
THE WORD PROBLEM FOR ω-TERMS OVER DA

A. MOURA

Abstract. In this paper, we solve the word problem for ω-terms over DA. We
extend to DA the ideas used by Almeida and Zeitoun to solve the analogous
problem for the pseudovariety R applying also a representation by automata of
implicit operations on DA, which was recently obtained by the author. Consid-
ering certain types of factors of an implicit operation on DA, we can prove that
a pseudoword on DA is an ω-term if and only if the associated minimal DA-
automaton is finite. Finally, we complete the result by effectively computing
in polynomial time the minimal DA-automaton associated to an ω-term.

1. Introduction

The pseudovariety DA, the class of finite monoids whose regular D-classes are
aperiodic semigroups, has been the subject of recent studies due to its various ap-
plications. It is known that languages whose syntactic monoids lie in DA have
important algebraic, combinatorial, automata-theoretical and logical characteriza-
tions that enable us to solve problems in computational and complexity theory (see
Tesson and Thérien [13]).

On the other hand, word problems have long played an important role in various
branches of Mathematics. In this paper, we solve the word problem for ω-terms
over DA, which consists of deciding if two ω-terms are equal over all elements of
this pseudovariety. Almeida and Zeitoun [5, 4] solved the analogous problem for
the pseudovariety R. Based on this work, we characterize ω-terms over DA by the
finiteness of certain types of sets of factors and by the finiteness of the associated
minimal DA-automaton. We also construct in polynomial time this minimal DA-
automaton.

In [11], we exhibited three representations of implicit operations over DA: by
means of labeled trees of finite height, by means of quasi-ternary labeled trees, and
by means of labeled linear orderings. The paper has also an improvement of the
representation by quasi-ternary labeled trees, which may be infinite, consisting of
wrapping the DA-tree of an implicit operation. We obtain a representation by means
of DA-automata and we prove here that an ω-term has a finite representation by
the minimal DA-automaton. Since this paper depends on several definitions and
results from [11], the reader should refer to that paper as needed.

The paper is organized as follows. In Section 2, we introduce some notions and
notation about implicit signatures, concluding the corresponding section from [11].
We also recall the notion of central basic factorization of an implicit operation
on DA and the representation of implicit operations on DA by automata. Based
on Almeida and Zeitoun [5], we construct in Section 3 certain types of factors of

2000 Mathematics Subject Classification. 20M05; 20M07; 20M35.
Key words and phrases. Finite monoid; pseudovariety; word problem; pseudoword; omega-

term; aperiodic; regular D-class.

1

2 A. MOURA

an implicit operation. This allows us to characterize an ω-term on DA by the
finiteness of these sets of factors and by the finiteness of the associated minimal
DA-automaton, which is done in Section 4. Finally, in Section 5 we exhibit an
algorithm to compute a finite DA-automaton associated to an ω-term and we prove
that the minimal DA-automaton associated to an ω-term can be constructed in
polynomial time.

2. Preliminaries

We complete the introduction of notions and notation given in the corresponding
section of [11]. For further information on the basic background see, for instance, [1,
3].

In this paper, ΩAV denotes the free pro-V monoid on A. The natural interpreta-
tion of u ∈ ΩAV in a pro-V monoid S is the mapping uS : SA → S which associates
to each function µ : A → S the element µ̂(u) ∈ S. For u ∈ ΩAV, the sequence
(un!−1)n converges and we denote the limit by uω−1. Similarly, uω denotes the limit
of the sequence (un!)n, which is the unique idempotent in the closed subsemigroup
generated by u. The elements of ΩAV are called implicit operations over V or pseu-
dowords over V. Usually, the first name is used when these elements are viewed,
via their natural interpretation, as operations on finite semigroups, and the second
name is used when the elements are viewed as combinatorial entities generalizing
finite words. Recall that, if ι : A → ΩAV is the natural generating function, then
the submonoid generated by ι(A) is a dense submonoid of ΩAV.

An implicit signature is a set of implicit operations containing the monoid mul-
tiplication, · . The canonical signature κ = { · , ω−1} consists of the monoid
multiplication and the unary (ω−1)-power. A κ-term on the set A is an element of
the unary semigroup Tκ

A freely generated by A , and Ωκ
AV is the κ-submonoid of the

pro-V monoid freely generated by A, whose elements are called κ-words or κ-terms
over V. A κ-identity over V is an equality u = v, with u and v κ-words over V. The
κ-word problem for V consists in deciding if two κ-terms of Tκ

A have the same image
under the natural homomorphism into the free pro-V monoid, ι : Tκ

A → ΩAV. The
signature ω = { · , ω} is also of interest. Since, in an aperiodic monoid, any κ-term
coincides with the ω-term obtained by replacing all (ω−1)-powers by ω-powers, we
can work and formulate the results in terms of the signature ω, which we do from
hereon.

In Section 5, we adopt the simplified notation of McCammond [10] using the
curved parentheses to represent the ω-power, and so, the ω-terms are seen as words
on the extended alphabet A ∪ {(,)}.

Given w ∈ ΩADA\{1}, we consider the central basic factorization of w, under
the conditions described by Almeida [2], as the tuple (α, a, γ, b, β) ∈ ΩADA × A ×
ΩADA×A×ΩADA or as the triple (α, a, β) ∈ ΩADA×A×ΩADA satisfying one of
the following conditions:

(i) standard form: w = αaγbβ with a, b ∈ A, α, β, γ ∈ ΩADA, a /∈ c(α),
b /∈ c(β) and c(αa) = c(bβ) = c(w);

(ii) overlapped form: w = αbγaβ with a, b ∈ A, α, β, γ ∈ ΩADA, a /∈ c(αbγ),
b /∈ c(γaβ) and c(αbγa) = c(bγaβ) = c(w);

(iii) degenerate form: w = αaβ with a ∈ A, α, β ∈ ΩADA, a /∈ c(α), a /∈ c(β)
and c(αa) = c(aβ) = c(w).

THE WORD PROBLEM FOR ω-TERMS OVER DA 3

Almeida proved that this factorization exists and is unique and we denote it by
CBF(w). We iterate this factorization by applying it to the central factor γ until it
becomes 1 or the central basic factorization is of the degenerate form. We denote
this iterated central basic factorization (called of type 2 in [11]) by I2CBF(w) and it
has one of the following forms: I2CBF(w) = α1a1 · · ·αnanbnβn · · · b1β1, I2CBF(w) =
α1a1 · · ·αnanβn · · · b1β1 or I2CBF(w) = α1a1 · · · · · · b1β1.

To solve the word problem over DA, we use a result from [11] which states
that two pseudowords have the same DA-quasi-ternary tree if and only if they are
equal over DA. As these DA-trees may be infinite, and, as such, they may not
be calculated in full form, we use the improvement of this representation which
consists of representing the implicit operations on DA by means of DA-automata.

Briefly, the tree t(w) ∈ T2(A) which represents the pseudoword w ∈ ΩADA is
constructed recursively as follows: it has a root corresponding to the pseudoword
w and, assuming that CBF(w) = αaγbβ, the root is labeled by the pair (a, b)
and it has three sons, corresponding to the pseudowords α, γ and β, with edges
labeled 0, 1 and 2, respectively. If CBF(v) = αaβ is degenerate, for some vertex
corresponding to a pseudoword v, then this vertex is labeled a and it has only two
sons with edges labeled 0 and 2, respectively. Any tree of T2(A) is a DA-automaton,
t(w) = (V,→, q, F, λ), where q is the root, F is the set of vertices corresponding to
the empty word and λ is the state labeling function. The wrapped DA-automaton of
w, A(w), is the automaton obtained from t(w) by identifying states corresponding
to the same pseudoword. Moving the label of each state and adding it to the labels
of the edges starting in such state, we obtain an automaton that recognizes the
language associated to w, L(w) (see [11]), and which is minimal for the condition
L(A) = L(w). We end this section with the following powerful result from [11]:

Proposition 2.1. Let v, w ∈ ΩADA. Then DA |= v = w if and only if L(v) = L(w).

3. Factors of a pseudoword over DA

In this paper, we prove that the word problem can be effectively solved when we
work with ω-terms over DA. We start by considering certain types of factors of a
pseudoword w ∈ ΩADA.

Let w ∈ ΩADA. We define certain sets of factors of w: F(w), which consists of
the so called DA-factors of w; R(w), consisting of the relative remainders of w; and
S(w), the set of the absolute remainders of w.

We define fδ(w), l(δ,0)(w) and l(δ,2)(w) by induction on the length of δ ∈ {0, 1, 2}∗
as follows:

fε(w) = w

(fδ0(w), l(δ,0)(w), fδ1(w), l(δ,2)(w), fδ2(w))
def
= CBF(fδ(w))

or (fδ0(w), l(δ,0)(w), fδ2(w))
def
= CBF(fδ(w))

depending on whether the central basic factorization of fδ(w) is of the standard or
of the overlapped form, or if it is of the degenerate form. The set of DA-factors of
w is

F(w) = {fδ(w) | δ ∈ {0, 1, 2}∗ and fδ(w) is defined} ⊆ ΩADA.

It consists of the set of images under ρ : T2(A) 7→ ΩADA of the subtrees t(w), which
correspond to some factor of the form αδ, βδ or γδ of the iterated factorization of
some factor of the iterated central basic factorization of type 2 of w.

4 A. MOURA

The set of relative remainders of w is the set R(w) of elements of F(w), which
consists of the images under ρ of the subtrees attached to a vertex which is a son
from a central branch of a given vertex. These subtrees are the trees corresponding
to the factors γδ of some iterated factorization of a factor of the iterated central
basic factorization of type 2 of w. Formally, we write

R(w) = {fδ(w) | δ ∈ {0, 1, 2}∗1 and fδ(w) is defined} = f1(F(w)).

Let u, v ∈ ΩADA be such that u is a prefix of v. We use the notation u−1v to
represent any suffix of v such that v = u ·u−1v in ΩADA. Similarly, if u is a suffix of
v, we use vu−1 to denote any prefix of v such that v = vu−1 ·u in ΩADA. We define
the set of absolute remainders of w, S(w), to be the smallest subset containing w
and satisfying to the following conditions:

(i) u ∈ S(w)⇒ f0(u) ∈ S(w);
(ii) u ∈ S(w)⇒ f2(u) ∈ S(w);
(iii) u, v ∈ S(w), a ∈ A and o(ua) is an initial segment of o(v) implies that

(ua)−1v ⊆ S(w);
(iv) u, v ∈ S(w), a ∈ A and o(au) is a final segment of o(v) implies that

v(au)−1 ⊆ S(w).
Recall that o(u) is the reduced ∗-labeled linear ordering representing u ∈ ΩADA,

notation introduced in [11]. See Rosenstein [12] for the basics on linear orderings.
Let us see the relation that exists between the elements of S(w) and the closed
intervals of o(w), starting by observing some auxiliary results.

Lemma 3.1. Given w ∈ ΩADA, we have F(w) ⊆ S(w).

Proof. We obviously have w ∈ S(w). By conditions (i) and (ii) we have, respec-
tively, the elements f0(w) and f2(w) in S(w). By [11, Lemma 4.16], it follows
that, for each a ∈ A, there exist the smallest position of o(w) labeled a, p

o(w)
a ,

and the largest position of o(w) labeled a, p̄
o(w)
a . Therefore, and since A is finite,

there exist po(w) = max{po(w)
a |a ∈ A} and p̄o(w) = min{p̄o(w)

a |a ∈ A}. By defini-
tion of f0(w) and f2(w), it follows that o(f0(w)l(po(w))) is an initial segment of
o(w) and o(l(p̄o(w))f2(w)) is a final segment of o(w). By conditions (iii) and (iv),
f1(w) ∈ S(w). Proceeding inductively on the factors f0(w), f1(w) and f2(w), we
deduce that all the elements of F(w) are in S(w). ¤

Lemma 3.2. Let w ∈ ΩADA. For each position p in o(w), there exists a closed
interval o′ ⊆ o(w) such that:

(i) o′ ' o(fδ(w)) with fδ(w) ∈ F(w);
(ii) p = po′ or p = p̄o′ .

Proof. We proceed by induction on the content of w, c(w). If |c(w)| = 1, suppose
that c(w) = {a}, then w = an, with n finite, or w = aω. If w = an, with n finite,
then o(w) = n. In this case, o′ = o(f1p−1(w)), if p ≤ dn/2e, or o′ = o(f1n−p(w)),
if p > dn/2e satisfies the desired conditions (it is enough to observe that in the
iterated central basic factorization of w the factors αi and βi are all empty and
each letter a at a given position is a distinguished label in a position po′ or p̄o′

of some iteration). In the case where w = aω, we have o(w) = ω + ω∗. If p is a
position in ω, then we set o′ = o(f1p−1(w)). Otherwise, we set o′ = o(f1q−1(w)),
where q is the positive integer corresponding to the position p in ω + ω∗ when we

THE WORD PROBLEM FOR ω-TERMS OVER DA 5

count from right to left. In any case, the chosen orderings satisfy the conditions (i)
and (ii).

Now, suppose that |c(w)| > 1. We consider the iterated central basic factor-
ization of type 2 of w, I2CBF(w). Then, by [11, Theorem 4.5] and by the ana-
logue version of [11, Theorem 4.18] for T2(A), we have o(w) = o1 + 1 + o2+
1 + · · ·+ · · ·+ 1 + ō2 + 1 + ō1, for some orderings oi and ōi. If p ∈ o(w) corre-
sponds to any position labeled ai or bi of I2CBF(w), then o′ = o(f1i−1(w)) satisfies
the desired conditions. Otherwise, p is a position in oi or ōi, for some i. Since
the content of the pseudoword represented by this ordering is strictly contained in
c(w), the result follows by induction. ¤

Given fδ(w) ∈ F(w), with δ ∈ {0, 1, 2}∗, we define the depth of fδ(w), d(fδ(w)),
as the length of the word δ ∈ {0, 1, 2}∗.
Lemma 3.3. Let w ∈ ΩADA. Given fδ(w) ∈ F(w), with δ ∈ {0, 1, 2}∗, there
exist k ≥ 0, fδ1 , fδ2 , . . . , fδk

∈ F(w) and aδ1 , aδ2 , . . . , aδk
∈ A such that

o(fδ1aδ1fδ2aδ2 · · · fδk
aδk

fδ(w)) is an initial segment of o(w).

Proof. We proceed by induction on d(fδ(w)). The case where d(fδ(w)) = 0, i.e.,
fδ(w) = fε(w), is trivial since fε(w) = w. Let fδ(w) ∈ F(w), with δ ∈ {0, 1, 2}∗,
be such that d(fδ(w)) = 1. Three cases can occur: fδ(w) = f0(w), fδ(w) =
f1(w) or fδ(w) = f2(w). It follows, respectively, that o(f0(w)), o(f0l(po(w))f1(w))
and o(f0l(po(w))f1l(p̄o(w))f2(w)) are initial segments of o(w). Now, suppose that
d(fδ(w)) = n > 1. Let η be the prefix of δ with length |δ| − 1. By induction
hypothesis, there exist fη1 , fη2 , . . . , fηm ∈ F(w) and aη1 , aη2 , . . . , aηm ∈ A
such that o(fη1aη1fη2aη2 · · · fηmaηmfη(w)) is an initial segment of o(w). By def-
inition of fδ(w) ∈ F(w), it follows that fδ(w) is a factor of fη(w) if and only if
η is a prefix of δ. Consider the factors fη0, fη1, fη2 ∈ F(w). Note that one of
them is the factor fδ(w). We have, respectively, o(fη1aη1fη2aη2 · · · fηmaηmfη0(w)),
o(fη1aη1fη2aη2 · · · fηmaηmfη0l(po(η))fη1(w)) and o(fη1aη1fη2aη2 · · · fηmaηmfη0 ·
l(po(η))fη1l(p̄o(η))fη2(w)) as initial segments of o(w), in the cases where fδ(w) =
fη0(w), fδ(w) = fη1(w) and fδ(w) = fη2(w), respectively. ¤

Lemma 3.4. Let w ∈ ΩADA. We have:
(1) u ∈ S(w)⇒ ∃ p, q ∈ o(w) : o(u) ' [p, q];
(2) p, q ∈ o(w), p < q ⇒ ∃u ∈ S(w) : o(u) ' [p, q].

Proof. 1. By definition of f0(w), f1(w) and f2(w) and also by definition of po(w)

and p̄o(w), it follows that f0(w) ' [min o(w), po(w)[, f1(w) ']po(w), p̄o(w)[and
f2(w) ']p̄o(w),max o(w)]. Note that the predecessors and the successors of po(w)

and p̄o(w) exist in any ∗-labeled linear ordering. Applying [11, Lemma 4.16] to
each interval isomorphic to the elements f0(w), f1(w) and f2(w), respectively, and
proceeding inductively, we deduce that all elements of F(w) are isomorphic to closed
intervals of o(w). Let u ∈ S(w) and a ∈ A be such that o(ua) is an initial segment
of o(w). Then o((ua)−1w) is a reduced ∗-labeled linear ordering, by [11, Lemma
4.13], because it is a closed interval on o(w). Hence there exist p, q ∈ o(w) such
that o((ua)−1w) ' [p, q] (in this case q = max o(w)). We obtain a similar result
using the condition (iv). Proceeding inductively, we conclude that all elements of
S(w) are isomorphic to some closed interval of o(w).

2. Let p, q ∈ o(w) be such that p < q and consider the closed interval [p, q].
By [11, Lemma 4.13], [p, q] is a reduced ∗-linear ordering. We want to prove

6 A. MOURA

that it is isomorphic to the ∗-linear ordering corresponding to an element of S(w).
Let p′ = predecessor(p) and q′ = successor(q). Consider the interval [p′, q′]. By
Lemma 3.2, there exists fδ(w) ∈ F(w) such that p′ = po(fδ(w)) or p′ = p̄o(fδ(w)).
If p′ = po(fδ(w)), we choose the factor fδ0, and if p′ = p̄o(fδ(w)), we choose the
factor fδ0l(po(fδ(w)))fδ1. Let fδ1 , . . . , fδk

∈ F(w) and aδ1 , . . . , aδk
∈ A be such

that o(fδ1aδ1 · · · fδk
aδk

fδ(w)) is an initial segment of o(w), as we had shown in
Lemma 3.3. Then either o(fδ1aδ1 · · · fδk

aδk
fδ0l(po(fδ(w)))(w)) ' [min o(w), p′] or

o(fδ1aδ1 · · · fδk
aδk

fδ0l(po(fδ(w)))fδ1l(p̄o(fδ(w)))(w)) ' [min o(w), p′], depending on
the case. By condition (iii) applied either k + 1 or k + 2 times and, depending
on the case, using the factors fδi of this initial segment, fδ0 and fδ1, the letters
aδi

, l(po(fδ(w))) and l(p̄o(fδ(w))) and the pseudoword w, we obtain a pseudoword
v ∈ S(w) such that o(v) ']p′,max o(w)] = [p,max o(w)]. We proceed similarly
with q′ and using condition (iv) and the pseudoword v. It follows that there exists
u ∈ S(w) is such that o(u) ' [p, q]. ¤

We conclude, by Lemma 3.4, that the elements of S(w) correspond to the closed
intervals of o(w). Let u ∈ S(w) and let p, q ∈ o(w) be such that o(u) ' [p, q] as we
have seen in the previous lemma. Let fδ(w), fη(w) ∈ F(w), with δ, η ∈ {0, 1, 2}∗,
satisfy the conditions of Lemma 3.2, respectively, to p and q. We call p and q the
borders of u and |δ| and |η| are, respectively, the depth of each border.

4. Characterizations of ω-terms over DA

We solve the word problem for ω-terms over DA. For this purpose, we present, in
this section, several characterizations of an ω-term over DA. We start by observing
that the factors involved in the central basic factorization of an ω-term over DA are
also ω-terms over DA. As a tool to be used in inductive processes that follow, we
define, inductively, the length of an ω-term by |a| = 1, with a ∈ A, |uv| = |u|+ |v|
and |uω| = |u|+ 1.

Lemma 4.1. Let w ∈ Ωω
ADA\{1} and let (α, a, γ, b, β) (respectively, (α, a, β)) be

the central basic factorization of w. Then α, γ and β (respectively, α and β) are
also ω-terms over DA.

Proof. We proceed by induction on (c(w), |w|), where the pairs are ordered lex-
icographically. The case w ∈ A is trivial. Suppose that w = xω with x ∈
Ωω

ADA\{1} and that the factors involved in the central basic factorization of x,
CBF(x) = (α, a, γ, b, β) (respectively, CBF(x) = (α, a, β) in the degenerate case),
are ω-terms over DA. Then the central basic factorization of w is of one of the fol-
lowing forms: (α, a, γbβw2αaγ, b, β), in the standard case (note that w = xxω−2x =
x(xω−1)2x = x(xω)2x = xw2x), (αaγ, b, βw2α, a, γbβ), in the overlapped case, and
(α, a, βw2α, a, β), in the degenerate case. In any case, the factors involved are also
ω-terms over DA.

Now, suppose that w = xy, where the factors involved in the central basic
factorization of x and y are ω-terms over DA. Let CBF(x) = (αx, ax, γx, bx, βx)
or CBF(x) = (αx, ax, βx), and CBF(y) = (αy, ay, γy, by, βy) or CBF(y) = (αy, ay,
βy), be the central basic factorizations of x and y, respectively, depending on the
type of factorization. Several cases can occur:

(i) Suppose that c(x) = c(y) = c(w). Then the central basic factorization of w is
(αx, ax, γxbxβxαyayγy, by, βy), or (αxaxγx, bx, βxαyayγy, by, βy), or (αx, ax, γxbxβxαy,

THE WORD PROBLEM FOR ω-TERMS OVER DA 7

ay, γybyβy), or (αxaxγx, bx, βxαy, ay, γybyβy), depending on whether the central ba-
sic factorizations of x and y are, respectively, both of the standard form, CBF(x)
is of the standard form and CBF(y) is of the overlapped form, CBF(x) is of the
overlapped form and the CBF(y) is of the standard form, or both of the factor-
izations are of the overlapped form. In the cases where at least one of the cen-
tral basic factorizations of x and y is degenerate, we also have analogous central
basic factorizations of w. In fact, in the case where CBF(x) = (αx, ax, βx), we
have CBF(w) = (αx, ax, βxαyayγy, by, βy), CBF(w) = (αx, ax, βxαy, ay, γybyβy) or
CBF(w) = (αx, ax, βxαy, ay, βy), depending on whether the central basic factoriza-
tion of y is standard, overlapped or degenerate. In any case, the factors involved
are finite products of ω-terms and, therefore, they are ω-terms.

(ii) Now, we suppose that c(x) 6= c(w) and c(y) = c(w). We also suppose that the
central basic factorization of y is of the standard form, CBF(y) = (δyk

, ay0 , γy, by, βy),
where k = |c(y)| − 1. Let (δy(k−1) , ay1 , αy1) be the left basic factorization of δyk

,
as defined in [5]. Since c(δy(k−1)) $ c(δyk

) $ c(y), we repeat the process a finite
number of times until we obtain the factorization y = δy0ayk

· · · ay1αy1ay0γybyβy.
Remember that the factors involved in this factorization are also ω-terms, by [5,
Lemma 2.2] and by induction hypothesis. Let i be maximum such that c(w) = c(x ·
δy0ayk

· · · ayiαyiay(i−1)). Then we have CBF(w) = (x·δy0ayk
· · · ayiαyi , ay(i−1) , αy(i−1)

· · · ay0γy, by, βy), where all the factors involved are ω-terms. In the case where the
central basic factorization of y is degenerate, we use the same argument and we
obtain CBF(w) = (x · δy0ayk

· · · ayiαyi , ay(i−1) , αy(i−1) · · · ay1αy1 , ay0 , βy). Let us
see the case where the central basic factorization of y is of the overlapped form,
CBF(y) = (αy, ay, γy, by, βy). If c(xαy) = c(w) then, by a similar argument to the
one used in the previous case, we obtain CBF(w) = (x · δy0ayk

· · · ayiαyi , ay(i−1) ,

αy(i−1) · · ·αy1 , ay, γybyβy). If c(xαy) 6= c(w) and c(xαyay) = c(w), then CBF(w) =
(xαy, ay, γybyβy). In the case where c(xαyay) 6= c(w), we use a similar argument
for γy and we obtain CBF(w) = (xαy, ay, δy0byk

· · · byiγyi , by(i−1) , γy(i−1) · · · γy1byβy).
We obtain the dual result for the case where c(y) 6= c(w) and c(x) = c(w).

(iii) Finally, we can verify the case where c(x) 6= c(w) and c(y) 6= c(w) using,
again, an argument similar to that given for (ii). ¤

We say that an ω-term is reduced if it has no subterm of the form rωstω, with
c(s) ⊆ c(r) = c(t), and no subterm of the form (rsωzωt)ω, with r and t pseu-
dowords which may be empty and with c(t) ∪ c(r) ⊆ c(s) = c(z). Recall that, in
a pro-DA monoid, rωstω = rωtω, if c(s) ⊆ c(r) = c(t) (see [1, Lemma 8.1.4 and
Theorem 8.1.7]).

Lemma 4.2. Let w be an ω-term which defines an idempotent in ΩADA. Then we
have one of the following conditions:

(i) There exist ω-terms x, y, z, t such that DA |= w = xyωzωt, c(y) = c(z) =
c(w), |x| + |y| + |z| + |t| < |w| and x and t satisfy one of the following
conditions: they do not define idempotents over DA or c(s) (c(w) for both
s = x and s = t;

(ii) There exist ω-terms x, y, z such that DA |= w = xyωz, c(y) = c(w), |x| +
|y|+ |z| < |w| and x and z satisfy one of the following conditions: they do
not define idempotents over DA or c(s) (c(w) for both s = x and s = z.

We also have that xyωzωt (respectively, xyωz) is reduced.

8 A. MOURA

Proof. We begin by noting that the substitutions rωstω → rωtω, if c(s) ⊆ c(r) =
c(t), and (rsωyzωt)ω → rsωzωt, if c(ryt) ⊆ c(s) = c(z), do not change the value
of an ω-term over DA. Moreover, the length of the terms decrease when we apply
these substitutions. Let v be a reduced ω-term obtained from w by applying these
substitutions. Since w is idempotent over DA, v is also idempotent. Moreover,
|v| ≤ |w|. We write v = x1 · · ·xr, where each xi is a letter or a term of the form
yω

i . By [11, Corollary 3.17], there exists xi such that c(xi) = c(v) and xi = yω
i .

Suppose that there exists another factor xj with c(xj) = c(v) and xj = yω
j , for

some yj . Considering the fact that v is reduced, the factors xi and xj must be
consecutive and, therefore, v = xyωzωt, with x and t not satisfying one of the
conditions c(s) = c(v) = c(w) or s = yω

i , with s = x or s = t. Thus, either
x is not an idempotent, or x is an idempotent and c(x) (c(v), and similarly
for t. Now, suppose that no other xj is such that c(xj) = c(v) and xj = yω

j .
Then v = x1 · · ·xi−1xixi+1 · · ·xr = xyωz for some x, y, z, where x and z are not
idempotents or, if any of them is idempotent, then it has strictly smaller content
than v. We also have |x|+ |y|+ |z|+ |t| < |w| in the first case, and |x|+ |y|+ |z| < |w|
in the second case. ¤

We are now ready to present some characterizations of the ω-terms over DA.
The following is a sort of periodicity theorem for DA.

Theorem 4.3. Let w ∈ ΩADA. The following conditions are equivalent:

(a) L(w) is rational.
(b) A(w) is finite.
(c) The set {ρ(t(w)v) | v ∈ V } is finite, where t(w) = 〈V,→, q, F, λ〉.
(d) F(w) is finite.
(e) R(w) is finite.
(f) S(w) is finite.
(g) w ∈ Ωω

ADA.

Proof. (a) ⇔ (b): Given A(w), which is finite, we construct a finite automaton
recognizing L(w), by replacing the label of each edge in A(w) by the pair whose
first component is the label that the edge has in A(w) and the second component
is the label of the initial vertex of the edge in A(w). For the direct implication we
do the converse: given the minimal automaton that recognizes the language L(w)
(and it is unique by [11, Lemma 4.10]), we construct the automaton A(w) whose
states are labeled with the second component of the label of the edges that starts
from that state.

(b) ⇔ (c): Note that, by definition, there exists a bijection between the set of
states in A(w) and the pseudowords ρ(t(w)v), with v ∈ V . Hence, the result follows.

(c) ⇔ (d): Applying [11, Lemma 4.9] to t(w), we have that the set of vertices,
{ρ(t(w)v) | v ∈ V }, is in bijection with F(w).

(d)⇒ (e): It is obvious, because R(w) ⊆ F(w).
(e) ⇒ (f): Suppose that R(w) is finite. To show that S(w) is also finite, we

proceed by induction on |A|, where the case |A| = 0 is trivial. Now, suppose that
|A| ≥ 1. Let Sn(w) = {u ∈ S(w) | the borders of u have depth not exceeding n}.

THE WORD PROBLEM FOR ω-TERMS OVER DA 9

Then, we have

Sn+1(R(w)) ⊆ Sn[f0(R(w))] ·A · f1(R(w)) ·A · Sn[f2(R(w))]
∪Sn[f0(R(w))] ·A · Sn[f1(R(w))]
∪Sn[f1(R(w))] ·A · Sn[f2(R(w))]
∪Sn[f0(R(w))] ∪ Sn[f1(R(w))] ∪ Sn[f2(R(w))]

⊆ S[f0(R(w))] ·A · R(w) ·A · S[f2(R(w))]
∪S[f0(R(w))] ·A · Sn(R(w))
∪Sn(R(w)) ·A · S[f2(R(w))]
∪S[f0(R(w))] ∪ Sn(R(w)) ∪ S[f2(R(w))].

By induction on n and by definition of S(w), we obtain

Sn+1(R(w)) ⊆ ⋃n
i=0(S[f0(R(w))] ·A)i·

(S[f0(R(w))] ·A · R(w) ·A · S[f2(R(w))] ∪ S[f0(R(w))] ·A ∪R(w))⋃
(S[f0(R(w))] ·A · R(w) ·A · S[f2(R(w))] ∪A · S[f2(R(w))] ∪R(w))·⋃n
i=0(A · S[f2(R(w))])i⋃ S[f0(R(w))] ∪R(w) ∪ S[f2(R(w))]

for all n and, therefore, S(R(w)) is contained in the union of these sets. We also
have

S(w) ⊆ {w} ∪ S(f0(w)) ·A · R(w) ·A · S(f2(w))
∪S(f0(w)) ·A · S(R(w))
∪S(R(w)) ·A · S(f2(w))
∪S(f0(w)) ∪ S(R(w)) ∪ S(f2(w)).

Considering the last two inclusions, it is enough to show that the following sets are
finite: S(f0(w)), S(f2(w)), S[f0(R(w))] and S[f2(R(w))]. Let u ∈ {f0(w), f2(w)}∪
f0(R(w)) ∪ f2(R(w)). Since c(f0(v)), c(f2(v)) (c(v), for all v 6= 1, it follows that
c(u) (c(w). Moreover, since

R(F(w)) = f1[F(F(w))] = f1(F(w)) = R(w),

we have, in particular, R(u) ⊆ R(w) and, therefore, R(u) is finite. Applying the
induction hypothesis to u, which has a smaller content, we conclude that S(u) is
finite. Hence S(w) is finite.

(f)⇒ (g): Let S(w) be finite. We proceed by induction on |c(w)| to show that w
is an ω-term. If c(w) = {a}, then w = an, with n finite, or w = aω and, therefore, it
is an ω-term. Now, suppose that |c(w)| ≥ 1. Let w =

−→∏VwW−1
i=0 (αiai) ·

←−∏VwW−1
i=0 (biβi)

be the iterated central basic factorization of w. Suppose that VwW is finite. Recall
that VwW is the number of iterations until we obtain the iterated central basic
factorization of w. Note that S(αi), S(βi) ⊆ S(w), for all i, because αi, βi ⊆ S(w).
Since, by induction hypothesis, S(w) is finite, then S(αi) and S(βi) are also finite,
for all i. Moreover, c(αi), c(βi) (c(w), for all i. It follows, by induction hypothesis,
that αi and βi are ω-terms, for all i. Hence, w is an ω-term.

Now, suppose that VwW is infinite. Let ul,k =
−→∏l+k−1

i=l (αiai), vl,k =
←−∏l+k−1

i=l (biβi)
and wl,k =

−→∏
i≥l(αiai)·

←−∏
i≥k(biβi), with k > l ≥ 0. We have w = u0,i·αiai·wi+1,i+1·

biβi · v0,i. By definition, wi,i = f1i(w) ∈ S(w). Let N be an integer satisfying
the condition of [11, Lemma 3.10], i.e., if i, j, k ≥ N , then c(wi,i) = c(wj,j) and
c(αkak) = c(bkβk). Since S(w) is finite, there exist l ≥ N and k > 0 such that
wl+k,l+k = wl,l = ul,l+k · wl+k,l+k · vl,l+k and, therefore, wl,l = uω

l,l+k · wl,l · vω
l,l+k.

Since c(wl,l) ⊆ c(ul,l+k) = c(vl,l+k), we have, by [11, Corollary 3.7], wl,l = uω
l,l+k ·

vω
l,l+k. Hence w = u0,lwl,lv0,l = u0,lu

ω
l,l+kvω

l,l+kv0,l which is an ω-term.

10 A. MOURA

(g) ⇒ (d): Let w ∈ Ωω
ADA. We proceed by induction on (|c(w)|, |w|) where the

pairs are ordered lexicographically.
If c(w) = a, then or w = an is a word and F(w) = {1, a2, a4, . . . , an} or F(w) =

{1, a, a3, . . . , an}, depending on whether n is even or odd, or w = aω and we have
F(w) = {1, aω}. In any case, F(w) is finite.

If |c(w)| > 1, we start by showing that the set f1∗(w) is finite. Let w =−→∏VwW−1
i=0 (αiai)·

←−∏VwW−1
i=0 (biβi) be the iterated central basic factorization of w. If ‖w‖

is finite, where ‖w‖ denotes the largest integer n such that c(αnan) = c(bnβn) =
c(w) with αnan and bnβn disjoint (notation introduced in [11]), then we can
write w = α0a0 · · ·αkakγkbkβk · · · b0β0, with ai, bi ∈ A, c(αi), c(βi) (c(w), for
all i, and c(γk) (c(w). By Lemma 4.1, these factors are also ω-terms. Since
c(γk) (c(w), it follows, by induction on |c(w)|, that f1∗(γk) is finite. Since
f1∗(w) = f1∗(γk) ∪ {αiai · · · γk · · · biβi | i ≤ k}, it follows that f1∗(w) is finite.

If ‖w‖ is infinite, then, by [11, Proposition 3.15], w is idempotent. By Lemma 4.2,
we can write w in one of the following forms: w = xyωz, with |x|+ |y|+ |z| < |w|,
or w = xyωzωt, with |x| + |y| + |z| + |t| < |w|. Suppose that we have the first
case. Since c(y) ⊆ c(w) and |y| < |w|, by induction hypothesis applied to y, F(y)
is finite. Since (d)⇒ (f), it follows that S(y) is also finite. Similarly, the sets S(x)
and S(z) are finite. Hence we have

f1∗(w) = f1∗(xyωz) ⊆ S(x)yωS(z) ∪ S(x)yωS(y) ∪ S(y)yωS(z) ∪ S(y)yωS(y).

It follows that f1∗(w) is finite. The second case is similar.
Let l ≥ N and k > 0 be such that f1l+k(w) = f1l(w), where N satisfies the

condition of [11, Lemma 3.10]. Then the following equalities are satisfied by DA:

f1l(w) = αlal · · ·αl+k−1al+k−1f1l+k(w)bl+k−1βl+k−1 · · · blβl

= αlal · · ·αl+k−1al+k−1f1l(w)bl+k−1βl+k−1 · · · blβl

= (αlal · · ·αl+k−1al+k−1)ωf1l(w)(bl+k−1βl+k−1 · · · blβl)ω

= (αlal · · ·αl+k−1al+k−1)ω(bl+k−1βl+k−1 · · · blβl)ω

where the last equality follows from [11, Corollary 3.7]. It follows that

w = α0a0 · · ·αl−1al−1(αlal · · ·αl+k−1al+k−1)ω(bl+k−1βl+k−1 · · · blβl)ωbl−1βl−1 · · · b0β0.

Note that f1∗0(w) ⊆W0 = {α0, . . . , αl+k−1} and f1∗2(w) ⊆W2 = {β0, . . . , βl+k−1}.
Hence we have F(w) = f1∗(w)∪F(f1∗0(w))∪F(f1∗2(w)) ⊆ f1∗(w)∪F(W0)∪F(W2).
Since W0 and W2 are finite sets of ω-terms on a smaller alphabet than c(w), we
have, by induction hypothesis, that F(W0) and F(W2) are finite. The implication
(g)⇒ (d) follows and this completes the proof of the theorem. ¤

5. An algorithm to compute the minimal DA-automaton

Given two ω-terms on an alphabet A, we wish to show that it is possible to
decide if they coincide over all elements of DA. By Theorem 4.3, we know that, if
w is an ω-term over DA, then the wrapped DA-automaton (which is minimal) that
represents w is finite. Moreover, by Proposition 4.11, Lemma 4.10, and Corollary
4.8 from [11], and by definition of minimal DA-automaton, two ω-terms coincide
over DA if and only if their wrapped DA-automata are isomorphic.

In this section, the aim is to construct the minimal DA-automaton of an ω-term.
For that purpose, we present an algorithm which constructs a finite DA-automaton
of an ω-term and, using existing tools, this automaton may be efficiently minimized.

THE WORD PROBLEM FOR ω-TERMS OVER DA 11

5.1. The main function. Let w be an ω-term and let w̄ = word(w) be a well-
parenthesized word on the alphabet A ∪ {(,)}, which results from replacing the ω-
powers of w by a pair of parentheses. In the automaton that we want to construct,
each state represents a word ū = word(u) that corresponds to an ω-term u which
defines a DA-factor of the ω-word defined by the initial ω-term w. The automaton
has as initial state the vertex corresponding to the ω-term w. For each state ū, the
sons of ū, which are the terminal states from an edge whose initial state corresponds
to ū, represent the words which define the factors of the central basic factorization
of u.

For better understanding the algorithm, we present the programming of some
routines. The complete programming of the algorithm in Python may be found in
http://cmup.fc.up.pt/cmup/amoura/DAautomaton complete.py.

The main routine, called DAautomaton and described in Algorithm 1, constructs
the automaton A = (V, E, ι, e, ν) by a recursive process. Initially, the automaton
is presented as follows: the set of states, V , consists of the initial state ι, which
corresponds to the word w̄, and of the final state e, which corresponds to the word
ε, the set of transitions is empty and the labeling relation has only the pair (e, ε).

1 def DAautomaton(input) :
2 e = ’ ’
3 i o t a = input
4 V = [e , input]
5 E = []
6 nu = [[e , ’ e p s i l o n ’]]
7 V0 = []
8 V1 = [input]
9 while V1 != [] :

10 for w in V1 :
11 l l = Lef tLabe l (w)
12 r l = RightLabel (w)
13 F = Fac to r i z a t i on (w, l l , r l)
14 nu = nu+[F [0]]
15 desc = F [1]
16 i f l en (desc) == 3 :
17 for j in range (3) :
18 E += [[w, j , desc [j]]]
19 i f desc [j] not in V:
20 V += [desc [j]]
21 V0 += [desc [j]]
22 else :
23 E += [[w, 0 , desc [0]]]
24 E += [[w, 2 , desc [1]]]
25 for i in range (2) :
26 i f desc [i] not in V:
27 V += [desc [i]]
28 V0 += [desc [i]]
29 V1 = V0
30 V0 = []
31 A = [V,E, io ta , e , nu]
32 return A

Algorithm 1

Let V0 and V1 be, respectively, the set of states which were not yet processed and
the set of states which will be processed in the following step (which corresponds

12 A. MOURA

to run the while cycle once). Initially, V0 is the empty set and V1 consists of the
initial state. The algorithm stops when these sets are both empty.

The process consists in the computation that we proceed to describe. Given a
state of V1, which corresponds to an ω-term u, we calculate the positions ll and
rl in ū of the labels of the central basic factorization of u. For that, we use two
functions called LeftLabel and RightLabel, respectively.

We apply to this ω-term u and its label-positions the function Factorization,
that it is described in detail in 5.2. The function computes the label of the state
and keeps it in the list ν. It also produces the sons of this state. Then the main
routine tests if each one of the sons is already in V . If it is not, it is added to V
and to V0 to be processed later. A transition is created that goes from the state
that we are processing to the state corresponding to each son and labeled by the
order of such son (i.e., 0, 1 or 2).

When V0 = ∅ = V1, the routine stops. This means that all the elements have
already been processed and all the states corresponding to DA-factors of the initial
ω-term are already in the set of states of the automaton. Hence the DA-automaton,
that we denote by G(w), is constructed.

5.2. The factorization of an ω-term. It is the function Factorization, described
in Algorithm 2, that analyzes a state corresponding to a DA-factor of the initial
ω-term. It takes as input the word that corresponds to the state that we are
processing, ū, and the positions ll and rl, corresponding to the left label and to the
right label of the central basic factorization of this DA-factor. It uses the function
Parenthesis to compute the image of the partial function which associates to each
position in ū whose letter is a parenthesis the position corresponding to its matching
pair. So that this information will be easily found, the function Parenthesis creates
a list of length equal to |ū| and puts the value −1 on the entries corresponding to
the positions of ū whose letter belongs to A.

1 def Fac to r i z a t i on (w, l l , r l) :
2 m = −1
3 P = Parenthe s i s (w)
4 for i in range (l en (P)) :
5 i f i < l l < P[i] and i < r l < P[i] :
6 m = i
7 break
8 i f l l < r l or m != −1:
9 nu = [w,w[l l]+w[r l]]

10 desc = [S0 f o rge t (w,P, l l) , S1remind (w,P, l l , r l ,m) , S2 f o rge t (w,P, r l
)]

11 e l i f l l > r l :
12 nu = [w,w[r l]+w[l l]]
13 desc = [S0remind (w,P, r l) , S1 f o rge t (w,P, r l , l l) , S2remind (w,P, l l)]
14 else :
15 nu = [w,w[l l]]
16 desc = [S0 f o rge t (w,P, l l) , S2 f o rg e t (w,P, r l)]
17 return [nu , desc]

Algorithm 2

The function Factorization verifies if the labels LeftLabel and RightLabel are
inside a same ω-power and keeps the information, in a variable m, of the position
where the largest ω-power that contains these labels begins. Then, it compares the

THE WORD PROBLEM FOR ω-TERMS OVER DA 13

values ll and rl, corresponding to the positions of the labels in the word ū. With
this data, it determines the type of the central basic factorization. We have the
following cases: if ll < rl or m 6= −1, then the central basic factorization is of the
standard form; if ll > rl and m = −1, then the central basic factorization is of
the overlapped form; if ll = rl and m = −1, then the central basic factorization is
degenerate. In the first case, we use the functions S0forget, S1remind and S2forget
to construct the sons, while in the second and third cases we use, respectively,
the functions S0remind, S1forget and S2remind, and the functions S0forget and
S2forget. These functions are presented in the next subsection.

5.3. The computation of the sons of an ω-term. We present the functions
that compute the sons of any state of the automaton. The functions consist on
the construction of words from the word corresponding to the state that is being
processed.

The functions whose name includes the word forget consider the subword of
the initial word ending at ll − 1, between ll + 1 and rl − 1, or starting at rl +
1, depending on whether we are computing the son of the transition 0, 1 or 2,
respectively, and consisting of all letters in A and all the matching parentheses in
the considered interval. We show, for example, the function S0forget in Algorithm 3,
which constructs the son of w from the transition labeled by 0.

1 def S0 fo rge t (w,P, l l) :
2 w0 = ’ ’
3 for i in range (l l) :
4 i f w[i] != ’ (’ or P[i] < l l :
5 w0 += w[i]
6 return w0

Algorithm 3

The functions whose name includes the word remind construct a word from the
initial word considering all the ω-powers where the labels are inserted. We describe
in detail the most intricate one, the function S1remind, presented in Algorithm 4.

1 def S1remind (w,P, l l , r l ,m) :
2 w1 = ’ ’
3 i f m == −1:
4 for i in range (l l +1, r l) :
5 i f (w[i] != ’ (’ and w[i] != ’) ’) or \
6 (w[i] == ’) ’ and P[i] > l l) or \
7 (w[i] == ’ (’ and P[i] < r l) :
8 w1 += w[i]
9 e l i f w[i] == ’) ’ and P[i] < l l :

10 for l in range (P[i] , i +1) :
11 w1 += w[l]
12 else :
13 for l in range (i ,P [i]+1) :
14 w1 += w[l]
15 else :
16 M = P[m]
17 for i in range (l l +1,M) :
18 i f w[i] != ’) ’ or P[i] > l l :
19 w1 += w[i]
20 else :
21 for l in range (P[i] , i +1) :

14 A. MOURA

22 w1 += w[l]
23 for i in range (m,M+1) :
24 w1 += w[i]
25 for i in range (m+1, r l) :
26 i f w[i] != ’ (’ or P[i] < r l :
27 w1 += w[i]
28 else :
29 for l in range (i ,P [i]+1) :
30 w1 += w[l]
31 return w1

Algorithm 4

Firstly, the routine verifies the value of the parameter m. If it is different from
−1, it means that the labels are in a same ω-power and the value of m is the
position where the largest ω-power containing both labels begins. The son consists
of the concatenation of the suffix of this ω-term beginning in the left label, with
the respective ω-term and the prefix of it ending in the right label. Moreover, all
the ω-powers containing one of the labels are concatenated as they are read. If
the parameter m is equal to −1, meaning that the labels are not in a same ω-
power, the routine constructs the son just reading the word from left to right and
concatenating all the ω-powers containing one of the labels.

We finish with an example of a DA-automaton G(w) constructed by the described
algorithm:

Example 5.1. Let w = (abωcaaω)ω and w̄ = (a(b)ca(a)). We have LeftLabel = c
in the position ll = 5 and RightLabel = b in the position rl = 3. As these labels are
in the same ω-power, corresponding to the interval [0, 10], it follows that the first
occurrence of c appears before the last occurrence of b, when we read from left to
right. Thus the central basic factorization of w is standard. The sons are calculated
with the functions S0forget, S1remind and S2forget, respectively, and correspond
to the following words: w̄0 = a(b), w̄1 = a(a)(a(b)ca(a))a(b) and w̄2 = ca(a). The
other states are constructed recursively. The DA-automaton G(w) associated to the
ω-term w = (abωcaaω)ω is described in Figure 1.

Figure 1. The DA-automaton G(w) associated to the ω-term w = (abωcaaω)ω.

THE WORD PROBLEM FOR ω-TERMS OVER DA 15

5.4. The complexity of the algorithm. As explained in the previous subsec-
tions, the algorithm constructs, in each step, the factors of the central basic factor-
ization of the ω-term that we are considering. However, nothing so far guarantees
that the algorithm stops and, consequently, that the automaton G(w) is finite.
This is what we propose to prove in this subsection together with the study of the
complexity of the algorithm.

Let w̄ = word(w) be the input and let |w̄| = n. For l < n, kl is the number of
pairs of parentheses containing the position l, K = maxl<n kl, l(i,j) is the length
of the subword bounded by the pair of parentheses (i, j), with 0 ≤ i, j < n, i.e.,
the length of the subword corresponding to the ω-power (i, j), Φl is the sum of the
lengths of the subwords corresponding to the ω-powers containing the position l
and Φ = maxl<n Φl.

Lemma 5.2. Let w ∈ Tω
A . The length of an ω-term representing a DA-factor of

the ω-word ι(w) is bounded above by n + 2Φ.

Proof. We give an upper bound for the length of the words corresponding to each
vertex of G(w), using the parameters defined above.

We start by observing that the functions whose name includes forget create
a word with length strictly smaller than the length of the input given to that
function. So, it is enough to verify what happens when we apply to a word a
function whose name includes remind. Consider the function S0remind and suppose
that w̄0 = S0remind(w̄). Note that, in this case, the central basic factorization of
w is overlapped. Let rl be the position of the right label. Then we have |w̄0| =
rl +

∑
i<rl<j(l(i,j) − 1) = rl + Φrl − krl < n + Φ, because we insert in the prefix

of the word w̄ ending in rl the subwords corresponding to the ω-powers containing
rl. Similarly, for w̄2 = S2remind(w̄), we have |w̄2| = ll + Φll − kll < n + Φ.
If the central basic factorization of w is standard, we have w̄1 = S1remind(w̄).
It follows that |w̄1| ≤ (rl − ll − 1) +

∑
i<ll<j(l(i,j) − 1) +

∑
i<rl<j(l(i,j) − 1) =

(rl − ll − 1) + (Φll − kll) + (Φrl − krl) < n + 2Φ.
In the following iterations, we have the same procedure. When we cut the word

to create the three sons, the functions remind add the subwords corresponding to
the ω-powers containing the position where we cut. Note that, when this cut is done
in a factor which had been added previously to the subword that issued from w̄,
the number of pairs of parentheses containing this position decreases and we have
just those corresponding to the ω-powers which had not been added (when we read
from the center to the borders). It follows that, in any depth that we are working,
|ū| < n + 2Φ, where ū is a word corresponding to a state of the automaton. ¤

We note that, in the above proof, we could use the number (2K + 1)|w̄| as an
upper bound of |ū|. However, the upper bound that we have considered is smaller
and easily computable. As the length of a word corresponding to a state of the
automaton is bounded above and A is a finite alphabet, it follows that V , the set
of states of the automaton, is finite. Hence G(w) is finite.

Corollary 5.3. The automaton G(w) produced by the algorithm is finite.

Although the previous lemma tells us that the number of states of G(w) is finite,
we need to find a smaller upper bound for this number so we can show that the
complexity of this construction is polynomial.

16 A. MOURA

We consider the following sets:

Q(w̄) = {(i, j, pi, pj) | −1 ≤ i, j ≤ |w̄|, λ(i), λ(j) /∈ {(,)}, 0 ≤ pi ≤ ki, 0 ≤ pj ≤ kj}
and

T (w̄) = {w̄(i,j,pi,pj) | (i, j, pi, pj) ∈ Q(w̄)}
where ki and kj are the numbers of pairs of parentheses containing the positions
i and j, respectively, and w̄(i,j,pi,pj) is the word obtained from w̄ beginning at the
position i+1, ending at the position j−1, reading, from left to right, the first pi ω-
powers containing i and reading, from right to left, the first pj ω-powers containing
the position j. We also use these parentheses as bridges to go from a higher position
to a lower position (or the dual, when we read from right to left) and this is done at
the largest ω-power containing both positions and that is read in any of the ways.
If there is no ω-power to be read, then we go from a higher to a lower position
by the smaller ω-power containing both positions i and j. The following example
should help to understand this definition.

Example 5.4. Let w̄ = a(b(cb)ab)a. We have, for example, the following elements
of T (w̄):

w̄(−1,7,0,0) = ab(cb)
w̄(−1,7,0,1) = a(b(cb)ab)b(cb)
w̄(−1,5,0,1) = ab(cb)c
w̄(−1,5,0,2) = a(b(cb)ab)b(cb)c
w̄(5,4,0,0) = ε
w̄(5,4,1,0) = (cb)
w̄(5,4,1,2) = (cb)ab(b(cb)ab)b(cb)
w̄(5,4,2,2) = (cb)ab(b(cb)ab)(b(cb)ab)b(cb).

Let Λw̄ : Q(w̄)→ T (w̄) be the function that maps each tuple (i, j, pi, pj) ∈ Q(w̄)
to the word w̄(i,j,pi,pj) ∈ T (w̄).

Proposition 5.5. The function Λw̄ : Q(w̄) → T (w̄) has in its image all words
corresponding to the states of G(w).

Proof. Let ū be a word corresponding to a state of G(w). Then ū is a son of a word
v̄ and, therefore, ū begins and ends, respectively, at positions i and j corresponding
to the left and the right labels of the central basic factorization of v̄ (ū = v̄1), or
i + 1 is the initial position of v̄ and j is the position corresponding to one of the
labels (ū = v̄0), or the dual (ū = v̄2). The numbers pi and pj correspond to the
ω-powers containing i and j, respectively, that are considered when we read from
i to j and from j to i, respectively. Note that the order in which these ω-powers
appear, when we read from the borders to the center, is from that of the smallest
length to that of the largest length. It follows that ū = w̄(i,j,pi,pj) for the values i,
j, pi and pj chosen above. ¤

We note that Λw̄ is not an injective function. For example, the empty word
is the image of all pairs of the form (i, i + 1, 0, 0), −1 ≤ i < |w̄|. Moreover, the
elements w̄(i,j,pi,pj) and w̄(i,j,pi−1,pj+1) may have the same image under Λw̄. This
follows from the fact that the pi-th ω-power when we read from the left coincides
with the (pj + 1)-th ω-power when we read from the right. By Proposition 5.5, we
have the following:

Corollary 5.6. The number of states of G(w) is at most (|w̄|+ 2)2(K + 1)2.

THE WORD PROBLEM FOR ω-TERMS OVER DA 17

Now, we are ready to determine the complexity of our algorithm. The main
function that constructs the automaton consists of a routine that processes each
state of the automaton once. For each element of V , it tests if this state has already
been processed, involving O(|V |) ≤ O(|w̄|2K2) steps. Then, it computes the left
and the right labels with the respective functions. These functions read each letter
of the word and, whenever a new letter is found, it is kept in the variable ll (respec-
tively, rl). The complexity of these functions is O(|A|(|w̄| + Φ)). Afterwards, the
algorithm constructs the sons of the state that is being processed using the func-
tion Factorization. This function uses the function Parenthesis and the functions
to compute the sons. The function Parenthesis reads the word and computes a list
with the positions of the pairs of matching parentheses, with complexity O(|w̄|+Φ).
The functions which construct the sons read the word corresponding to the state
and the ω-powers that will be considered in the new word. So, the complexity of
that is O(|w̄| + Φ). It follows that the complexity of the function Factorization is
O(|w̄|+ Φ). Hence, the complexity of the algorithm is:

(1) |V | · O(|V |+ 2|A|(|w̄|+ Φ) + 3(|w̄|+ Φ)) ≤ O(|w̄|4K4).

We have proved the following theorem:

Theorem 5.7. The algorithm that constructs the automaton G(w), described in
the previous subsections, has complexity not exceeding O(|w̄|4K4).

We have already observed, after Lemma 5.2, that (2K + 1)|w̄| is a higher upper
bound for the length of a word corresponding to a state than the upper bound
established in the proof of the lemma. However, we use this number make it easier
to prove the inequality 1.

Probably, an improvement of the programming and the discovery of a smaller
upper bound for the number of states of the automaton allow us to compute a
smaller upper bound to the complexity of the computation of G(w). However,
this upper bound can not be smaller than O(|w̄|2), as we can see by the following
example:

Example 5.8. We consider the sequence of words (w̄n)n∈N where
w̄n = (an(an−1(· · · (a1)))), with ai 6= aj , if i 6= j. We have |w̄n| = 3n and |An| = n,
where An is the alphabet involved in w̄n. We compute the number of states of
G(wn), |Vn|, by recurrence.

For n = 1, w̄1 = (a1), and for n = 2, w̄2 = (a2(a1)), the words corresponding
to the DA-factors are, respectively, (a1) and ε, and (a2(a1)), a2, (a1)(a2(a1)), (a1)
and ε. Hence G(w1) and G(w2) have, respectively, 2 and 5 states.

Let w̄n = (an(an−1(· · · (a1)))), with n ≥ 3. The central basic factorization of wn

produces the following sons: anan−1 · · · a2, (a1)(a2(a1)) · · · (an(an−1(· · · (a1)))) =
w̄1w̄2 · · · w̄n and (an−1(· · · (a1))) = w̄n−1. Thus, the number of states of G(wn) is
the sum of the number of states of G(wn−1) with the other states corresponding to
the DA-factors of wn and that are not DA-factors of wn−1. Let w̄n(0) = anan−1 · · · a2

and w̄n(1) = (a1)(a2(a1)) · · · (an(an−1(· · · (a1)))) = w̄1w̄2 · · · w̄n be, respectively, the
sons of w̄n by the edges labeled 0 and 1. The successive iterations of the central
basic factorization of w̄n(0) produce the factors an−1 · · · a3, an−2 · · · a4, . . . , and
an+3

2
an+1

2
(respectively, an

2
, if n is even). Note that these factors are not states of

G(wn−1). Hence w̄n has n−1
2 factors (respectively, n

2 factors, if n is even) which
are descendants from the left edge of the state w̄n. On the other hand, the central

18 A. MOURA

basic factorization of w̄n(1) produces the factors w̄1w̄2 · · · w̄n−1, w̄n−1w̄n and w̄n−1.
Note that w̄n−1w̄n is the only factor which is not a state of G(wn−1), since it has
in its content the letter an. Moreover, the central basic factorization of this factor
produces the factors w̄n−1 and w̄n−1w̄n, which were already counted. Thus, we
count two new factors which are descendants from the central branch. We have the
following recurrence formula for the number of states of G(wn), with n ≥ 3:

|Vn| = |Vn−1|+ 3 +
⌊n

2

⌋

and, therefore, using basic calculus, we have, for m ≥ 1,

|V2m+1| = 9 + (m + 8)(m− 1)

and

|V2m| = 5 + (m + 7)(m− 1).

Hence, the number of states of G(wn) is Ω(|w̄|2).

Given an automaton G(w), we construct the finite automaton that recognizes
L(w) by replacing the label of each edge of G(w) by the ordered pair whose first
component is the label of the edge in G(w) and the second component is the label
of the initial state of the edge in G(w). After that, we minimize the automaton.
Brzozowski’s Algorithm [7] and Hopcroft’s Algorithm [8] to minimize a finite de-
terministic automaton are well known and they have exponential and O(lm log m)
complexity, respectively, where l is the cardinality of the alphabet and m is the
number of states of the automaton. However, Almeida and Zeitoun [6] described
an algorithm to minimize a finite deterministic automaton whose strongly con-
nected non-trivial components are cycles, in time O(l + d), where d is the number
of transitions of the automaton. Note that G(w) satisfies this condition, since in
any cycle of G(w) the edges are labeled by (1, x), with x ∈ A × A ∪ A and there
is only one edge going from each state with first component labeled 1. As the
number of states of the automaton is bounded above by (|w̄| + 2)2(K + 1)2, the
number 3(|w̄| + 2)2(K + 1)2 is an upper bound for the number of transitions of
the automaton. Furthermore, in 1971, Hopcroft and Karp [9] presented a linear
algorithm for testing the equivalence of two finite deterministic automata without
requiring previous minimization. So, we have established the following result:

Theorem 5.9. The word problem for ω-terms over DA has a solution in polynomial
time, not exceeding O((nK)4), where n is the length of the word corresponding to
the ω-term and K is the maximum depth of ω-powers.

Example 5.10. The minimal DA-automaton of the ω-term w = (abωcaaω)ω is
represented in Figure 2. It follows from identifying states v120 and v1201 of the
automaton G(w) presented in the Example 5.1. Note that the state v120 corresponds
to the ω-term aω and the state v1201 corresponds to the ω-term aaω, which are equal
over DA.

THE WORD PROBLEM FOR ω-TERMS OVER DA 19

Figure 2. The minimal DA-automaton associated to w = (abωcaaω)ω.

Acknowledgments

This work is part of the author’s doctoral thesis, written under the supervision of
Prof. Jorge Almeida, from whose advice the author has greatly benefited. This work
was supported by the Fundação para a Ciência e a Tecnologia (FCT) through the
PhD grant SFRH/BD/19720/2004, through the Centro de Matemática da Univer-
sidade do Porto (CMUP) and also through the project PTDC/MAT/65481/2006,
which is partly funded by the European Community Fund FEDER.

References

[1] J. Almeida, Finite Semigroups and Universal Algebra, World Scientific, Singapore, 1994.
English translation.

[2] , A syntactical proof of locality of DA, Int. J. Algebra and Comp. 6 (1996) 165–177.
[3] , Finite semigroups: an introduction to a unified theory of pseudovarieties, in

Semigroups, Algorithms, Automata and Languages, J.-E. P. G. M. S. Gomes and P. V. Silva,
eds., Singapore, 2002, World Scientific, 3–64.

[4] J. Almeida and M. Zeitoun, The equational theory of ω-terms for finite R-trivial semigroups,
in Proc. of the Workshop on Semigroups and Languages, Lisbon 2002, V. H. F. I. M. Araújo
M. J. J. Branco and G. M. S. Gomes, eds., World Scientific, 2004, 1–22.

[5] , An automata-theoretic approach to the word problem for ω-terms over R, Theor.
Comp. Sci. 370 (2007) 131–169.

[6] , Description and analysis of a bottom-up DFA minimization algorithm, Inform.
Process. Lett. 107 (2008) 52–59.

[7] J. Brzozowski, Canonical regular expressions and minimal state graphs for definitive events,
in Proc. Symp. Math. Theor. Automata, New York, 1963, 529–561.

[8] J. E. Hopcroft, An n log n algorithm for minimizing states in a finite automaton, in Theory
of machines and computations (Proc. Internat. Sympos., Technion, Haifa, 1971), Z. Kohavi,
ed., Academic Press, 1971, 189–196.

[9] J. E. Hopcroft and R. M. Karp, A linear algorithm for testing equivalence of finite automata,
tech. rep., Cornell University, 1971.

20 A. MOURA

[10] J. McCammond, Normal forms for free aperiodic semigroups, Int. J. Algebra and Comp. 11
(2001) 581–625.

[11] A. Moura, Representations of the free profinite object over
DA, Tech. Rep. CMUP 2009-26, Univ. of Porto, 2009.
http://cmup.fc.up.pt/cmup/v2/include/filedb.php?id=275&table=publicacoes&field=file.

[12] J. G. Rosenstein, Linear Orderings, Academic Press, New York, 1982.
[13] P. Tesson and D. Thérien, Diamonds are forever: the variety DA, in Semigroups, Algorithms,

Automata and Languages, World Scientific, 2002, 475–499.

Instituto Superior de Engenharia do Porto/LEMA and Centro de Matemática da
Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

E-mail address: aim@isep.ipp.pt/amoura@fc.up.pt

