
tains a wealth of results, centered on the Krohn-Rhodes complexity theory,
but not limited to it. The typical problem, motivated by the origins of this
research area, consists in determining whether the membership problem for
a given pseudovariety is decidable. The difficulty lies in the fact that, very
often, pseudovarieties are given by generators, rather than by characteristic
structural properties of their members. The generators are often obtained by
applying some natural algebraic construction to members of given pseudova-
rieties. For instance, the direct and semidirect products of semigroups lead
respectively to the join and semidirect product of pseudovarieties, while the
existence of a congruence whose idempotent classes lie in a given pseudova-
riety and whose quotient lies in another pseudovariety leads to the Mal’cev
product. The interest in such operators on pseudovarieties is that they allow
to decompose, in the pseudovariety sense, complicated finite semigroups in
terms of simpler ones. For example, the Krohn-Rhodes decomposition the-
ory concerns building arbitrary finite semigroups from finite simple groups
and finite aperiodic semigroups using semidirect products.

Thus, a key ingredient in the theory of pseudovarieties of semigroups is
to break them up, when possible, into simpler pseudovarieties using natural
operators. There are two ways in which this might be achieved: through
a finite decomposition, or through an iterated decomposition, providing a
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filtration of the pseudovariety in terms of subpseudovarieties which admit
finite decompositions, as in the Krohn-Rhodes complexity theory.

In this paper, we improve on earlier results of Margolis, Sapir and Weil
[7] and Rhodes and Steinberg [10, 11] concerning the pseudovarieties of the
form H̄, consisting of all finite semigroups all of whose subgroups lie in a
given pseudovariety of groups H. In [7], Koryakov’s embedding approach [5]
is improved to show that H̄ is finitely indecomposable in terms of Mal’cev
and semidirect products and joins, provided H is closed under semidirect
product. In [10], a stronger form of join indecomposability (called finite join
irreducibility) is established for H̄ in case H contains some non-nilpotent
group, the technique being the construction of so-called Kovács-Newman
semigroups. In both works, it is proposed as an open problem to determine
whether every pseudovariety of the form H̄ is join indecomposable. This also
appears in [11] as Problem 47.

We give an affirmative solution to those problems. Our approach is sim-
ilar to that of [7] but uses a Rees matrix-like construction to obtain an
improved embedding of free pro-H̄ semigroups, which does not require that
H be closed under semidirect product. This allows us to use the arguments
of [7] to show that H̄ is indecomposable, in the stronger sense, with respect
to both join and the Mal’cev and semidirect products. In fact, we show that
every pseudovariety that is closed under our construction is join indecom-
posable in the weaker sense. The construction leads to a new operator at
the level of pseudovarieties, which we call the bullet. We have not found
any pseudovarieties other than those of the form H̄ which are closed under
bullet. We do give two types of sufficient conditions for a pseudovariety
to be closed under bullet, involving only Mal’cev products or both Mal’cev
and semidirect products. For the sufficient condition involving only Mal’cev
products, we are able to show that the pseudovarieties of the form H̄ are
indeed the only ones that satisfy it, which, as a sub-product, provides a
decidable strict filtration for H̄ in case H is decidable.

For the special case of the pseudovariety G of all finite groups, we show
that there is no proper subpseudovariety of the pseudovariety of all finite
semigroups which is closed under the bullet operator and contains G. In
particular, the bullet operator is powerful enough to increase the Krohn-
Rhodes complexity, provided we are allowed to use arbitrarily general finite
groups.

2. Preliminaries

We assume familiarity with the basic theory of pseudovarieties of semi-
groups, including the role played by free profinite semigroups, in particular
through Reiterman’s theorem [9], defining pseudovarieties by pseudoidenti-
ties. The reader is referred to [1, 2, 11] for a few alternative introductions
to this subject.

For a pseudovariety V, ΩAV and ΩnV denote the pro-V semigroups freely
generated respectively by the set A and a set of cardinality n. Elements of
such semigroups will be called pseudowords.

We adopt the usual conventions for semigroup pseudoidentities such as
that u = 1 and u = 0 are, respectively, abbreviations of the pseudoidentities
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ux = x = xu and ux = u = xu, where x is a variable that does not occur
in u.

For the reader’s convenience, the following is a catalog of pseudovarieties
of finite semigroups that play a role in this paper. For each of them, besides
a, sometimes incomplete, verbal description, a well-known definition in terms
of pseudoidentities is also provided.

• I: trivial (Jx = yK).
• Sl: semilattices (Jx2 = x, xy = yxK).
• LZ: left zero (Jxy = xK).
• RZ: right zero (Jxy = yK).
• RB: rectangular bands (Jxyx = xK).
• MD1: right regular bands (Jx

2 = x, xyx = yxK).
• Bm,n: Burnside condition (Jxm+n = xmK).
• B∞,n: same as Bω,n (Jxω+n = xωK).
• B: bands (Jx2 = xK = B1,1).
• A: aperiodic (Jxω+1 = xωK = Bω,1).
• G: groups (Jxω = 1K = B0,ω).
• S: all (Jx = xK = Bω,ω).
• N2: null (nilpotency index at most 2, Jxy = 0K).
• Nn: nilpotency index n (Jx1 · · · xn = 0K).
• N: nilpotent (Jxω = 0K).
• D: definite (Jxyω = yωK).
• Kn: reverse definite of index n (Jx1 · · · xny = x1 · · · xnK).
• K: reverse definite (Jxωy = xωK).
• LI: locally trivial (Jxωyxω = xωK).
• Ab: Abelian groups (Jxω = 1, xy = yxK).
• J: J -trivial (J(xy)ωx = (xy)ω = y(xy)ωK).
• Com: commutative (Jxy = yxK).
• IE: only one idempotent (Jxω = yωK).

Let V be a pseudovariety of semigroups. A homomorphism ϕ : S → T
between two finite semigroups S and T is said to be a V-homomorphism if
ϕ−1(e) ∈ V for every idempotent e ∈ T .

We also need the following operators on pseudovarieties of semigroups:

• Mal’cev product : V©m W is the pseudovariety generated by all finite
semigroups S for which there is a V-homomorphism ϕ : S → T into
a semigroup T ∈ W;

• semidirect product : V ∗ W is the pseudovariety generated by all
semidirect products of the form S ∗ T with S ∈ V and T ∈ W;

• bar : for a pseudovariety H (of groups), H̄ is the pseudovariety con-
sisting of all finite semigroups all of whose subgroups belong to H;

• localization: for a pseudovariety V, LV consists of all finite semi-
groups S such that, for every idempotent e in S, the local subsemi-
group eSe belongs to V.

It is well known that V ∗W is also generated by the wreath products of the
form S ◦ T with S ∈ V and T ∈ W, a fact which may be used to deduce
that the semidirect product of pseudovarieties is associative. In contrast, the
Mal’cev product is not associative, satisfying only the following inclusion,



4 J. ALMEIDA AND O. KLÍMA

which may be proper:

(1) U©m (V©m W) ⊆ (U©m V)©m W.

For pseudovarieties V andW, denote by V©mnW the iterated Mal’cev product
on the right with W, defined recursively by

V©m0 W = V and V©mn+1 W = (V©mn W)©m W.

We further let V©m∞ W =
⋃

n≥0(V©mn W).

The Basis Theorem for the Mal’cev product of pseudovarieties [8] states
that, if V = Jui(x1, . . . , xni

) = vi(x1, . . . , xni
) : i ∈ IK then V ©m W is

defined by the pseudoidentities of the form ui(w1, . . . , wni
) = vi(w1, . . . , wni

)
where the wj are pseudowords such that W satisfies the pseudoidentities
w2
1 = w1 = · · · = wni

(i ∈ I).
We say that a pseudovariety V is a Mal’cev idempotent if V ©m V = V.

There are many Mal’cev idempotents. In particular, it is routine to verify
that the following pseudovarieties are Mal’cev idempotents: B, Sl, LZ, RZ,
RB, N, K, J, and A. A pseudovariety of groups is a Mal’cev idempotent if
and only if it is closed under extensions. The intersection of any nonempty
family of Mal’cev idempotents is a Mal’cev idempotent and so, for every
pseudovariety, there is a smallest Mal’cev idempotent containing it.

3. A Rees matrix extension construction

Let S and T be semigroups and f : S1 → T 1 be a function. The set

M(S, T, f) = S ⊎ S1 × T 1 × S1

is endowed with the multiplication defined by the following formulas for all
s ∈ S, si, s

′
i ∈ S1, and t, t′ ∈ T 1:

s1 · s2 = s1s2

s · (s1, t, s2) = (ss1, t, s2)

(s1, t, s2) · s = (s1, t, s2s)

(s1, t, s2) · (s
′
1, t

′, s′2) = (s1, tf(s2s
′
1)t

′, s′2).

The following lemma contains some preliminary observations about this al-
gebraic structure.

Lemma 3.1. The set M(S, T, f) is a semigroup for the above operation.
All its subgroups are isomorphic to subgroups of either S or T .

Proof. From the definition, it is clear that S is a subsemigroup and that,
its complement, the subset R = S1 × T 1 × S1 constitutes a Rees matrix
subsemigroup. Moreover, the formulas indicate that S acts both on the
left and on the right of R, respectively by left multiplication on the first
component and right multiplication on the third component. Therefore, the
two actions commute. Hence, the only case of the associativity law that
remains to be considered is

(

(s1, t, s2) · s
)

· (s′1, t
′, s′2) = (s1, t, s2) ·

(

s · (s′1, t
′, s′2)

)

,

and it is easily checked that both sides are equal to (s1, tf(s2ss
′
1)t

′, s′2).
Let H be a subgroup of M(S, T, f). Since R is an ideal, H must be

contained in either S or R, and it suffices to consider the latter case. Let
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(s1, t, s2) be an idempotent of H. Then tf(s2s1)t = t and e = tf(s2s1) is
an idempotent of T 1. Let G be the maximal subgroup of T 1 containing e.
Consider the mapping ϕ : H → T 1 which sends each element (s1, t

′, s2) to
t′f(s2s1). It is routine to check that ϕ is an injective homomorphism which
takes its values in G. �

Given two pseudovarieties of semigroups U and V, we denote by U • V

the pseudovariety generated by all semigroups of the form M(S, T, f), with
S ∈ U and T ∈ V. For lack of a better name, we call bullet this operation
on pseudovarieties. We say that V is a bullet idempotent if V • V = V. The
following embedding theorem is the core of our irreducibility results.

Theorem 3.2. Let V be a pseudovariety which is a bullet idempotent. Let A
and B be finite sets and suppose that θ : B → ΩAV is an injective function.
Then the unique continuous homomorphism ψ : ΩBV → ΩA⊎{z}V such that
ψ(b) = θ(b)z is injective.

Proof. Arguing by contradiction, let u, v ∈ ΩBV be such that ψ(u) = ψ(v)
and u 6= v. Let τ : ΩBV → T be a continuous homomorphism into a semi-
group T from V such that τ(u) 6= τ(v). Let σ : ΩAV → S be a continuous
homomorphism into a semigroup S from V such that the mapping σ ◦ θ is
injective. Let f : S1 → T 1 be the function defined by f(σ(θ(b))) = τ(b),
and f(s) = 1 for all other s ∈ S1. Since V is a bullet idempotent, there is
a unique continuous homomorphism ϕ : ΩA⊎{z}V → M(S, T, f) such that
ϕ(a) = σ(a) for a ∈ A and ϕ(z) = (1, 1, 1). We claim that the equality

(2) ϕ(zψ(w)) = (1, τ(w), 1)

holds for every w ∈ ΩBV. This will complete the proof since it contradicts
the initial assumptions ψ(u) = ψ(v) and τ(u) 6= τ(v).

Since the mappings ϕ, ψ and τ are continuous, it suffices to prove (2) in
case w ∈ B+, which we establish by induction on |w|. Suppose first that
w = b ∈ B. Then we have

ϕ(zψ(b)) = ϕ(zθ(b)z) = ϕ(z)ϕ(θ(b))ϕ(z)

= (1, 1, 1)σ(θ(b))(1, 1, 1) = (1, f(σ(θ(b))), 1) = (1, τ(b), 1).

Suppose next that b ∈ B and w ∈ B+ satisfies (2). Then we may compute

ϕ(zψ(bw)) = ϕ(zθ(b)zψ(w)) = ϕ(z)ϕ(θ(b))ϕ(zψ(w))

= (1, 1, 1)σ(θ(b))(1, τ(w), 1) = (1, f(σ(θ(b)))τ(w), 1)

= (1, τ(b)τ(w), 1) = (1, τ(bw), 1),

which completes the induction step and establishes the claim. �

Recall that a pseudovariety V is monoidal if it contains the monoid S1

whenever it contains the semigroup S.

Lemma 3.3. Every bullet idempotent is monoidal.

Proof. Let T be an arbitrary semigroup from V and consider the associated
semigroup U = M({1}, T, f), where f : {1} → T 1 maps 1 to 1. Then
{1}×T 1 ×{1} is a subsemigroup of U which is isomorphic with T 1. Hence,
T 1 belongs to V • V and, therefore, also to V. �
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We say that a pseudovariety V has finite index if it satisfies a pseudoiden-
tity of the form xm = xm+ω with m a positive integer. In this case, the
smallest such m is called the index of V. If there is no such m, then V is
said to have infinite index.

Lemma 3.4. Every bullet idempotent contains LI and, in particular, it has
infinite index.

Proof. Let V be a bullet idempotent. As a pseudovariety, it must contain the
trivial semigroup I = {1} and, therefore, also the two-element semilattice
S =M(I, I, f). For the constant mapping f with value 0, the subsemigroup
of M(S, S, f) given by S × {0} × S is a 2 × 2 rectangular band, while the
subsemigroup {1} × S × {1} is a two-element null semigroup. Hence V

contains RB = LZ ∨ RZ and N2.
Let A be a finite alphabet and let Kn = ΩAKn. It is well known that

Kn may be represented by the set A≤n of nonempty words of length at
most n, with multiplication given by concatenation followed by truncation
to the prefix of length n if the resulting word has length greater than n.
By induction on n, we prove that Kn ∈ V. The case of n = 1 follows from
the above since K1 = LZ. Assuming that Kn ∈ V, consider the semigroup
U = M(ΩAN2,Kn, f), where f : (ΩAN2)

1 → Kn maps each free generator
a ∈ A of ΩAN2 to the corresponding free generator of Kn. Noting that
ΩAN2 = A⊎ {0}, the set T = A×Kn ×{1} is a subsemigroup of U and the
mapping T → Kn+1 which sends each triple (a,w, 1) ∈ T to aw is an onto
homomorphism, we deduce that Kn+1 ∈ V.

The preceding paragraph entails that K is contained in V. Dually, so is D
and, therefore so is LI = K ∨ D. �

We adopt the same terminology as in [11, Definition 6.1.5] for various
irreducibility notions in a lattice. In particular, we say that

• a pseudovariety V is strictly finite join irreducible (sfji) if V = U∨W

implies V = U or V = W;
• a pseudovariety V is finite join irreducible (fji) if V ⊆ U∨W implies
V ⊆ U or V ⊆ W.

Theorem 3.5. Every bullet idempotent is sfji.

Proof. Let V be a bullet idempotent and let U and W be pseudovarieties of
semigroups such that U ∨W = V. We claim that V must be contained (and
therefore be equal) to at least one of U and W. Otherwise, by Reiterman’s
theorem, there are pseudoidentities u1 = u2 and v1 = v2 such that U sat-
isfies u1 = u2, W satisfies v1 = v2, and V fails both pseudoidentities. We
may assume that each of the pseudoidentities u1 = u2 and v1 = v2 involves
the minimum possible number of variables so that, in particular, every pseu-
doidentity which is obtained from them by identifying variables is valid in V.
Without loss of generality, we further assume that the number of variables
n involved in u1 = u2 is at least the number of variables involved in v1 = v2.

Consider first the case where n ≥ 2 and let B = {x1, . . . , xn} be the set
of variables involved in the pseudoidentity u1 = u2. We may assume that
the pseudoidentity v1 = v2 is written on a disjoint set C of variables and
we let A = B ∪ C. We further consider a new variable z. Since V contains
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all finite rectangular bands by Lemma 3.4, we deduce that the mapping
θ : B → ΩAV sending xi to vi for i = 1, 2 and fixing all other xj is injective.

By Theorem 3.2, the unique continuous homomorphism ψ : ΩBV → ΩA∪{z}V

such that ψ(xi) = θ(xi)z is also injective. Since the pseudoidentity u1 = u2
fails in V, it follows that so does the pseudoidentity

(3) u1(v1z, v2z, x3z, . . . , xnz) = u2(v1z, v2z, x3z, . . . , xnz).

Note the pseudoidentity (3) is valid in U, being an obvious consequence of
u1 = u2. It is also valid in W since this pseudovariety satisfies v1 = v2, so
that W satisfies (3) if and only if it satisfies the pseudoidentity

u1(v1z, v1z, x3z, . . . , xnz) = u2(v1z, v1z, x3z, . . . , xnz),

which, by the assumption on the minimality of the number n, is valid in V,
whence also in W. Hence U ∨ W satisfies the pseudoidentity (3), while V

does not, which contradicts the assumption that V = U ∨W.
It remains to consider the case where n = 1. In this case, the pseudoiden-

tity u1 = u2 is of the form xα = xβ for some unary pseudowords xα, xβ.
Then xαyβ = xβyα is still a pseudoidentity valid in U. It fails in V since V is
monoidal by Lemma 3.3. We may then apply basically the same argument
as in the case n ≥ 2 to the pseudoidentity xαyβ = xβyα playing the role
of u1 = u2. The only difference in the argument concerns the verification
that the pseudoidentity (3) holds in W, which is now trivial since, in the
presence of v1 = v2, (3) is equivalent to (v1z)

α(v1z)
β = (v1z)

β(v1z)
α. �

In view of Lemma 3.1, Theorem 3.5 applies to the pseudovarieties of
the form H̄, which gives an affirmative solution to the first part of [11,
Problem 47]. However, we prove in Section 4 that in fact H̄ is fji, which
provides an affirmative answer also to the second part of [11, Problem 47].

4. An improved finite join irreducibility result

In this section we prove that every pseudovariety of the form H̄ is irre-
ducible not only for the join (fji) but also enjoys the analogous properties for
both the Mal’cev and semidirect products. This improves the main results
of [7].

Theorem 4.1. Let H be a pseudovariety of groups. If H̄ is contained in
V©m W, then it is contained in at least one of V and W.

Proof. Suppose first that H̄ ⊆ V ©m W and that H̄ is contained in neither
V nor W. By Reiterman’s theorem, there are pseudoidentities u = v and
w = t which fail in H̄ but hold respectively in V and W. By [5, Theorem 1],
we may assume that u, v ∈ Ω2S. Let A be a finite set such that w, t ∈ ΩAS

and choose z /∈ A. Note that the pseudoidentity
(4)
u
(

(wz)ω(tz)ω, (wz)ω(tzwz)ω(tz)ω
)

= v
(

(wz)ω(tz)ω, (wz)ω(tzwz)ω(tz)ω
)

holds in V ©m W. Indeed, this pseudovariety is generated by all finite semi-
groups S for which there exists a homomorphism f : S → T into a semigroup
from W such that f−1(e) ∈ V for every idempotent e from T . For a continu-
ous homomorphism ϕ : ΩAS → S, since W satisfies the pseudoidentity w = t
and T ∈ W, f(ϕ((wz)ω(tz)ω)) and f(ϕ((wz)ω(tzwz)ω(tz)ω)) are the same
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idempotent e. Thus, ϕ((wz)ω(tz)ω) and ϕ((wz)ω(tzwz)ω(tz)ω) are both el-
ements of the subsemigroup f−1(e) of S, which in turn belongs to V. Hence
ϕ maps both sides of the pseudoidentity (4) to the same element of S.1

It remains to show that the pseudoidentity (4) fails in H̄. Indeed, by
[7, Proposition 3.2], since the pseudovariety H̄ is monoidal and it fails the
pseudoidentity u = v, it also fails the pseudoidentity

(5) u(xωyω, xω(yx)ωyω) = v(xωyω, xω(yx)ωyω).

Let p : Ω{x,y}S → Ω{x,y}H̄ and q : ΩA∪{z}S → ΩA∪{z}H̄ be the natural

continuous homomorphisms. To apply Theorem 3.2, let θ : {x, y} → ΩAH̄

be the function that maps x to q(w) and y to q(t). Note that θ is injective
because the pseudoidentity w = t fails in H̄. Let ψ : Ω{x,y}H̄ → ΩA∪{z}H̄ be
the resulting injective continuous homomorphism defined in Theorem 3.2.
Since, for s ∈ Ω{x,y}S,

ψ
(

p
(

s(xωyω, xω(yx)ωyω)
)

)

= q
(

s
(

(wz)ω(tz)ω, (wz)ω(tzwz)ω(tz)ω
)

)

and ψ is injective, from the fact that the pseudoidentity (5) fails in H̄ it
follows that so does (4). �

From Theorem 4.1, one may adapt the arguments used in [7, proofs of
Corollaries 3.3 and 3.4] to deduce the following results. The adaptation
consists in dropping the hypothesis that the pseudovariety of groups H is
closed under extensions, and noting that in all cases the arguments yield
finite irreducibility rather than just strict finite irreducibility. The short
proofs are included for the sake of completeness.

Corollary 4.2. Let H be an arbitrary pseudovariety of groups. If H̄ is
contained in a semidirect product V ∗W, then it is contained in at least one
of the factors V and W.

Proof. By [11, Corollary 4.1.32], we have V ∗ W ⊆ LV ©m W. From the
hypothesis and Theorem 4.1, we deduce that H̄ is contained in at least one
of the Mal’cev factors LV and W. In the former case, since H̄ is monoidal, it
follows that it is contained in V. �

Corollary 4.3. If H is an arbitrary pseudovariety of groups, then H̄ is fji.

Proof. It suffices to note that V ∨W ⊆ V ∗W and apply Corollary 4.2. �

The special case of Corollary 4.3 where H is a pseudovariety of groups con-
taining some non-nilpotent group is part of [11, Corollary 7.4.23], which is
based on the construction of so-called Kovács-Newman semigroups. Corol-
lary 4.3 solves [11, Problem 47]. The strict version of that problem, as well
the Mal’cev and semidirect products counterparts had already been pro-
posed in [7]. From strict finite join irreducibility of H̄, it follows that H̄ con-
tains no maximal proper subpseudovariety. For pseudovarieties of groups H
containing Ab, this had previously been proved by Margolis [6].

1This is basically the easy part of the proof of the Pin and Weil Basis Theorem for
Mal’cev products [8].
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5. Further remarks on the bullet operator

Theorem 3.5 motivates a deeper understanding of the bullet operator. In
this section, we present a number of results that are meant to shed some
light on this operator. We start with a proposition which relates the bullet
operator with other operators on pseudovarieties of semigroups.

Proposition 5.1. Let V and W be pseudovarieties of semigroups, with W

monoidal. Then V •W is contained in each of the following pseudovarieties:

(1) (V ∨ ((N2 ©m W)©m RB))©m Sl;
(2) (V ∨ LZ ∨ (W ∗MD1))©m Sl.

Proof. Given S ∈ V, T ∈ W, and an arbitrary function f : S1 → T 1, consider
the semigroup M(S, T, f). The mapping ϕ :M(S, T, f) → {0, 1} that sends
all elements of S to 1 and all remaining elements to 0 is a homomorphism
into the 2-element semilattice under the usual multiplication. To prove
the proposition, it suffices therefore to show that the subsemigroup R =
S1×T 1×S1 ofM(S, T, f) belongs to both the pseudovarieties (N2©mW)©mRB

and LZ ∨ (W ∗MD1).
The mapping ψ : R → S1 × S1 that sends (s1, t, s2) to (s1, s2) is a ho-

momorphism into the rectangular band S1 × S1. Thus, to establish (1),
it remains to show that, for each pair (s1, s2) ∈ S1 × S1, the subsemi-
group Rs1,s2 = {s1} × T 1 × {s2} of R belongs to N2 ©m W. Indeed, consider
the mapping θ : Rs1,s2 → T 1 × T 1 that sends the triple (s1, t, s2) to the
pair (tu, ut), where u = f(s2s1). Since W is monoidal, θ takes its values in
a semigroup which is a member of W. We claim that, for each idempotent
(e, f) ∈ T 1 × T 1, the subsemigroup θ−1(e, f) of Rs1,s2 is null. Let t, t′ ∈ T 1

be elements such that (s1, t, s2), (s1, t
′, s2) ∈ θ−1(e, f). Then we have the

equalities e = tu = t′u and f = ut = ut′. It follows that

(s1, t, s2)(s1, t, s2) = (s1, t
′, s2)(s1, t, s2) = (s1, t

′, s2)(s1, t
′, s2),

and so the semigroup Rs1,s2 satisfies the identities x2 = xy = y2, which
implies that it is null.

To prove that R ∈ LZ ∨ (W ∗ MD1), we adapt the proof of [1, Proposi-
tion 10.6.4]. Consider the semigroups LZ(S1) and RZ(S1), which are the
set S1, respectively under left zero and right zero multiplications. We will
also be considering the monoid M = RZ(S1)1, whose identity element we
denote e. Let (T 1)M ∗ M be the semidirect product (in fact the wreath
product T 1 ◦M), where the left action of s ∈ M on a function g :M → T 1

is given by [w]sg = [w ⊙ s]g, the symbol ⊙ denoting multiplication in M .
For s ∈ S1 and t ∈ T 1, let gs,t :M → T 1 be defined by

[w]gs,t =

{

t if w = e

f(ws)t otherwise.

This allows us to define a mapping

λ : R→ LZ(S1)× ((T 1)M ∗M)

(s1, t, s2) 7→ (s1, gs1,t, s2).

Since [e]gs1,t = t, the mapping λ is injective. To conclude the proof, it suffices
to show that λ is a homomorphism. Indeed, given (s1, t, s2), (s

′
1, t

′, s′2) ∈ R,
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we have

λ
(

(s1, t, s2)(s
′
1, t

′, s′2)
)

= (s1, gs1,tf(s2s′1)t′ , s
′
2)

λ(s1, t, s2)λ(s
′
1, t

′, s′2) = (s1, h, s
′
2),

where h = gs1,t ·
s2gs′

1
,t′ is the function given by

[w]h =

{

t · [s2]gs′
1
,t′ = tf(s2s

′
1)t

′ if w = e

f(ws1)t · [w ⊙ s2]gs′
1
,t′ = f(ws1)tf(s2s

′
1)t

′ otherwise,

which shows that h = gs1,tf(s2s′1)t′ . �

The upper bounds for the bullet operation of Proposition 5.1 yield suffi-
cient conditions for a pseudovariety to be a bullet idempotent.

Corollary 5.2. Let V be a pseudovariety such that either N2©mV = V©mB =
V or V ∗ A = V©m Sl = V. Then V is a bullet idempotent. �

In view of Proposition 5.1, the following auxiliary results are of interest.

Lemma 5.3. The following conditions hold for an arbitrary pseudovariety
V of semigroups:

(a) V©m W = V for all W ∈ {Sl,RZ, LZ};
(b) V©m W = V for all W ∈ {Sl,RB};
(c) V©m B = V.

Proof. The implications (c) ⇒ (b) ⇒ (a) are obvious. Suppose that V

satisfies the closure properties (a). We claim that V also satisfies (c). Con-
sider a V-homomorphism ϕ : S → T into a band T . It is well known
that the relation J is a congruence on T , the quotient T/J being a semi-
lattice and each congruence class being a rectangular band. Hence, for
the natural quotient homomorphism η : T → T/J , the composite η ◦ ϕ
is a (V ©m RB)-homomorphism into a finite semilattice, which shows that
S ∈ (V©m RB)©m Sl = V. We leave it to the reader to verify that V©m RB ⊆
(V©m LZ)©m RZ, which shows that (a) ⇒ (c). �

The following lemma may be compared with Lemma 3.4, although neither
of them seems to imply the other one.

Lemma 5.4. We have Kn+1 ⊆ (N2 ©m Kn)©m LZ.

Proof. We use the Basis Theorem for Mal’cev products to compute the two
Mal’cev products of the statement of the lemma. First, N2 ©m Kn is defined
by all identities of the form

(6) a1 · · · anxa1 · · · any = a1 · · · anza1 · · · ant

where the ai are distinct variables and each of x, y, z, t may be either a
variable or 1. Hence, (N2 ©m Kn) ©m LZ is defined by the pseudoidentities
obtained from (6) by replacing each variable s by bxs, where xs is either the
variable s or 1, and b is a new variable, independent of s. Note that both
sides of such an identity start with the word ba1 · · · banb, whose length is at
least n+ 1, so that the identity holds in Kn+1. �

Proposition 5.5. The pseudovariety A is the smallest pseudovariety V that
satisfies the equations N2 ©m V = V©m B = V.
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Proof. Since A is a Mal’cev idempotent and contains both N2 and B, it
certainly satisfies the equations in question. Suppose next that V is a so-
lution of the equations. By Lemma 5.4, the pseudovariety K is contained
in V, whence so is the iterated Mal’cev product W = K ©m∞ B. By [11,
Corollary 2.4.13], we have

W ∗MD1 ⊆ (Jxy = xzK ©m W)©m MD1

⊆ (Jxy = xzK ©m (K©m∞ B))©m MD1

⊆ ((Jxy = xzK ©m K)©m∞ B)©m B

⊆ K©m∞ B = W

since Jxy = xzK ⊆ K and K is a Mal’cev idempotent. As A is the clo-
sure under semidirect product of MD1 by the Krohn-Rhodes Decomposition
Theorem [11, Theorem 4.1.30], we deduce that A ⊆ W ∗ A = W ⊆ V. �

A continuous homomorphism of the free profinite semigroup ΩAS into
ΩBS is also called a substitution over A. The following result is an immediate
application of the Basis Theorem for Mal’cev products.

Lemma 5.6. Let u = v be a pseudoidentity over the finite alphabet A.
Then the pseudovariety Ju = vK ©m B is defined by all pseudoidentities of
the form ϕ(u) = ϕ(v), where ϕ is a substitution over A such that each of
the pseudoidentities ϕ(a1) = ϕ(a2) (a1, a2 ∈ A) holds in B. In particular,
if the pseudovariety V is defined by a semigroup pseudoidentity in a single
variable, then V©m B = V. �

For a finite semigroup S and a subsemigroup T , the maximum of the
numbers n such that there is a strict J -chain t1 >J t2 >J · · · >J tn of
elements of T , where the order >J is that of S, is called the J -height of T
in S and we denote it hSJ (T ). We also write hJ (S) instead of hSJ (S).

Lemma 5.7. Let S be a finite semigroup, let T be a subsemigroup of S,
and let ψ : ΩBS → T be a continuous homomorphism, where |B| ≥ 2.
Suppose that f : ΩAS → ΩBS is a continuous homomorphism such that
c(f(a)) = B for every a ∈ A and, moreover, the pseudovariety B satisfies
every pseudoidentity of the form f(a1) = f(a2) with a1, a2 ∈ A. Then either
the subsemigroup U = Im(ψ ◦ f) is a group or it satisfies the inequality
hSJ (U) < hSJ (T ).

Proof. Let w1, . . . , wr ∈ ΩAS be such that ψ(f(w1)) >J · · · >J ψ(f(wr))
where r = hSJ (U). Suppose that r = hSJ (T ). For each a ∈ A and b ∈ B,
since b ∈ c(f(a)), we have ψ(b) ≥J ψ(f(a)) ≥J ψ(f(w1)). The assumption
that r = hSJ (T ) then implies that ψ(b), ψ(f(a)), and ψ(f(w1)) all lie in the
same J -class of S. Since all f(a) start with the same letter from B and
they all end with the same letter from B, we deduce that all ψ(f(a)) lie in
the same H-class of S. Moreover, since c(f(a)) = B, and |B| ≥ 2, it follows
that all ψ(f(a)) lie in the same subgroup of S. Hence U is a group. �
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For a pseudovariety H of groups and a positive integer n, we let

H
′
n = (Nn ∩ Com) ∨ H,

H
′ = H

′
∞ =

⋃

n≥1

H
′
n = (N ∩ Com) ∨ H.

The following result shows that the only pseudovarieties for which one may
use the first sufficient condition of Corollary 5.2 to establish that they are
bullet idempotents are those of the form H̄.

Theorem 5.8. Let V be a pseudovariety and let H = V ∩ G. If m ∈
{1, 2, . . .} ∪ {∞} is the index of V, then the following equalities hold:

V©m∞ B = H
′
m ©m∞ B = Bm,ω ∩ H̄.

Proof. From the hypothesis that V has index m, it is easy to deduce that V
contains Nm ∩Com. Since H̄ is a Mal’cev idempotent and Bm,ω ©m B = Bm,ω

by Lemma 5.6, it suffices to establish the inclusion

(7) Bm,ω ∩ H̄ ⊆ H
′
m ©m∞ B.

To establish (7), let S ∈ Bm,ω ∩ H̄ and let n = hJ (S). Iterating the Basis
Theorem for Mal’cev products, we obtain that the pseudovariety H′

m ©mn B

is defined by the pseudoidentities of the form g(u) = g(v), where

• H′
m satisfies u = v;

• A0 = A;
• each fi : ΩAi−1

S → ΩAi
S is a continuous homomorphism such that

B satisfies the pseudoidentity fi(x) = fi(y) for all x, y ∈ Ai−1;
• g = fn ◦ · · · ◦ f1.

Additionally, we may assume that c(fi(x)) = Ai for every x ∈ Ai−1 (i =
1, . . . , n). We claim that S satisfies every such pseudoidentity g(u) = g(v),
which will therefore establish that S belongs to H′

m ©mn B, thereby prov-
ing (7). To prove the claim, consider an arbitrary continuous homomorphism
ϕ : ΩAn

S → S.
Suppose first that ϕ ◦ g takes all its values in some subgroup of S. Since

S ∈ H̄, that subgroup satisfies the pseudoidentity u = v, whence ϕ(g(u)) =
ϕ(g(v)). Thus, we may assume that Im(ϕ ◦ g) is not a group.

Suppose next that Ai is a singleton set for some i. If both u and v are
not words of length less than m, then the pseudoidentity g(u) = g(v) is
equivalent in S to a pseudoidentity which is obtained by substituting in
u = v each variable x by some wαx , where yαx is a suitable infinite unary
pseudoword. Hence, ϕ ◦ g takes all its values in the same subgroup, a case
which has already been excluded. If u = v is an identity in which both sides
have length less than m then, since it is valid in Nm ∩ Com, every variable
appears the same number of times in both u and v, and so g(u) = g(v) is a
trivial pseudoidentity. Hence, we may assume that |Ai| ≥ 2 for i = 1, . . . , n.

For i = 1, . . . , n, let Ti = Im(ϕ ◦ fn ◦ · · · ◦ fi). Then the inclusions
Im(ϕ ◦ g) = T1 ⊆ · · · ⊆ Tn ⊆ S hold and none of the subsemigroups Ti is a
group. By Lemma 5.7, we obtain the inequalities

1 ≤ h
S
J (T1) < · · · < h

S
J (Tn) < hJ (S) = n,

which is absurd. The claim therefore holds in all cases. �
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In particular, for an arbitrary pseudovariety of groups H and an index
m ∈ {1, 2, . . .} ∪ {∞}, Theorem 5.8 gives a filtration of Bm,ω ∩ H̄, namely

(8) H
′
m ⊆ H

′
m ©m B ⊆ H

′
m ©m2 B ⊆ · · · ⊆ H

′
m ©mn B ⊆ H

′
m ©mn+1 B ⊆ · · · ,

in the sense that the union of the chain is Bm,ω ∩ H̄. More generally, we
have the following result, where we say that a filtration is decidable if all its
terms are decidable.

Corollary 5.9. Let H be a pseudovariety of groups, let m be a positive
integer or ∞, and let V be a pseudovariety such that H′

m ⊆ V ⊆ Bm,ω ∩ H̄.
Then the chain

(9) V ⊆ V©m B ⊆ V©m2 B ⊆ · · · ⊆ V©mn B ⊆ V©mn+1 B ⊆ · · ·

is a filtration of Bm,ω ∩ H̄. The filtration is decidable if and only if so is V.
If m = ∞ and V $ H̄, then the filtration is strict.

Proof. Theorem 5.8 gives that (9) is indeed a filtration for Bm,ω ∩ H̄. For
the decidability statement, it suffices to recall the well-known fact that the
operator ©m W preserves decidability whenever W is locally finite and the
semigroups ΩnW are computable.

Suppose now that m = ∞ and V $ H̄. If V ©mn B = V ©mn+1 B for some
n ≥ 0, then the equality V©mn B = V©mn+k B holds for every k ≥ 1, and so
V©mn B = H̄, again by Theorem 5.8. Now, if we take n ≥ 0 to be minimum
so that V ©mn B = H̄, then n > 0 by the hypothesis that V is a proper
subpseudovariety of H̄, while n > 0 is impossible by Theorem 4.1. Hence
the filtration (9) is strict. �

Corollary 5.9 suggests the question whether the decidability of H entails
that of H′. Using the methods of [3] or [12], it is easy to show that H′ is
decidable if H-pointlike subsets of finite semigroups are computable. We
do not know if this property always holds for a decidable pseudovariety of
groups H.

In contrast, it is very easy to show that N ∨ H is decidable if and only
if the pseudovariety of groups H is decidable. Indeed, as observed in [1,
Section 9.1], given a semigroup S ∈ IE, with minimum ideal K, the mapping
S → (S/K) ×K that sends s ∈ S to (s/K, sω+1) is an injective homomor-
phism. Hence the pseudovariety N∨H = IE∩H̄ consists of all finite nilpotent
extensions of groups from H, whence it is decidable if and only if so is H.
Since, if H satisfies no nontrivial identities valid in Ab, then H′ = N ∨ H by
the methods of [1, Section 9.1], it follows trivially that H′ is also decidable
in such a case.

6. The bullet operator and the Krohn-Rhodes complexity

Still motivated by the search of further applications of Theorem 3.5, it is
natural to ask how the bullet operator behaves with respect to the Krohn-
Rhodes complexity. We refer the reader to [11, Chapter 4] for a recent
presentation of the Krohn-Rhodes decomposition theory, and in particular
to Section 4.12 in that book.

The complexity pseudovarieties are defined recursively by C0 = A, and
Cn+1 = Cn ∗ G ∗ A (n ≥ 0). The complexity of a finite semigroup S is the
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smallest n ≥ 0 such that S ∈ Cn and is denoted c(S). It remains an open
problem whether there is an algorithm to compute c(S) from a given finite
semigroup S.

For a positive integer n, denote by Tn the full transformation semigroup
of the set [n] = {1, . . . , n}, and by Sn the full permutation group of [n].

Proposition 6.1. There is a function f : Sn → Tn−1 such that Tn is a
homomorphic image of M(Sn, Tn−1, f).

Proof. Let e ∈ Tn be the (idempotent) mapping which is the identity on the
set [n − 1] and maps n to n − 1. We define the mapping f : Sn → Tn−1

by putting f(σ) = eσe|[n−1]. For t ∈ Tn−1, let t̄ ∈ Tn be the extension of t
to [n] which fixes n. Finally, consider the mapping ϕ :M(Sn, Tn−1, f) → Tn
defined by ϕ(σ) = σ for each σ ∈ Sn, and ϕ(σ, t, τ) = σet̄eτ for each triple
(σ, t, τ) ∈ Sn × Tn−1 × Sn. We claim that ϕ is an onto homomorphism.

Taking into account the way the multiplication is defined in the semigroup
M(Sn, Tn−1, f), the only case requiring some calculation to verify that ϕ is
a homomorphism is that of a product of two triples (σ1, t1, τ1), (σ2, t2, τ2) ∈
Sn × Tn−1 × Sn:

ϕ
(

(σ1, t1, τ1)(σ2, t2, τ2)
)

= σ1e t1 (eτ1σ2e)|[n−1] t2 eτ2

ϕ(σ1, t1, τ1)ϕ(σ2, t2, τ2) = σ1 et̄1e τ1σ2 et̄2e τ2.

Thus, to prove that ϕ is a homomorphism, it suffices to show that every
i ∈ [n] has the same image under the mappings e t1 (eτ1σ2e)|[n−1] t2 e and
et̄1e τ1σ2 et̄2e, which amounts to a straightforward calculation.

To prove that ϕ is onto, since it is well know that Tn is generated by Sn
together with any idempotent of rank n − 1, it suffices to observe that e,
which is such an idempotent, belongs to the image of ϕ: indeed we have e =
ϕ(1n, 1n−1, 1n), where 1k stands for the identity mapping on the set [k]. �

Since every finite semigroup embeds in some Tn, we deduce the following
result.

Corollary 6.2. The only solution V of the equation G • V = V is the pseu-
dovariety S. �

In particular, the only complexity pseudovariety Cn which is a bullet
idempotent is C0 = A.

More generally, for an arbitrary pseudovariety of groups H, the pseudova-
riety H̄ is a solution of the equation H • V = V by Lemma 3.1. We do not
know whether it is the smallest solution.

Consider the sequence of pseudovarieties (H̃n)n defined recursively by

H̃0 = H and H̃n+1 = (H̃n∗MD1)©mSl. By Corollary 5.2, the sequence defines a

filtration of the bullet idempotent H̃∞ =
⋃

n≥0 H̃n. Since H̄∗A = H̄©mSl = H̄,

the inclusion H̃∞ ⊆ H̄ always holds. By the Krohn-Rhodes Decomposition
Theorem [11, Theorem 4.1.30], we have Ĩ∞ = A. On the other hand, Corol-

lary 6.2 yields G̃∞ = S. We do not know whether in general H̃∞ = H̄. By
Theorem 4.1 and Corollary 4.2, if the equality holds then the filtration (H̃n)n
is strict. While the operator ©m Sl preserves decidability, we do not know
if this is also the case for the operator ∗ MD1. In particular, we do not
whether the decidability of H entails that of the filtration (H̃n)n.
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Note that c(Tn) = n − 1 (see [11, Theorem 4.12.31]) and c(Sn) = 1 for
n ≥ 2. Thus, by Proposition 6.1, the complexity of M(S, T, f) may be the
sum of the complexities of S and T . Here is a more precise result, albeit
somewhat more restricted, in the spirit of [11, Theorem 4.12.32].

Theorem 6.3. Let G be a finite group, T a finite monoid, and f : G → T
a mapping such that f(1) = 1, for every g ∈ G there are some h1, h2 ∈ G
such that f(h−1

1 ) = f(h1g) = f(h−1
2 ) = f(gh2) = 1, and 〈Im(f)〉 = T . Then

c
(

M(G,T, f)
)

= c(T ) + c(G).

Proof. Let M = M(G,T, f). In case G is the trivial group {1}, the as-
sumption on the mapping f entails that T is a trivial group. Hence M is
a two-element semilattice and c(M) = c(T ) = 0. From hereon, we assume
that G is a nontrivial group, i.e., that c(G) = 1.

Let e = (1, 1, 1) ∈ M . To establish that c(M) = c(T ) + 1, we verify that
the following properties hold:

(a) M = 〈G ∪ {e}〉,
(b) MeM ⊆ 〈E(M)〉,
(c) eMe is isomorphic with T .

By [11, Proposition 4.12.23], it follows that c(M) = c(eMe) + 1 = c(T ) +
c(G).

(a) For g ∈ G, we have (1, f(g), 1) = ege. Since T is generated by the set
Im(f) and f(1) = 1, it follows that {1} × T ×{1} is contained in 〈G∪ {e}〉.
By the definition of the operation on M , we deduce G× T ×G ⊆ 〈G∪{e}〉,
which proves (a).

(b) For g ∈ G, choose h1, h2 ∈ G such that f(h−1
1 ) = f(h1g) = f(h−1

2 ) =

f(gh2) = 1. Then the elements (g, 1, 1) = (g, 1, h1)(h
−1
1 , 1, 1) and (1, 1, g) =

(1, 1, h−1
2 )(h2, 1, g) are products of idempotents, whence so is (1, f(g), 1) =

(1, 1, 1)(g, 1, 1). Since Im(f) generates T and f(1) = 1, it follows that
{1} × T × {1} ⊆ 〈E(M)〉. Hence, for g1, g2 ∈ G and t ∈ T , (g1, t, g2) =
(g1, 1, 1)(1, t, 1)(1, 1, g2) is also a product of idempotents.

(c) Since the mapping (1, t, 1) 7→ t is an isomorphism {1}×T ×{1} → T ,
it suffices to note that eMe = {1} × T × {1}. �

As an example, suppose that n ≥ 3 and consider the mapping f :
Sn → Tn−1 which sends the cycles (1, 2) and (1, 2, . . . , n− 1) to themselves,
(1, 2, . . . , n) to the idempotent that fixes all points of [n − 1] and maps n
to n− 1, and every other element to the identity on [n− 1]. It is well known
that 〈Im(f)〉 = Tn−1 and it is easy to check that f satisfies the hypothesis
of Theorem 6.3. Hence, c(M(Sn, Tn−1, f)) = c(Tn−1) + c(Sn) = n− 1.
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