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Abstract. We give a counterexample to the conjecture which was originally formulated by
Straubing in 1986 concerning a certain algebraic characterization of regular languages of level
2 in the Straubing-Thérien concatenation hierarchy.

1. Introduction

This paper contributes to one of the most interesting open problems in the theory of regular
languages, namely the characterization of regular languages of the second level in the Straubing-
Thérien concatenation hierarchy. For a detailed overview, missing definitions, and complete
references we refer to the basic survey paper [5] (Section 8).

The individual levels of the Straubing-Thérien hierarchy are defined inductively by alternately
taking polynomial and Boolean closures, starting from the trivial variety of languages. It was
proved in [6] that the languages from the second level V2 are the finite Boolean combinations
of the languages of the form A∗

0a1A
∗

1a2 . . . akA
∗

k where the ai’s are letters and the Aj ’s are sub-
sets of A. Since the class V2 forms a variety of languages, one can consider the corresponding
pseudovariety of monoids V2 according to Eilenberg’s correspondence. Some algebraic charac-
terizations of the class V2 were established in [6]. Here we only recall that V2 = PJ, where the
pseudovariety of finite monoids PJ is the pseudovariety generated by all power monoids P(M),
where M is an arbitrary finite J -trivial monoid. Unfortunately, there is no general algorithm
to compute the power operator [2], even though many specific computations have been carried
out [1, Chapter 11].

It was conjectured by Straubing [10] (see also a discussion in the full version of that pa-
per [11] and comments in [12]) that V2 is equal to a certain pseudovariety CJ which is given by
pseudoidentities (see e.g. page 400 in [1]) and which can be effectively characterized. Straub-
ing proved the inclusion V2 ⊆ CJ and that the classes V2 and CJ do not differ on monoids
generated by two elements. It has also been shown by Cowan [3, 4] that the two classes contain
precisely the same inverse monoids.

We will use the alternative formulation of the Straubing conjecture based on the equality
CJ = B1 ©m Sl which follows from non-trivial general results given by Pin and Weil in [7]
(see also [5, Theorem 6.5]). Here ©m is the Mal’cev product and B1 is the pseudovariety of
finite semigroups corresponding to the variety of languages of dot-depth one and Sl is the
pseudovariety of finite semilattices (commutative and idempotent monoids)1. Pin and Weil [8]
have formulated a general conjecture2 concerning the Boolean-polynomial closure, which was
corrected in [9]. All these improvements did not change the original Straubing conjecture for
the class V2, so the present-day conjecture is the following.

Conjecture (Pin, Straubing, Weil [8, 9, 10, 11, 12]). V2 = B1 ©m Sl.

In the rest of the paper we provide a counterexample to this conjecture, and consequently
also to the generalization from [9].

Theorem. V2 6= B1 ©m Sl.

1For the definition of the Mal’cev product see e.g. [5, Section 6] and for details on B1 see [5, Section 8.2]. The
pseudovariety Sl is also often denoted J1.

2See also the table in [5, Section 10].
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2. Proof of the theorem

We give a certain pseudoidentity which is satisfied in V2 and a monoid M ∈ B1 ©m Sl such
that M does not satisfy this pseudoidentity. In other words we have M ∈ B1©m Sl and M 6∈ V2.

First of all, we recall the characterization of languages of level 3/2 of the Straubing-Thérien
hierarchy. This level V3/2 consists of finite unions of languages of the form A∗

0a1A
∗

1a2 . . . akA
∗

k,
where each Ai ⊆ A and each aj ∈ A, and it forms a positive variety of languages. By α(u) we
denote the set of all variables occurring in an implicit operation u.3

Proposition 1 ([8, Theorem 8.7], [5, Theorem 8.9]). A language is of level 3/2 if and only
if its ordered syntactic monoid satisfies the pseudoidentity uωvuω ≤ uω for all u, v such that
α(u) = α(v).

Note that the pseudoidentity xω+1 = xω is a consequence of pseudoidentities from Proposi-
tion 1. The pseudovariety of ordered monoids corresponding to V3/2 is denoted by V3/2 and if
a pseudovariety V satisfies a pseudoidentity π ≤ ρ then we write V |= π ≤ ρ. The following
proposition gives new pseudoidentities for the pseudovariety V2.

Proposition 2. Let u and v be implicit operations such that V3/2 |= u ≤ v. Then V2 |= uω =
uωvuω.

Proof. It is clear that V2 |= π = ρ if and only if V3/2 |= π = ρ, i.e. if and only if V3/2 |= π ≤ ρ
and V3/2 |= ρ ≤ π.

From the assumption V3/2 |= u ≤ v, we deduce that α(u) = α(v) because Sl ⊆ V3/2. From
Proposition 1, we obtain immediately V3/2 |= uωvuω ≤ uω.

When we multiply u ≤ v by uω from both sides, we obtain uωuuω ≤ uωvuω. Since V3/2 |=

xω+1 = xω, we deduce that V3/2 |= uω ≤ uωvuω. �

We consider the following implicit operations over the set of variables X = {x, y, z}:

(1) π = (xy)ωx , ρ = z π π z , σ = z π z .

Proposition 3. The pseudovariety of finite monoids V2 satisfies the following pseudoidentity

(2) ρω = ρωσ ρω.

Proof. Applying Proposition 1 to the pair of explicit operations xy and xxy, we obtain that
V3/2 satisfies the pseudoidentity (xy)ωxxy(xy)ω ≤ (xy)ω. If we multiply it by x on the right,
then we deduce that V3/2 |= ππ ≤ π. Hence V3/2 |= ρ ≤ σ and the statement follows from
Proposition 2. �

In the sequel, we consider a monoid M which is the transformation monoid of the automaton
over the alphabet A = {a, b, c} given in Figure 1.

Note that the automaton is not deterministic since there is no action of the letter c on the
state 2. Hence the elements of the monoid M are partial transformations. In Figure 2 we
can see the structure of the monoid M using the usual eggbox representation of J -classes,
where a ∗ marks a subgroup H-class. A crucial observation is that the partial transformation
c has incomplete domain and one-element range. Hence each transformation given by a word
containing the letter c has one-element range or it is the empty transformation, i.e. the element
0. It is easy to see that all partial transformations from M which have one-element ranges are
J -related. Further, the ideal generated by the element c, denoted by McM , consists of the two
bottom J -classes of M and hence it is a completely 0-simple semigroup.

Proposition 4. M ∈ B1 ©m Sl.

3More precisely α is a morphism from the free profinite semigroup to the free profinite semilattice over the
same set.
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Figure 1. An automaton representation of the monoid M .
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Figure 2. The eggbox picture of the monoid M .

Proof. To prove the statement, we describe a relational morphism τ fromM to a certain semilat-
tice4. Let ϕ : A∗ →M be the morphism identifying letters from the fixed alphabet A = {a, b, c}
with the corresponding elements of M , i.e. with partial transformations on the three element
set {1, 2, 3}. We denote by PA the set of all subsets of A and consider the union operation on
PA. So, PA is a monoid from the class Sl, in particular each element of PA is an idempotent.
We consider a morphism α from A∗ to PA such that α(w) is the set of all letters occurring in
w ∈ A∗.5

Now we consider the relational morphism τ : M → PA, given by the formula

τ(m) = {α(w) | w ∈ A∗ , ϕ(w) = m} , for m ∈M.

It is clear that τ is indeed a relational morphism as τ = α ◦ϕ−1. Since PA ∈ Sl, it is enough to
prove that for each B ∈ PA we have τ−1(B) ∈ B1.

For B = ∅, the subsemigroup τ−1(B) is a trivial monoid. Now assume that B 6= ∅, c 6∈ B.
Then it is easy to see that the subsemigroup ofM generated by the letters a and b is the syntactic
semigroup of the language A∗aaA∗ which is of dot-depth one6. Hence the subsemigroup τ−1(B)
belongs to B1.

4See [5, Section 6] for formal definitions.
5Note that this is a restriction of the content function α used in Proposition 1, which justifies using the same

notation.
6This semigroup is usually denoted by A2 in the literature.
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If we assume that c ∈ B, then τ−1(B) is a subsemigroup of the semigroup McM . Note
that every aperiodic completely 0-simple semigroup is locally a semilattice. It is well known
(cf. [5, Theorem 5.18]) that the pseudovariety of all local semilattices LSl corresponds to locally
testable languages. Clearly, every locally testable language is of dot-depth one, so we conclude
that McM ∈ LSl ⊆ B1. The required property τ−1(B) ∈ B1 follows. �

We finish the proof of the theorem with the following observation.

Proposition 5. The monoid M does not satisfy the pseudoidentity (2).

Proof. We consider the following substitution ψ : X → A given by the rules ψ(x) = a, ψ(y) = b,
ψ(z) = c. Then it is easy to check that ψ(π) = (ab)ωa = a, ψ(ρ) = caac = c, ψ(σ) = cac = 0.
Finally, we have ψ(ρω) = c 6= 0 = ψ(ρωσ ρω). �
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Kotlářská 2, Brno 61137, Czech Republic

4


