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Abstract. We construct examples of vector fields on a three-
sphere, amenable to analytic proof of properties that guarantee
the existence of complex behaviour.

The examples are restrictions of symmetric polynomial vector
fields in R

4 and possess heteroclinic networks producing switching
and nearby suspended horseshoes.

The heteroclinic networks in our examples are persistent under
symmetry preserving perturbations.

We prove that some of the connections in the networks are the
transverse intersection of invariant manifolds. The remaining con-
nections are symmetry-induced.

The networks lie in an invariant three-sphere and may involve
connections exclusively between equilibria or between equilibria
and periodic trajectories.

The same construction technique may be applied to obtain other
examples with similar features.
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1. Introduction

Although chaotic dynamics is known to be a prevalent feature of
dynamical systems, there are not many examples in the literature where
a chaotic invariant set can be obtained analytically. In this paper we
construct examples that, although exhibiting complicated behaviour,
are sufficiently simple to be treated analytically.

Simple systems may be used as prototypes for partial behaviour in
more complicated ones. For example, in dynamical systems equivariant
by the action of a symmetry group, it is natural to reduce the study
of the original problem to its restriction to the quotient space by part
of the group action (see for instance, [Aguiar et al., 2005] and also
[Chossat, 2002] and references therein).

A lot of attention has been given recently to heteroclinic networks,
both in their own right and as the cause of complicated nearby dynam-
ics. In this paper we construct examples of polynomial vector fields
with heteroclinic networks that originate chaotic dynamics around them.
These networks have some connections arising through the transverse
intersection of invariant manifolds. Analytical proof of this type of
property is usually difficult but can be achieved in our examples. Our
examples exhibit networks with connections between equilibria and be-
tween equilibria and a periodic trajectory. An example with a connec-
tion involving uniquely limit cycles may be found in ([Field, 1996],
example 7.2).

The complicated dynamics in our examples arises in two ways [Aguiar
et al., 2005]. First, transverse intersection of two-dimensional mani-
folds, together with equilibria with complex eigenvalues, ensures the
existence of switching on the network: every sequence of connections
in the network can be shadowed by nearby trajectories of the flow.
Second, through heteroclinic cycles and complex eigenvalues and, near
these cycles, through suspended horseshoes. Dimension three is the
lowest compatible with this type of dynamical behaviour. We work in
R4, on an invariant three-sphere, obtained explicitly for each example.
Hence, we can use the compactness of the three-sphere to simplify both
the analytical proofs and the numerical study.

We use a construction technique that relies heavily on symmetry and
may be used to obtain examples with different features, thus providing
a set of tools for the construction of symmetric vector fields with pre-
scribed properties. The use of symmetry is, by no means, a handicap as
persistence of heteroclinic phenomena is natural in a symmetric setting
and not in the absence of symmetry. Furthermore, the dynamics near
the heteroclinic network will persist under small symmetry-breaking
perturbations, even if the network itself disappears. However, proving
the existence of complex behaviour in cases where too much symmetry
is broken may require the use of aditional tools such as, for instance,
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the computation of Lyapunov exponents. We conclude this section with
some preliminary definitions. Our construction is described in generic
terms in Sec. 2 and applied to the construction of specific examples in
Secs. 4 and 5. Section 3 contains several results concerning how prop-
erties of a Z2 symmetric vector field in R3 are reflected in properties of
the lifted vector field in R4. These results will be essential for proving
that the examples in the following sections possess the desired features.

Preliminaries. Let Γ be a compact Lie group acting linearly on Rn

and X a Γ-equivariant vector field on Rn. A relative equilibrium is a
Γ-orbit, Γ(x0) = {γ.x0 ∈ Rn : γ ∈ Γ}, that is invariant by the flow
of X. If the group Γ is finite then relative equilibria are finite sets of
equilibria.

Let A be a compact invariant set for the flow of X. Following Field
[1996] we say that A is an invariant saddle if both W s(A) \ A and

W u(A) \ A contain A. Notice that invariant saddles do not have to be
hyperbolic. In our examples they are hyperbolic (relative) equilibria.
We distinguish saddles which have complex eigenvalues and call them
saddle-foci.

Given two invariant saddles A and B, a k-dimensional connection
from A to B, [A→ B], is a k-dimensional X-invariant connected man-
ifold contained in W u(A) ∩W s(B). The connection is heteroclinic if
A 6= B.

Let {Ai, i = 0, . . . , n− 1} be a finite ordered set of mutually disjoint
invariant saddles for the vector field X. If there is a connection [Ai →
Ai+1] for each i = 0, . . . , n− 1 (mod n) then we say that

n−1
⋃

i=0

Ai ∪ [Ai → Ai+1]

is a heteroclinic cycle with invariant saddles {Ai}.
We think of a heteroclinic network as a finite union of heteroclinic

cycles. The saddles defining the heteroclinic cycles and network are
called nodes of the network.

Denote by Sn
r = {X ∈ Rn+1 : |X| = r}, r ≥ 0, the n-dimensional

sphere of radius r.
If Sn

r is flow invariant, we say it is globally attracting if every tra-
jectory with nonzero initial condition is asymptotic to Sn

r in forward
time.

2. Heuristics of the Construction

Our aim is to construct examples of polynomial vector fields X on
R4 with the following properties:

• X is equivariant for some discrete subgroup of O(4).
• There is an invariant globally attracting three-sphere preserved

by the group action.
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• On the invariant sphere there is a heteroclinic network whose
nodes are either equilibria or closed trajectories of X.

• The connections in the network are one-dimensional and of two
types:
(c1) intersection of the invariant sphere with a two-dimensional

fixed-point subspace,
(c2) transverse intersection of invariant manifolds.

Examples are constructed in three essential steps:

(1) Construction of a Z2-equivariant vector field X3 on R3 with
an attracting two-sphere and a heteroclinic network of one-
dimensional connections of type (c1) on the sphere. The Z2-
equivariance is needed for the next step.

(2) Construction of an SO(2)-equivariant vector field X4 on R4 —
by a rotation of X3 — with a globally attracting three-sphere
and a heteroclinic network on this sphere. Some of the hete-
roclinic connections will be two-dimensional and typically non-
transverse.

(3) Perturbation of X4 to X
p
4, by adding terms that destroy the

SO(2)-symmetry while preserving the invariant three-sphere.
The symmetry-breaking terms are chosen so as to perturb the
non-transverse two-dimensional connections into transverse in-
tersections of invariant manifolds.

This construction is loosely inspired by [Swift, 1988] and initially
suggested by Mike Field.

Step 1. Consider the Z2 action on R3 that keeps a two-dimensional
vector subspace fixed. In suitable coordinates, this action is given by:

(1) k · (ρ, z, w) = (−ρ, z, w).

We denote this representation by Z2(k).
We want the Z2(k)-equivariant vector field X3 to have an invariant

two-sphere S2
r and, on this sphere, heteroclinic connections between

relative equilibria. This is easily achieved if X3 has more symmetry
than the minimal Z2(k)-equivariance needed for lifting it to R4. Sym-
metry provides natural flow-invariant subspaces (fixed-point spaces)
where connections are easy to find, especially if there is an invariant
two-sphere.

Start with the vector field X0(X) = (r2−|X|2)X for X = (ρ, z, w) ∈
R3, r > 0. Then X0 is equivariant under the standard O(3) action on
R3 and the sphere S2

r is invariant and globally attracting.
Now choose a finite subgroup Γ of O(3) with the following properties:

• there is an element of Γ that acts as k in (1),
• there are at least two isotropy subgroups of Γ with two-dimen-

sional fixed-point spaces.
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Among the Γ-equivariant polynomial vector fields choose those that
are tangent to S2

r. Perturb X0 by adding some of these to obtain a
Γ-equivariant vector field X3.

At this stage the vector field X3 possesses an invariant sphere S2
r, and

from the symmetry, flow-invariant planes and invariant lines where any
two planes meet. These subspaces meet S2

r at pairs of equilibria and
arcs connecting them. The number and location of other equilibria on
S2

r can be controlled, by a suitable choice of the perturbation terms, to
obtain a vector field with a made-to-order heteroclinic cycle or network
on the two-sphere.

Step 2. The vector field X4 on R4 is obtained by adding the auxil-
iary equation ϕ̇ = 1 and interpreting the coordinates (ρ, ϕ) as polar
coordinates.

The lifted vector field X4 is SO(2)-equivariant for the action given
by a phase shift ϕ 7→ ϕ+ψ in the angular coordinate ϕ. In rectangular
coordinates (x, y, z, w) on R4, with x = ρ cosϕ and y = ρ sinϕ, the
action is

ψ · (x, y, z, w) = (x cosψ − y sinψ, x sinψ + y cosψ, z, w).

Because of the Z2(k)-equivariance, X3 has the form

ρ̇ = ρf1(ρ
2, z, w),

ż = f2(ρ
2, z, w),

ẇ = f3(ρ
2, z, w),

with fj : R3 → R, j = 1, 2, 3, and it lifts by rotation to a vector field
X4 of the form,

ẋ = xf1(x
2 + y2, z, w) − y,

ẏ = yf1(x
2 + y2, z, w) + x,

ż = f2(x
2 + y2, z, w),

ẇ = f3(x
2 + y2, z, w).

The original vector field X3 may be recovered from the last three
equations of X4 by taking x = 0 and y = ρ. The Z2(k) symmetry
is essential to guarantee that the rotation, and therefore X4, are well-
defined.

The result is a vector field X4 with SO(2)-symmetry coming from k,
plus extra symmetries inherited from other elements of the group Γ.

The rotated vector field X4 will have, arising from its extra sym-
metries, at least one two-dimensional connection between two of its
relative equilibria: these connections are the intersection of the invari-
ant sphere with invariant hyperplanes that are fixed-point spaces, and
are non-transverse intersections of the stable and unstable manifolds
of the relative equilibria.
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Step 3. Perturb X4 by adding a polynomial vector field that breaks
some of the extra symmetry and is tangent to S3

r. The aim is to break
the two-dimensional heteroclinic connections into transverse intersec-
tions while preserving the invariance of S3

r.
Suppose the perturbing terms do not affect the equation for ϕ (ϕ̇ =

1). Then the dynamics of the perturbed vector field X
p
4 is described

by a time-dependent vector field Xr
3 on R3 obtained by integrating the

equation for ϕ and replacing ϕ(t) = t in the remaining equations. We
call Xr

3 the reduced vector field. Note that Xr
3 is a time-dependent

perturbation of X3.
We show that the perturbed heteroclinic connections correspond to

transverse intersection of invariant manifolds by applying a generaliza-
tion of Melnikov’s method (see [Bertozzi, 1988]) to Xr

3. The transver-
sality of the intersection is preserved by the lift to X

p
4.

3. Lifting Z2-equivariant Fields

We summarize some properties of X3 that, with the construction of
step 2, lift to properties of X4. We address, in particular, the relation-
ship between various flow-invariant sets of X3 and X4.

Given Σ ⊂ R3, define its lift by rotation L(Σ) ⊂ R4 to be the set
of points (x, y, z, w) such that either (ρ, z, w) or (−ρ, z, w) lies in Σ,
where ρ = ||(x, y)||. If Σ is Z2(k)-invariant then L(Σ) is the set of
points (x, y, z, w) such that (ρ, z, w) lies in Σ.

Consider the inclusion map i : R3 → R4, say i(ρ, z, w) = (ρ, 0, z, w).
Then L(Σ) is the SO(2)-orbit of i(Σ).

With this notation it follows:

Proposition 1. Let X3 be a Z2(k)-equivariant vector field on R3 and
X4 its lift to R4 by rotation. If Σ ⊂ R3 is invariant by the flow of
X3, then L(Σ) is invariant by the flow of X4. In particular, if p0 is an
equilibrium of X3 then L({p0}) is a relative equilibrium of X4.

Proof: Any X3-invariant set is the union of X3-trajectories, so we
only need to prove the result for the case when Σ is a trajectory of X3.

For a point p = (0, z, w) in Fix(Z2(k)), L({p}) = {i(p)}. Hence,
if the X3-trajectory Σ meets Fix(Z2(k)) then Σ ⊂ Fix(Z2(k)) by
equivariance, and L(Σ) = i(Σ) is a X4-trajectory. In particular, if
p0 ∈ Fix(Z2(k)) is an equilibrium then L({p0}) is an equilibrium of
X4.

If the trajectory Σ does not meet Fix(Z2(k)) and p ∈ Σ then each
point in L({p}) lies in the X4-trajectory of another point of i(Σ). In
particular, if Σ = {p0} is an equilibrium then L({p0}) is a closed tra-
jectory, a relative equilibrium of X4.
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Corollary 2. Let X3 be a Z2(k)-equivariant vector field on R3 and
X4 its lift to R4 by rotation. Trajectories connecting relative equilibria
of X3 lift to invariant manifolds connecting relative equilibria of X4.
In particular, if p0 and p1 are equilibria of X3 and connected by a
trajectory ξ, then:

(1) If ξ lies in Fix(Z2(k)), then p0 and p1 also lie in Fix(Z2(k))
and ξ lifts to a trajectory connecting the two equilibria i(p0)
and i(p1) of X4.

(2) If ξ lies outside Fix(Z2(k)), then ξ lifts to a two dimensional
connection of relative equilibria of X4 — note that here p0 and
p1 may either lift to equilibria or to closed trajectories.

Proposition 3. Let X3 be a Z2(k)-equivariant vector field on R3 and
X4 its lift to R4 by rotation. If Σ is a compact X3-invariant asymp-
totically stable set then L(Σ) is a compact X4-invariant asymptotically
stable set.

Proof: Compactness of L(Σ) follows from compactness of Σ and of
SO(2).

We have by hypothesis that there is a neighbourhood V of Σ such
that for Ṽ ⊂ V the forward trajectory of p ∈ Ṽ by the flow of X3 is
contained in V and ω(p) = Σ. Thus, the forward trajectories of points
in L(Ṽ) are contained in L(V) and have L(Σ) as ω-limit set, proving
the asymptotic stability of L(Σ).

Corollary 4. Let X3 be a Z2(k)-equivariant vector field on R3 and X4

its lift to R4 by rotation. If S2
r is an X3-invariant globally attracting

sphere then L(S2
r) = S3

r is an X4-invariant globally attracting sphere.

The result follows by propositions 1 and 3 and by observing that if
in the proof of proposition 3 the set S2

r is globally attracting then V
and Ṽ may be chosen to be R3 \ {0}.
Proposition 5. Let X3 be a Z2(k)-equivariant vector field on R3 and
X4 its lift to R4 by rotation. Let p0 be a hyperbolic equilibrium of X3.
Then L({p0}) is also hyperbolic.

Proof: The result follows by [Krupa, 1990] where it is shown that
near relative equilibria the vector field can be decomposed as the sum
of two equivariant vector fields: one tangent and the other normal to
the group orbit. The asymptotic dynamics of the vector field is deter-
mined by the asymptotic dynamics of the normal vector field modulo
drifts along the group orbit. Hence, hyperbolicity of an equilibrium p0

of X3 implies hyperbolicity of the relative equilibrium L({p0}) of X4.
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If p0 ∈ Fix(Z2(k)) then, by proposition 1, L({p0}) = {i(p0)} is an
equilibrium of X4. Let dX4(i(p0)) and dX3(p0) be the linearizations of
X4 and X3 at i(p0) and p0, respectively. The restrictions of dX4(i(p0))
and dX3(p0) to Fix(Z2(k)) have the same eigenvalues. In the comple-
mentary plane, dX4(i(p0)) has a pair of complex eigenvalues with real
part given by the remaining eigenvalue of dX3(p0).

Remark 6. (a) The SO(2)-orbit of any X4-invariant set is always
the lift of an X3-invariant set. In particular, any SO(2)-relative
equilibrium of X4 is the lift of an equilibrium of X3.

(b) Any X4-heteroclinic connection of relative equilibria is the lift
of an X3-heteroclinic connection of equilibria. This lift is the
union of one-dimensional heteroclinic connections of the same
relative equilibria.

4. Heteroclinic Network Between Two Saddle-foci

In this section we apply the heuristics of Sec. 2 to obtain a vector
field on R4 with a structurally stable heteroclinic network involving
two saddle points. These points have a pair of complex eigenvalues
and their invariant manifolds of dimension ≥ 2 intersect transversely.

From the results in [Aguiar, 2003], [Aguiar et al., 2005] it follows that
arbitrarily close to this network there is a suspended horseshoe. It also
follows from [Aguiar, 2003] that there is switching on this network.

Step 1: Example on R3. Let Γ ⊂ O(3) be the group of order 8
generated by:

d(ρ, z, w) = (ρ,−z, w),
q(ρ, z, w) = (−z, ρ,−w),

of orders 2 and 4, respectively, with k = dq2 acting as in (1).
The subgroups Z2(d) and Z2(k) = Z2(dq

2) have two-dimensional
fixed-point spaces,

Fix(Z2(d)) = {(ρ, z, w) : z = 0}
and

Fix(Z2(dq
2)) = {(ρ, z, w) : ρ = 0}.

The other fixed-point spaces are

Fix(Z4(d, q
2)) = {(ρ, z, w) : ρ = 0, z = 0},

F ix(Z2(dq
3)) = {(ρ, z, w) : ρ = z, w = 0}

and

Fix(Z2(dq)) = {(ρ, z, w) : ρ = −z, w = 0}.
The next theorem shows that perturbing X0(X) = (r2−|X|2)X with

S2
r-preserving Γ-equivariant polynomials we obtain a family of vector

fields X3 with phase portrait as in Fig. 1.
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ρ

w

pw+

z

Figure 1. Dynamics of X3 on the invariant two-sphere S2
r.

Theorem 7. Consider the Γ-equivariant vector field X3 on R3 with
equations given by

ρ̇ = ρ(λ− r2) − αρw + βρw2,

ż = z(λ− r2) + αzw + βzw2,

ẇ = w(λ− r2) − α(z2 − ρ2) − βw(ρ2 + z2),

with r2 = ρ2 + z2 + w2.
For λ > 0, β < 0, λβ2 < 8α2, and |λβ| < |α|

√
λ the following

assertions hold:

(a) The sphere S2
r, of radius r =

√
λ, is invariant by the flow of X3

and globally attracting.
(b) The North and South poles pw±

= (0, 0,±r) are hyperbolic sad-
dles of X3.

(c) When restricted to the invariant sphere S2
r, the invariant mani-

folds of pw−
and pw+ satisfy W s(pw−

) = W u(pw+) andW s(pw+) =
W u(pw−

), forming an asymptotically stable heteroclinic network
with four connections between the saddles pw±

.
(d) Besides pw−

, pw+ and the origin, X3 has four equilibria which
are unstable foci on the restriction to S2

r.
(e) The vector field X3 has no compact limit sets other than the

ones mentioned above.

Proof: Both the Γ-equivariance and assertion (a) follow from the
construction.

The equilibria in (b) and (d) are obtained by intersecting the one-
dimensional fixed-point subspaces with the sphere. A direct computa-
tion shows that these are the only equilibria in S2

r.
At the equilibria pw±

= (0, 0,±r) the non-radial eigenvalues are
(

λβ ± α
√
λ
)

and therefore they are hyperbolic saddles for the param-

eter values in the hypothesis. Their invariant manifolds meet S2
r on its

intersection with the two-dimensional fixed-point subspaces.
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At the other four equilibria the non-radial eigenvalues are
(

−λβ ±
√

λ2β2 − 8λα2
)

, and thus, for the parameter values used, they

are unstable foci on S2
r.

The stability of the network and assertion (e) follow from lemma 8
below.

Lemma 8. Under the conditions of Theorem 7, all points on S2
r, except

the unstable foci, are forward asymptotic to the heteroclinic network.

Proof: We prove the result for the invariant sector S given by
ρ ≥ 0, z ≤ 0 on S2

r. The dynamics on the other three sectors is the
same, due to the symmetry.

The Lie derivative of f(ρ, z, w) = (ρ− z)2 + w2 with respect to X3,
on the invariant sphere, is:

LX3f |S2
r

= −4βρzw2.

For β < 0 we have LX3f ≤ 0 in S. Let M be the largest invariant
set in S contained in {LX3f = 0}. By La Salle’s theorem ([La Salle &
Lefschetz, 1961], Th VI, Chap 2, §13), every trajectory in S tends to
M as t→ ∞.

Given that LX3f = 0 for ρ = 0, z = 0 or w = 0, and that
{ρ = 0}∪{z = 0} is the heteroclinic network, it remains to study the set
{w = 0}. On S2

r∩{w = 0} the third coordinate of X3 is ẇ = −α(z2−ρ2)
and this is zero only for z = −ρ, the unstable focus. Thus, in the sector
S, the ω-limit set is M = {(ρ, z, w) : ρ = 0∧z = 0}∩S. By symmetry,
on S2

r, the ω-limit set is the heteroclinic network.

Remark 9. Since all Γ-equivariant polynomials of degree 3 tangent to
S2

r and satisfying the properties below are used in the construction of
X3, any G-equivariant polynomial vector field of degree 3 on R3 with
those properties is equivalent to X3 for some choice of parameters.

Step 2: Example on R4. We use the procedure of Sec. 2 to lift
the three-dimensional vector field X3 to a vector field X4 on R4. The
expression for X4 is given in the next theorem.

The action of d on R3 induces the following action on R4

σ(x, y, z, w) = (x, y,−z, w).

The symmetry group of X4 (below) is isomorphic to Z2(σ)×SO(2),
with the usual action of SO(2) only in the first two coordinates.
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Theorem 10. Consider the Z2(σ)×SO(2)-equivariant vector field X4

on R4 with equations given by

ẋ = x(λ− r2) − αxw + βxw2 − y,

ẏ = y(λ− r2) − αyw + βyw2 + x,

ż = z(λ− r2) + αzw + βzw2,

ẇ = w(λ− r2) − α(z2 − x2 − y2) − βw(x2 + y2 + z2),

with r2 = x2 + y2 + z2 + w2.
For the parameter values in theorem 7 the vector field X4 satisfies

(C1) There is a three-dimensional sphere, S3
r, that is invariant by the

flow and globally attracting.
(C2) On the invariant three-sphere, X4 has an asymptotically stable

heteroclinic network with two saddle-foci, pw−
, pw+. The invari-

ant manifolds of the equilibria satisfy, on the invariant sphere,
W s(pw−

) = W u(pw+) and W s(pw+) = W u(pw−
). One of the

connections is two-dimensional, the others are one-dimensional.
The two-dimensional connection coincides with D−

{

pw−
, pw+

}

,
with D a two-dimensional sphere.

(C3) The vector field has no equilibria other than the origin, pw−
and

pw+.
(C4) The vector field has two hyperbolic periodic trajectories. On the

invariant sphere S3
r the periodic trajectories are repelling.

Proof: The proof relies on the results in Sec. 3.
Assertion (C1) follows directly from corollary 4 and the existence of

the invariant sphere on R3.
Assertion (C4) follows from the existence of the unstable foci on

S2
r, noting they do not lie in Fix(Z2(k)). From propositions 1 and 5

it follows that each pair of unstable foci lifts to an unstable periodic
trajectory.

As an immediate consequence of propositions 1 and 5 and asser-
tion (b) in theorem 7, pw±

on S3
r are saddle-foci. By remark 6(a) and

assertion (e) in theorem 7 we obtain (C3).
Corollary 2, remark 6(b) and the existence of the heteroclinic net-

work connecting the north and south poles of S2
r, prove the existence

of a heteroclinic network on S3
r also connecting the north and south

poles.
Two of the four connections of the network on S2

r lie in Fix(Z2(k))
and the other two do not. This creates a two-dimensional connection
on the lifted network.

The asymptotic stability of the network on S3
r follows from the as-

ymptotic stability of the network on S2
r and proposition 3.
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pw_

pw+

Figure 2. Invariant two-sphere D on S3
r that coincides

with the two-dimensional heteroclinic connection from
pw−

to pw+, when α > 0. (If α < 0 the arrows are
reversed.)

pw_

wp +

Figure 3. The one-dimensional connection from pw+ to
pw−

on the intersection of Fix(SO(2)) and S3
r.

Step 3: Perturbation and transverse intersection of manifolds.

We perturb X4 keeping S3
r invariant while breaking the invariance of

D. The perturbed system X
p
4 is:

ẋ = x(λ− r2) − αxw + βxw2 − y,

ẏ = y(λ− r2) − αyw + βyw2 + x,

ż = z(λ− r2) + αzw + βzw2 + δxw2,

ẇ = w(λ− r2) − α(z2 − x2 − y2) − βw(x2 + y2 + z2) − δxzw,

with r2 = x2 + y2 + z2 + w2.
The perturbing term (0, 0, xw2, xzw) is tangent to S3

r, destroys the
SO(2)-equivariance but still has the plane P = {(x, y, z, w) : x = y =
0} as a fixed-point subspace (for the remaining action of the rotation by
π). This guarantees the persistence of the one-dimensional connections
between the equilibria pw±

.
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There are no perturbing terms in the x and y components of the
vector field, the perturbing terms in the z and w components are zero
when w = 0; this simplifies computations.

Theorem 11. For the parameter values in theorem 7 and |δ| < −2β,
the vector field X

p
4 satisfies (C1), (C3) and (C4) of theorem 10, and

also,

(C5) In the restriction to the invariant sphere, the vector field X
p
4 has

a stable heteroclinic network involving the saddle-foci pw+ and
pw−

. The two-dimensional manifolds of the equilibria intersect
transversely along one-dimensional trajectories.

Proof: Statement (C1) follows from theorem 10 and the construc-
tion of X

p
4. For the remaining statements we rewrite X

p
4 in spherical

polar coordinates (r, θ, φ, ϕ) to obtain,

ṙ = r(λ− r2),

θ̇ = αr sin θ cos(2φ) + β

2
r2 sin(2θ) + δ

4
r2 sin(2θ) sin(2φ) cosϕ,

φ̇ = −αr cos θ sin(2φ) − δr2(cos θ)2(sinφ)2 cosϕ,
ϕ̇ = 1.

The behaviour on S2
r is governed by the time-dependent vector field

Xr
3 obtained by integrating the equation for ϕ̇ and by taking r =

√
λ,

(2)

θ̇ = αr sin θ cos(2φ) + β r2

2
sin(2θ) + δ r2

4
sin(2θ) sin(2φ) cos(t),

φ̇ = −αr cos θ sin(2φ) − δr2 cos2 θ sin2 φ cos(t).

The vector field Xr
3 can be seen as a non-autonomous perturbation of

X3 — for δ = 0 we recover X3 in spherical polar coordinates. Moreover,
the equations for θ̇ and φ̇ of vector field Xr

3 are time periodic with
period 2π and thus can be lifted to X

p
4 by considering the rotation

described by the fourth coordinate, ϕ. We can thus use Xr
3 and the

lifting properties of the results in Sec. 3 in this proof.
The constant solutions of Xr

3 and their stability remain unchanged
for the parameter values we are using, regardless of whether δ is zero
or not. Thus assertions (C3) and (C4) and the stability statement in
(C5) follow as in theorem 10.

In the next proposition we prove that in the restriction to the three-
sphere the two-dimensional invariant manifolds of the equilibria pw

intersect transversely. This ends the proof of (C5).

Proposition 12. With the hypotheses of theorem 11, for the restriction
of X

p
4 to the invariant three-sphere S3

r, the two-dimensional invariant
manifolds of pw−

and pw+ intersect transversely.

Proof: The transversality of the intersection of the two-dimensional
invariant manifolds in the flow of X

p
4 restricted to S3

r follows from
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the transversality of the intersection of the corresponding invariant
manifolds in the flow of the reduced vector field Xr

3. The latter is
proved using Melnikov’s method (see [Guckenheimer & Holmes, 1983],
[Bertozzi, 1988]).

The Eqs. (2) for Xr
3 on S2

r can be written as,

θ̇ = f1(θ, φ) + δg1(θ, φ, t),

φ̇ = f2(θ, φ) + δg2(θ, φ, t),

where g1 and g2 are periodic in t with period 2π. We denote f = (f1, f2)
and g = (g1, g2).

We consider (2) as a time-periodic perturbation of θ̇ = f1(θ, φ),

φ̇ = f2(θ, φ). As the unperturbed vector field is non-Hamiltonian the
Melnikov function is given by (see [Guckenheimer & Holmes, 1983],
Sec. 4.5)

M(t0) =

∫

∞

−∞

f(q0(t))∧g(q0(t), t+t0) exp
(

−
∫ t

0

traceDf(q0(s))ds

)

dt,

with q0(t) a parametrization of the unperturbed heteroclinic orbit.
The unperturbed X4-connection between pw−

and pw+ lies in D =
{x2 + y2 + w2 = λ

R
, z = 0}. In spherical polar coordinates, it is given

by φ = π
2

and φ = 3π
2

. Let q0(t) = (θ(t), π
2
) or q0(t) = (θ(t), 3π

2
).

As we have

f1(q0(t)) = −αr sin θ(t) + β

2
r2 sin(2θ(t)),

f2(q0(t)) = 0,
g1(q0(t), t+ t0) = 0,
g2(q0(t), t+ t0) = −r2 cos2 θ(t) cos(t+ t0),

the Melnikov function becomes

(3) M(t0) =
∫

∞

−∞
cos(t + t0)E(t)dt,

with

E(t) = r2 cos2 θ(t)

(

αr sin θ(t) − β

2
r2 sin(2θ(t))

)

e[−
R t

0
αr cos(θ(s))+βr2 cos(2θ(s))ds].

We prove in the appendix that the integral defining M(t0) converges.
In order to prove the transverse intersection of the invariant manifolds
it only remains to prove that M(t0) has simple zeros. Rewrite M(t0)
as

(4) M(t0) = cos(t0)C − sin(t0)S.

where C =
∫

∞

−∞
cos(t)E(t)dt and S =

∫

∞

−∞
sin(t)E(t)dt are convergent.

From (4), the Melnikov function has infinitely many zeros satisfying

(5) tan(t0) = C
S
, t0 ∈ R.
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The zeros t′0 of the Melnikov function are simple if dM
dt0

(t′0) 6= 0. We

have from (4),
dM
dt0

(t0) = − sin(t0)C − cos(t0)S.

Thus the zeros of the Melnikov function are simple, provided

tan(t0) 6= − S
C
, t0 ∈ R,

which is trivially verified, since the zeros of the Melnikov function sat-
isfy (5).
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Figure 4. Time series for the variables z (pictures on
the left) and w (pictures on the right), for the flow of the
unperturbed (pictures on the top) and perturbed (pic-
tures on the bottom) vector fields, when λ = 1, α =
1, β = −0.1, δ = 0.3.

Figures 4 and 5 (obtained using Dstool [Guckenheimer et al., 1997])
provide a numerical illustration of the transverse intersection of the
invariant manifolds and indicate chaotic behaviour. That this is indeed
the case is discussed below. Before that we need to introduce some
terminology. Let Σ be a network with a finite set of nodes. We define
a path on Σ as a bi-infinite sequence (cj)j∈Z of connections in Σ such
that cj = [nj−1 → nj], with nj nodes of Σ.

LetNΣ be any neighbourhood of a network Σ and Un arbitrary neigh-
bourhoods of the nodes n ∈ Σ. For every connection contained in Σ, let
p be an arbitrary point on it and consider an arbitrary neighbourhood
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Figure 5. Projections on the (x, z)-plane (pictures on
the left), (x, w)-plane (pictures in the middle) and on
the (z, w) (pictures on the right), for the flow of the un-
perturbed (pictures at the top) and perturbed (pictures
at the bottom) vector fields, when λ = 1, α = 1, β =
−0.1, δ = 0.3.

Up of each p. We say there is switching on the network if, for each path
(ci)i∈Z contained in Σ, there is a trajectory x(t) ⊂ NΣ and sequences
(ti), (si) with ti−1 < si < ti such that x(si) ∈ Upi

and x(ti) ∈ Uni
,

where pi ∈ ci.

Proposition 13. Let Σ be the heteroclinic network for X
p
4 of theorem

11. Then, for the parameter values of theorem 11:

(1) There is switching on the network Σ.
(2) There is a suspended horseshoe in any neighbourhood of each

cycle in Σ.

Proof: The proposition follows from the results in Sec. 6 of [Aguiar
et al., 2005]. The hypotheses either are valid by construction, or proved
in theorem 11 and proposition 12. 1

Remark 14. Had we chosen, in perturbing X4, the only perturbation
tangent to S3

r that preserves the SO(2)-symmetry, we would have seen

1The existence of complex behaviour may be confirmed by calculating Lyapunov
exponents. One of the referees obtained estimates indicating that there exists one
positive Lyapunov exponent of about 0.9156.
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bifurcation of the heteroclinic network to an invariant two-torus close
to it. There is numerical evidence that the dynamics restricted to the
two-torus is quasi-periodic. See [Aguiar, 2003] for more detail.

5. Heteroclinic Network Between Saddle-foci and a

Periodic Trajectory

We use the same technique to construct another example — the
details are similar to those in Sec. 4.

In step 1 we consider the finite group Γ ⊂ O(3) generated by,

p(ρ, z, w) = (z, w, ρ),
k(ρ, z, w) = (−ρ, z, w).

The degree 3 normal form for the Γ-equivariant vector fields is given
in [Guckenheimer & Holmes, 1988]. We consider a perturbation X3 of
degree 5 given by,

ρ̇ = ρ (λ+ αρ2 + βz2 + w2 + δ(z4 − ρ2w2)) ,
v̇ = v (λ+ αz2 + βw2 + ρ2 + δ(w4 − ρ2z2)) ,
ẇ = w (λ+ αw2 + βρ2 + z2 + δ(ρ4 − z2w2)) .

For λ > 0, β + γ = 2α, β < α < γ < 0 and δ < 0, the sphere S2
r, of

radius r =
√

−λ
α
, is invariant by the flow of X3 and globally attracting.

On the invariant sphere, X3 has an asymptotically stable heteroclinic
network connecting the equilibria, pρ = (±r, 0, 0), pv = (0,±r, 0), and
pw = (0, 0,±r). Besides the equilibria in (b) and the origin, system X3

has eight unstable foci. The proof is analogous to those in the previous
section and can be found in [Aguiar, 2003].

Using step 2, the vector field X3 is lifted to X4 on R4. In step 3 we
use a perturbation of degree 5 to obtain X

p
4 given by

(6)
ẋ = x

(

λ + α
(

x2 + y2
)

+ βz2 + w2 + δ
(

z4 − (x2 + y2)w2
))

− ηy,

ẏ = y
(

λ + α
(

x2 + y2
)

+ βz2 + w2 + δ
(

z4 − (x2 + y2)w2
))

+ ηx,

ż = v
(

λ + αz2 + βw2 + (x2 + y2) + δ
(

w4 − (x2 + y2)z2
))

+ ξxyw
(

λ + 3α(x2 + y2)
)

,

ẇ = w
(

λ + αw2 + β(x2 + y2) + z2 + δ
(

(x2 + y2)2 − z2w2
))

− ξxyz
(

λ + 3α(x2 + y2)
)

.

Theorem 15. For λ > 0, β + γ = 2α, β < α < γ < 0, δ < 0, η ∈ R

and for values of ξ sufficiently small and such that |ξ| < −αβ+αγ+δλ

2λα
and

ξ2 <
(γ−β)(2δλ−αβ+αγ)

4αλ2 system (6) satisfies

(D1) There is a three-dimensional sphere, S3
r, that is invariant by the

flow and globally attracting, in the sense that every trajectory
with nonzero initial condition is asymptotic to the sphere in
forward time.

(D3) The only equilibria are the origin and the four saddle-foci p±v

and p±w. On the invariant sphere, p±v are of type 2, 1 and p±w

are of type 1, 2.
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(D5) In the restriction to the invariant sphere, system (6) has a struc-
turally stable heteroclinic network involving the four saddle-foci
p±v and p±w, and the periodic trajectory c. When α(β − α) +
δλ > 0 the two dimensional manifolds of the periodic trajec-
tory intersect transversely the two-dimensional manifolds of the
saddle-foci p±v and p±w.

(D) In addition to the periodic trajectory c, the system has four
hyperbolic periodic trajectories each in one connected component
of S3

r\ (D1 ∪ D2). On the invariant sphere, the four periodic
trajectories are repelling.

Proof: The proof is similar to that of theorem 11 and proposition
12 in Sec. 4. See [Aguiar, 2003] for details.
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Appendix A

Lemma 16. With the hypotheses of theorem 11, the Melnikov integral

M(t0) =

∫

∞

−∞

f(t)e−g(t)dt,

with

f(t) =
(

cos (t+ t0) r
2 cos2 θ(t)

)

(

αr sin θ(t) − β

2
r2 sin (2θ(t))

)

,

and

g(t) =

∫ t

0

αr cos(θ(s)) + βr2 cos(2θ(s))ds,

converges.

Proof: In order to prove that M(t0) converges, and since f(t) is
bounded, it is sufficient to prove that

∫

∞

−∞
e−g(t)dt converges.

We take α > 0. Recall that, we are studying the perturbation of the
heteroclinic connection in the plane {(ρ, z, w) : z = 0}, and thus

θ̇ = r sin θ (−α + βr cos θ) .

From the expression of the eigenvalues of the equilibria pw±
, in the

proof of theorem 7, when α > 0 the heteroclinic connection is from pw−

to pw+.
Thus, we have limt→+∞ θ(t) = 0, limt→−∞ θ(t) = π and θ(t) ∈

[0, π], ∀t ∈ R. For the parameter values we are considering, we have

α > |βr|, and thus −α + βr cos θ < 0, and θ̇ < 0 for θ ∈]0, π[.
We change variables u = θ(s) and obtain

g(t) =

∫ θ(t)

θ(0)

αr cos(u) + βr2 cos(2u)
du

θ̇
.

Computations with Maple give

g(t) = −A ln J(u)

]θ(t)

θ(0)

,
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with A = 1
(α−βr)(α+βr)

, and

J(u) =

(

1 + tan2(u
2
)
)2(α2−β2r2) (

tan(u
2
)
)(α+βr)2

(

(α− βr) + (α + βr) tan2(u
2
)
)(3α2−β2r2)

.

Since α > |βr|, we have A > 0. Also, we have

e−g(t) = J (θ(0))−A
J (θ(t))A

.

To prove that
∫

∞

−∞
e−g(t)dt converges, it is thus sufficient to prove the

convergence of
∫

∞

−∞
J(θ(t))Adt.

For the parameter values we are considering we have (see lemma 21
in [Aguiar, 2003]),

0 ≤ J(θ(t)) <
1

(α + βr)(3α2−β2r2)

(

sin(θ(t))

2

)(α+βr)2

.

Thus, we conclude that

J(θ(t))A <
(

1

(α+βr)(3α2−β2r2)

)A (

sin(θ(t))
2

)B

,

with 0 < B = α+βr

α−βr
< 1.

Thus, to prove that
∫

∞

−∞
J(θ(t))Adt converges we only need to prove

that

(7)
∫

∞

−∞

(

sin θ(t)
2

)B

dt

converges.
By arguments above, (7) is equal to

∫ π

0

( sin θ
2 )

B

r sin θ(α−βr cos θ)
dθ.

Since α > 0, β < 0 and α > |βr|, we have α − βr cos θ > 0. For
θ ∈]0, π[, we have,

(

sin θ
2

)B

r sin θ (α− βr cos θ)
=

1

2Br (sin θ)1−B (α− βr cos θ)
,

with 0 < 1 − B < 1.
It remains to prove that,

∫ π

0

1

(sin θ)1−B (α− βr cos θ)
dθ

converges, which is easily seen since 1
α−βr cos θ

is bounded, and
∫ π

0

1

(sin θ)1−B
dθ

converges, by comparison with
∫ π

0
1

θ1−B dθ.


