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Abstract

We consider an important class of non-symetric networks that lies
between the class of general networks and the class of symmetric net-
works, where group theoretic methods still apply – namely, networks
admitting “interior symmetries”. The main result of this paper is
the full analogue of the Equivariant Hopf Theorem for networks with
symmetries. We extend the result of Golubitsky, Pivato and Stew-
art (Interior symmetry and local bifurcation in coupled cell networks,
Dynamical Systems 19 (4) (2004) 389–407) to obtain states whose lin-
earizations on certain subsets of cells, near bifurcation, are superpo-
sitions of synchronous states with states having spatio-temporal sym-
metries.
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1 Introduction

Recently, a new framework for the dynamics of networks has been proposed,
with particular attention to patterns of synchrony and associated bifurca-
tions. See Stewart, Golubitsky and Pivato [4, 11], Golubitsky, Nicol and
Stewart [3], and Golubitsky, Stewart and Török [9]. Here, a network is rep-
resented by a directed graph whose nodes and edges are classified according
to associated labels or ‘types’. The nodes (or ‘cells’) of a network G represent
dynamical systems, and the edges (‘arrows’) represent couplings. Cells with
the same label have ‘identical’ internal dynamics; arrows with the same label
correspond to ‘identical’ couplings. The ‘input set’ of a cell is the set edges
directed to that cell. Label-preserving bijections between ‘input sets’ of cells
are called ‘input isomorphisms’ and they capture the ‘local’ symmetries of
the network. The set of all these ‘local’ symmetries has the structure of a
groupoid. (A groupoid is an algebraic structure similar to a group, except
that products of elements may not always be defined).

Coupled cell systems are dynamical systems compatible with the archi-
tecture or topology of a directed graph representing the network. Formally,
they are defined in the following way. Each cell c is equipped with a phase
space Pc, and the total phase space of the network is the cartesian product
P =

∏

c Pc. A vector field f is called ‘admissible’ if its component fc for
cell c depends only on variables associated with the input set of c (domain
condition), and if its components for cells c, d that have isomorphic input sets
are identical up to a suitable permutation of the relevant variables (pull-back
condition).

In the study of network dynamics there is an important class of networks,
namely, networks that possess a group of symmetries. In this context there is
a group of permutations of the cells (and arrows) that preserves the network
structure (including cell-types and arrow-types) and its action on P is by
permutation of cell coordinates. Moreover, the coupled cell systems (ODE’s)
are of the form

dx

dt
= f(x)

where the vector field f is smooth (C∞) and satisfies

f(γx) = γf(x) ∀ x ∈ X, γ ∈ Γ

That is, f is ‘equivariant’ under the action of the group Γ on phase space P .
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The theory of equivariant dynamical systems (see Golubitsky et al. [6,8])
can be applied to such dynamical systems. In this theory, a central role is
played by the ‘fixed-point spaces’ of subgroups Σ ⊆ Γ, defined by

Fix(Σ) = {x ∈ X : σx = x ∀σ ∈ Σ}

Fixed-point spaces have the important property of flow invariance: they are
invariant under every smooth equivariant vector field f , so that

f(Fix(Σ)) ⊆ Fix(Σ)

See [6, Lemma XIII 2.1] or [8, Theorem 1.17] for the simple proof and the
implications for symmetry-breaking. In this context, there are two main
local bifurcation theorems. The Equivariant Branching Lemma (see Golu-
bitsky et al. [8, Theorem XIII 3.3]) proves the existence of certain branches of
symmetry-breaking steady states; the Equivariant Hopf Theorem (see Golu-
bitsky et al. [8, Theorem XVI 4.1]) proves the existence of certain branches
of spatio-temporal symmetry-breaking time-periodic states.

In between the class of general networks and the class of symmetric net-
works lies an interesting class of non-symmetric networks, where group theo-
retic methods still apply, namely, networks admitting “interior symmetries”.
In this case there is a group of permutations of a subset S of the cells (and
edges directed to S) that partially preserves the network structure (including
cell-types and edges-types) and its action on P is by permutation of cell co-
ordinates. In other words, the cells in S together with all the edges directed
to them form a subnetwork which possesses a non-trivial group of symme-
try ΣS . For example, network G1 (Figure 1 (left)) has exact S3-symmetry,
whereas network G2 (Figure 1 (right)) has S3-interior symmetry. This notion
was introduced and investigated by Golubitsky, Pivato and Stewart [4]. The
presence of interior symmetries places some restrictions on the structure of
the network.

The local bifurcations from a synchronous equilibrium can be classified
into two types: ‘synchrony-breaking’ bifurcations and ‘synchrony-preserving’
bifurcations. The synchrony-breaking bifurcations occur when a synchronous
state loses stability and bifurcates to a state with less synchrony. Such bifur-
cations can be considered to be a generalisation of symmetry-breaking bifur-
cations in symmetric coupled cell systems. Golubitsky, Pivato and Stewart [4]
provided analogues of the Equivariant Branching Lemma and the Equivari-
ant Hopf Theorem for coupled cell systems with interior symmetries. The
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(left) G1 (right) G2

Figure 1: (left) Network G1 with exact S3-symmetry. (right) Network G2

with S3-interior symmetry.

analogue of the Equivariant Branching Lemma is a natural generalisation of
the symmetric case, but the analogue of the Equivariant Hopf Theorem has
novel and rather restrictive features. In particular, instead of proving the
existence of states with certain spatio-temporal symmetries, they prove the
existence of states whose linearizations on certain subsets of cells, near bifur-
cation, are superpositions of synchronous states with states having ‘spatial
symmetries’.

The main result of this paper is the full analogue of the Equivariant Hopf
Theorem for networks with symmetries (Theorem 4.8). We extend the result
of Golubitsky, Pivato and Stewart [4] to obtain states whose linearizations on
certain subsets of cells, near bifurcation, are superpositions of synchronous
states with states having spatio-temporal symmetries, that is, corresponding
to “interiorly” C-axial subgroups of ΣS × S1. This new version of the Hopf
Theorem with interior symmetries includes the previous as a special case and
is in complete analogy with the Equivariant Hopf Theorem (see Theorem 4.8).
Our proof uses a modification of the Lyapunov-Schmidt reduction to arrive
at a situation where the proof of the Standard Hopf Bifurcation Theorem can
be applied. This completes the program of generalising the two main results
from equivariant bifurcation theory to the class of networks with interior
symmetries.

Structure of the Paper Section 2 recalls the formal definition of a coupled
cell network and the associated dynamical systems, and states some basic fea-
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tures, including the concept of a balanced equivalence relation (colouring).
We also discuss the symmetry group of a network. Section 3 recalls the defi-
nition of interior symmetry given by Golubitsky, Pivato and Stewart [4] and
gives an equivalent condition, in terms of symmetries of a subnetwork, which
in some cases (no multiple edges and no self-connections) amounts to finding
the symmetries of the subnetwork. We also analyse the structure of these
networks and discuss some features of the admissible vector fields associated
to such class of networks. Section 4 recalls the notion of synchrony-breaking
bifurcation in coupled cell networks. Then we specialise to networks with
interior symmetries where group theoretic concepts play a significant role,
focusing on the important case of codimension-one synchrony-breaking bifur-
cations. The main part of this section gives the statement and proof of the
Interior Symmetry-Breaking Hopf Bifurcation Theorem (Theorem 4.8) for
networks with interior symmetries. We illustrate all the concepts and results
by a running example of the simplest network with S3-interior symmetry and
the closely related network with exact S3-symmetry (see Figure 1). Finally,
we present a numerical simulation of the states provided by Theorem 4.8 in
the case of our running example.

2 Network Formalism

First, we recall the formal definition of a coupled cell network and the asso-
ciated dynamical systems. For a survey, overview and examples, see [7]. The
initial definition of coupled cell network [11] was modified in [9] to permit
multiple arrows and self-connections, which turns out to have major advan-
tages. More recently, Stewart [10] extended the formalism introduced in [9]
to include a large class of infinite networks – the so called networks of finite
type.

2.1 Coupled Cell Networks

In this paper we consider finite networks and so employ the ‘finite multi-
arrow’ formalism for consistency with the existing literature.

Definition 2.1 ([9]) A coupled cell network G comprises:

(a) A finite set C of nodes or cells.
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(b) An equivalence relation ∼C on cells in C, called cell-equivalence. The
type or cell label of cell c is its ∼C-equivalence class.

(c) A finite set E of edges or arrows.

(d) An equivalence relation ∼E on edges in E , called edge-equivalence or
arrow-equivalence. The type or coupling label of edge e is its ∼E-
equivalence class.

(e) Two maps H : E → C and T : E → C. For e ∈ E we call H(e) the head
of e and T (e) the tail of e.

We also require a consistency condition:

(f) Equivalent arrows have equivalent tails and heads:

H(e1) ∼C H(e2) T (e1) ∼C T (e2)

for all e1, e2 ∈ E with e1 ∼E e2. 3

Example 2.2 We can represent abstract networks by labelled directed
graphs. Figure 1 shows two examples. Here the node labels, drawn as the
three circles and the square, indicate the cells; the symbols show that cells
1, 2, 3 have the same type, whereas cell 4 is different, in both cases. In the
network G1 there are three types of edge label, whereas in the network G2

there are five types of edge label, drawn as different styles of arrows. The tail
and head of each edge is, respectively, indicated by the absence or presence
of a tip on one end of the arrow. When an arrow between cells c and d is
drawn with tips in both ends then it represents two arrows of the same type
with opposite orientation between cells c and d. 3

2.2 Input Sets and the Symmetry Groupoid

Associated with each cell c ∈ C is a canonical set of edges, namely, those that
represent couplings into cell c:

Definition 2.3 ([9]) If c ∈ C then the input set of c is the finite set of edges
directed to c,

I(c) = {e ∈ E : H(e) = c} (2.1)

3
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Definition 2.4 ([9]) The relation ∼I of input equivalence on C is defined
by c ∼I d if and only if there exists a bijection

β : I(c) → I(d) (2.2)

such that for every i ∈ I(c),
i ∼E β(i) (2.3)

Any such bijection β is called an input isomorphism from cell c to cell d. The
set B(c, d) denotes the collection of all input isomorphisms from cell c to cell
d. The union

BG =
⋃

c,d∈C

B(c, d) (2.4)

is the symmetry groupoid of the network G. A coupled cell network is homo-
geneous if all input sets are isomorphic. 3

The groupoid operation on BG is composition of maps, and in general the
composition βα is defined only when α ∈ B(a, b) and β ∈ B(b, c) for cells
a, b, c. This is why BG need not to be a group.

Example 2.5 In our running examples, shown in Figure 1, it is easy to see
that both networks have only two input isomorphism classes of cells: {1, 2, 3}
and {4}. The input sets of cells 1, 2, 3 are isomorphic, since each one of them
contains three edges two of them drawn as a solid arrow with a circle in the
tail and one of them drawn as a dashed arrow with a square in the tail. 3

2.3 Admissible Vector Fields

We now explain how to interpret such diagrams as in Figure 1 as being
representative of a class of vector fields.

For each cell in C choose a cell phase space Pc, which we assume to be a
nonzero finite-dimensional real vector space. We require

c ∼C d ⇒ Pc = Pd

and in this case we employ the same coordinate systems on Pc and Pd. The
total phase space is then

P =
∏

c∈C

Pc
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with a cell-based coordinate system

x = (xc)c∈C

If D ⊆ C is any finite set of cells then we write

PD =
∏

d∈D

Pd

and
xD = (xc1, . . . , xcℓ

)

where xc ∈ Pc.
For any β ∈ B(c, d) we define the pull-back map

β∗ : PT (I(d)) → PT (I(c))

by
(β∗z)T (i) = zT (β(i)) (2.5)

for all i ∈ I(c) and z ∈ PT (I(d)).
We use pull-back maps to relate different components of a vector field

associated with a given coupled cell network. Specifically, the class of vector
fields that are encoded by a coupled cell network is given by the following
definition.

Definition 2.6 ([9]) A map f : P → P is G-admissible if:

(a) Domain condition: For all c ∈ C the component fc(x) depends only
on the internal phase space variables xc and the coupling phase space
variables xT (I(c)); that is, there exists f̂c : Pc × PT (I(c)) → Pc such that

fc(x) = f̂c(xc, xT (I(c))) (2.6)

(b) Pull-back condition: For all c, d ∈ C and β ∈ B(c, d)

f̂d(xd, xT (I(d))) = f̂c(xd, β
∗xT (I(d))) (2.7)

for all x ∈ P . 3
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Example 2.7 For the networks G1 and G2 of Figure 1 the cell phase spaces
P1, P2 and P3 are identical and equal to Rk, whereas P4 = Rl. The general
form of the admissible vector fields (ODE’s) encoded by the network G1 is

ẋ1 = f(x1, x2, x3, x4)

ẋ2 = f(x2, x3, x1, x4) (2.8)

ẋ3 = f(x3, x1, x2, x4)

ẋ4 = g(x4, x1, x2, x3)

where xi ∈ Rk (i = 1, 2, 3), x4 ∈ Rl, f : R3k × Rl → Rk is a smooth
map, invariant under permutation of the second and third arguments and
g : R3k × Rl → Rl is a smooth map, invariant under any permutation of
the last three arguments. The general form of the admissible vector fields
(ODE’s) associated with the network G2 is

ẋ1 = f(x1, x2, x3, x4)

ẋ2 = f(x2, x3, x1, x4) (2.9)

ẋ3 = f(x3, x1, x2, x4)

ẋ4 = g(x4, x1, x2, x3)

where xi ∈ Rk (i = 1, 2, 3), x4 ∈ Rl, f : R3k × Rl → Rl is a smooth
map, invariant under permutation of the second and third argument and
g : R3k × Rl → Rl is a general smooth map. 3

2.4 Balanced Equivalence Relations

An equivalence relation ⊲⊳ on C determines a unique partition of C into ⊲⊳-
equivalence classes, which can be interpreted as a colouring of C in which ⊲⊳-
equivalent cells receive the same colour. Conversely, any partition (colouring)
determines a unique equivalence relation. The corresponding polydiagonal is

△⊲⊳ = {x ∈ P : c ⊲⊳ d ⇒ xc = xd} (2.10)

A subspace V of P is called admissibly flow-invariant if f(V ) ⊂ V for all
admissible vector field f on P .

Definition 2.8 ([9]) An equivalence relation ⊲⊳ on C is balanced if for every
c, d ∈ C with c ⊲⊳ d, there exists β ∈ B(c, d) such that T (i) ⊲⊳ T (β(i))
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for all i ∈ I(c). The associated colouring is called a balanced colouring. In
particular, B(c, d) 6= ∅ implies c ∼I d. Hence, balanced equivalence relations
refine input equivalence. 3

A crucial property of balanced equivalence relations is that they define
admissibly flow-invariant subspaces, and conversely:

Theorem 2.9 (Stewart et al. [11]) Let ⊲⊳ be an equivalence relation on a
coupled cell network. Then △⊲⊳ is admissibly flow-invariant if and only if ⊲⊳

is balanced.

The proof of the above result for finite networks is given in [9, 11] and
for networks of finite type in [10]. The dynamical implication of such flow-
invariance is that ⊲⊳ determines a robust pattern of synchrony: there exist
trajectories x(t) of the ODE such that

c ⊲⊳ d ⇒ xc(t) = xd(t) ∀t ∈ R

Such trajectories arise when initial conditions x(0) lie in △⊲⊳. Then the entire
trajectory, for all positive and negative time, lies in △⊲⊳ and is a trajectory of
the restriction f |△⊲⊳

. The associated dynamics can be steady-state, periodic,
even chaotic, depending on f and its restriction to △⊲⊳. An example of
synchronised chaos generated by this mechanism can be found in [7].

Since there is always a canonical balanced relation ∼I on every network,
let △I denote polydiagonal subspace of P associated to the input equivalence
relation ∼I , that is,

△I = {x ∈ P : c ∼I d ⇒ xc = xd}

Then △I is a flow invariant subspace. Solution of admissible vector fields
contained in △I represent the states of highest degree of synchrony allowed
by the network.

Remark 2.10 Whenever self-connections or multiple arrows do not occur it
will be convenient to revert to the formalism of [11], but now considered as
a specialisation of the multi-arrow formalism. Since no two distinct arrows
have the same head and tail, we can identify an arrow e with the pair of cells
(T (e),H(e)). Now the set E of arrows identifies with a subset of C×C\{(c, c) :
c ∈ C}. Similarly the input set I(c) can be identified with the set of all tail
cells of arrows e that have c as head cell. 3
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Example 2.11 We continue with our running examples, the networks G1

and G2 of Figure 1. There is an equivalence relation ⊲⊳ for which 1 ⊲⊳ 2; its
equivalence classes are {1, 2}, {3} and {4}. The corresponding polydiagonal
is

△⊲⊳ = {x ∈ P : x1 = x2} = {(x, x, y, z)}

On this subspace the differential equations become

ẋ = f(x, x, y, z)

ẋ = f(x, y, x, z) (2.11)

ẏ = f(y, x, x, z)

ż = g(z, x, x, y)

Since the first two equations are identical (recall that the bar over x, y means
that they can be interchanged), △⊲⊳ is invariant under all admissible vector
fields. The relation ⊲⊳ is balanced. The only condition to verify is that
cells 1 and 2, which are ⊲⊳-equivalent but distinct, have input sets that are
isomorphic by an isomorphism that preserves ⊲⊳-equivalence classes for both
networks. In both networks the input sets are:

I(1) = {(2, 1), (3, 1), (4, 1)} and I(2) = {(1, 2), (3, 2), (4, 2)}

where (c, d) denotes an arrow with tail c and head d (see Remark 2.10).
The bijection β : I(1) → I(2) with β((2, 1)) = (1, 2), β((3, 1)) = (3, 2)
and β((4, 1)) = (4, 2) is an input isomorphism that preserves ⊲⊳-equivalence
classes since 1 ⊲⊳ 2, 3 ⊲⊳ 3 and 4 ⊲⊳ 4. That is, ⊲⊳ is balanced as claimed.
There are two other balanced equivalence relations (different from ∼I) on
the networks G1 and G2. In one of them the equivalence classes are {2, 3},
{1} and {4}. In the other the equivalence classes are {1, 3}, {2} and {4}. 3

2.5 Symmetry Groups of Networks

We now consider symmetries of networks in the group-theoretic (‘global’)
sense.

Definition 2.12 ([1]) Let G be a network. A symmetry of G consists of a
pair of bijections γC : C → C and γE : E → E where γC preserves input
equivalence and γE preserves edge equivalence, that is, for all c ∈ C and
e ∈ E ,

γC(c) ∼I c and γE(e) ∼E e (2.12)
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In addition, the two bijections must satisfy the consistency conditions

γC(H(e)) = H(γE(e)) and γC(T (e)) = T (γE(e)) (2.13)

for all e ∈ E . The set of all γ = (γC , γE) forms a finite group Aut(G) called
the symmetry group of the network of G. 3

Observe that a symmetry γ preserves input sets in a natural sense. Be-
cause of the way input sets are defined in the multi-arrow formalism the
precise relation is

γE(I(c)) = I(γC(c))

where γ = (γC , γE) ∈ Aut(G).

Remark 2.13 When the network G has no self-connections and multi-
arrows there is a simplification of the notion of symmetry due to the following
observation. Given a vertex permutation γC, there is a unique edge permu-
tation γE satisfying the consistency condition (2.13), that is, γE is implicitly
defined by γC since, by Remark 2.10, each arrow e can be identified with a
pair of cells (T (e),H(e)). Thus a symmetry of G is given by a permutation
γ of C such that

(a) γ(c) ∼I c for all c ∈ C.

(b) (γ(a), γ(b)) ∈ E ⇔ (a, b) ∈ E .

(c) (γ(a), γ(b)) ∼E (a, b) ∀(a, b) ∈ E .

In this case, the group Aut(G) of symmetries of the network G is a subgroup
of the group Sym(C) of permutations on the set of cells of the network. We
shall adopt this convention throughout the remainder of the paper whenever
the network under consideration has no self-connections and multi-arrows.
3

Example 2.14 Since the networks G1 and G2 of our running example of Fig-
ure 1 do not have multiple arrows and self-connections Remark 2.13 applies.
The group S3 ⊂ S4 consisting of the transpositions (1 2), (1 3), (2 3), the
3-cycle permutations (1 2 3), (1 3 2) and the identity is the symmetry group
of the network G1. Observe that cell 4 is fixed by the symmetry group. On
the other hand, the network G2 has only the identity permutation as a sym-
metry because the arrows (1, 4), (2, 4) and (3, 4) are all different amongst
each other. 3
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This last example shows that the definition of symmetry of a network is
very rigid. In the next section we will generalise the definition of symmetry of
a network by introducing the notion of interior symmetry. In this new context
the network G2 of our example admits an action of the permutation group S3

as a group of interior symmetries. This corresponds to the symmetry group
of the subnetwork of G2 obtained by ignoring the arrows (1, 4), (2, 4) and
(3, 4) of G2.

3 Interior Symmetry

We present the notion of interior symmetry following Golubitsky et al. [4]
and give an alternative characterisation in terms of the symmetries of a sub-
network.

3.1 Interior Symmetry Groups of Networks

Definition 3.1 ([4]) Let G be a coupled cell network. Let S ⊆ C be a subset
of cells and put I(S) = {e ∈ E : H(e) ∈ S}. A pair of bijections σC : C → C
and σE : E → E is an interior symmetry of G (on the subset S) if:

(a) σC : C → C is an input equivalence preserving permutation which is
the identity map on the complement C \ S of S in C,

(b) σE : E → E is an edge equivalence preserving permutation which is
the identity map on the complement E \ I(S) of I(S) in E ,

(c) the consistency condition

σC(H(e)) = H(σE(e)) and σC(T (e)) = T (σE(e)) (3.1)

is satisfied for every e ∈ I(S).

The set of all interior symmetries of G (on the subset S) forms a finite group
ΣS called the group of interior symmetries of G (on the subset S). 3

Note that in Definition 3.1 if S = C then ΣS = Aut(G). Hence, the
definition of interior symmetry of a network is a generalisation of a symmetry
of a network. That is why we refer to the elements of Aut(G) as global
symmetries of G. The most interesting case is when Aut(G) is trivial but ΣS

is non-trivial for some S.
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Example 3.2 We continue with our running example, the two networks
networks G1 and G2 of Figure 1. We have seen that the network G1 is S3-
symmetric and the network G2 has only the trivial symmetry. However, the
group of permutations

S3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}

is the group of interior symmetries of the network G2 on the subset S =
{1, 2, 3}. Observe that all elements of S3 fix cell 4 and

I(S) = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (4, 1), (4, 2), (4, 3)}

If we assume that the permutations in S3 act as identity on the set of arrows

E \ I(S) = {(1, 4), (2, 4), (3, 4)}

then S3 is the group of interior symmetries of the network G2 on the subset
S = {1, 2, 3}. 3

There is an alternative characterisation of interior symmetries using the
notion of symmetry of a network. The main idea is the following: by “ignor-
ing” some arrows we find a subnetwork whose symmetry group is the group
of interior symmetries of the original network.

Let us be more precise. Given a coupled cell network G and a subset
S ⊂ C of cells define GS = (C, I(S),∼C ,∼E) to be the subnetwork of G
whose set of cells is C (together with its cell-equivalence ∼C) and whose set
of arrows is I(S). The edge-equivalence on I(S) is obtained by the restriction
of the edge-equivalence ∼E on E .

Proposition 3.3 Let G be a coupled cell network and S ⊂ C be a subset of
cells of the set of cells of G. Consider the network GS as defined above. Then
the group of interior symmetries of the network G (on the subset S) can be
canonically identified with the group of symmetries of the network GS :

ΣS
∼= Aut(GS)

Proof. We start by proving that ΣS can be canonically identified with a
subset of Aut(GS). Let σ = (σC , σE) ∈ ΣS be an interior symmetry of G
(on the subset S) as in Definition 3.1. Then, because both σC and σE are,
respectively, the identity map on C \ S and E \ I(S), it follows that σ is a

14



symmetry of GS , according to Definition 2.12. Now we show that the above
identification is surjective. Let γ = (γC , γE) ∈ Aut(GS) be a symmetry of GS

(in the sense of Definition 2.12), that is, γE is a permutation on the set I(S).
Now we can extend γE to a permutation σE on E which acts as identity on
E \ I(S). The pair σ = (σC , σE) where σC = γC is an interior symmetry of G
(on the subset S) according to Definition 3.1. 2

The characterisation of interior symmetry provided by Proposition 3.3 is
particularly useful when the network does not have multiple arrows and/or
self-connections, since by Remark 2.13, a symmetry is simply a permutation
on the set vertices of the underlying graph.

Example 3.4 Consider the two networks G1 and G2 of Figure 1. Let S =
{1, 2, 3}. Note that the network GS obtained from G1 is the same as the one
obtained from G2. In Figure 2 we show these three networks. Observe that
for the three networks the sets of arrows coming from the set S = {1, 2, 3}
and directed to the complement C \ S = {4} are different 3
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Figure 2: (left) Network G1. (center) Network GS where S = {1, 2, 3}. (right)
Network G2.

Let G be a network and fix a phase space P . Suppose that G admits non-
trivial interior symmetries ΣS on a subset of cells S. Then we can decompose
the phase space P as a cartesian product P = PS × PC\S where

PS =
∏

s∈S

Ps and PC\S =
∏

c∈C\S

Pc

For any x ∈ P we write x = (xS , xC\S) where xS ∈ PS and xC\S ∈ PC\S . If
σ = (σC , σE) ∈ ΣS then σC permutes the cells of S and induces an action of
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ΣS on P by permuting the cell coordinates

σ(xc)c∈C = (xσ−1

C
(c))c∈C

Since ΣS fixes all cells in C \ S we can write

σ(xS , xC\S) = (σxS , xC\S) (3.2)

As in the case of symmetric networks we can construct (some) balanced
equivalence relations on a network G from subgroups of the interior symmetry
group. Suppose that K ⊆ ΣS is a subgroup. Then

FixP (K) = {(xS , xC\S) : σxS = xS ∀ σ ∈ K}

Define the relation ⊲⊳K on the cells in C by

c ⊲⊳K d ⇔ ∃σ = (σC , σE) ∈ K : σC(c) = d

Then the ⊲⊳K-classes are the K-orbits on the cells in S and the corresponding
polydiagonal is

△K = △⊲⊳K
= FixP (K)

The following proposition from Golubitsky et al. [4, Proposition 1, p. 397]
is fundamental in the study of coupled cell networks with interior symmetries.

Proposition 3.5 (Golubitsky et al. [4]) Let G be a network admitting a
non-trivial interior symmetry group ΣS and fix a phase space P . Let K be
any subgroup of ΣS . Then ⊲⊳K is a balanced relation on G. In particular,
FixP (K) is a flow invariant subspace for all G-admissible vector fields.

Proof. Let s1 and s2 be two cells on the same K-orbit. Then there exists
an element σ = (σC , σE) of K such that σC(s1) = s2 and by the consistency
condition (3.1) it follows that the restriction

σE|I(s1) : I(s1) → I(s2)

is an input isomorphism. Since the ⊲⊳K-equivalence classes are exactly the
K-orbits on C it follows that the input isomorphism σE|I(s1) preserves the ⊲⊳K

equivalence relation. Hence, by Theorem 2.9 it follows that △H = FixP (K)
is a flow invariant subspace for all G-admissible vector fields. 2
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Example 3.6 Consider the networks G1 and G2 of Figure 1 and fix a phase
space P for both networks. There are two non-trivial conjugacy classes of
subgroups of S3. The first conjugacy class is represented for example by the
subgroup generated by a 3-cycle

Z3 =
〈

(1 2 3)
〉

The associated balanced relation has two equivalence classes {1, 2, 3} and
{4} given by the three orbits of Z3 on the set of cells C. The fixed-point
subspace of Z3 is

FixP (Z3) = {(x, x, x, y) : x ∈ PS , y ∈ PC\S} = FixP (S3)

The second conjugacy class of subgroups is represented for example by the
subgroup generated by a transposition

Z2 =
〈

(1 2)
〉

The associated balanced relation has three equivalence classes {1, 2}, {3}
and {4} given by the three orbits of Z2 on the set of cells C. The fixed-point
subspace of Z2 is

FixP (Z2) = {(x, x, y, z) : x, y ∈ PS , z ∈ PC\S}

The other two subgroups in the conjugacy class of
〈

(1 2)
〉

are the ones gener-
ated by (1 3) and (2 3). Observe that these three balanced equivalence rela-
tions given by orbits of subgroups are exactly the same balanced equivalence
relations previously found by direct methods (Example 2.11). Therefore, in
our running example all flow-invariant subspaces can be given as fixed-point
subspaces of subgroups. 3

Remark 3.7 It is not true, even for symmetric networks, that all balanced
equivalence relations are given by orbits of subgroups of the symmetry group
of the network. Balanced equivalence relations that are not of this type are
called exotic. For examples of exotic balanced relations see Antoneli and
Stewart [1, 2]. 3

3.2 Admissible Vector Fields with Interior Symmetry

Let G be a network with a non-trivial interior symmetry group ΣS on a subset
of cells S and fix a phase space P . We have a natural decomposition

P = PS ⊕ PC\S (3.3)
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with coordinates (xS , xC\S). If f : P → P is a G-admissible vector field
then we can write f = (fS , fC\S) where fS : P → PS and fC\S : P → PC\S .
Groupoid-equivariance of the coupled cell system implies that

σfS(xS , xC\S) = fS(σxS , xC\S) (3.4)

for all σ ∈ ΣS .
A G-admissible vector field f can be written as

f(xS , xC\S) =

[

fS(xS , xC\S)

f̃C\S(xS , xC\S)

]

+

[

0
h(xS , xC\S)

]

(3.5)

where f̃C\S , h : P → PC\S and fC\S = f̃C\S+h. The vector field f̃ = (fS , f̃C\S)
is the ΣS-equivariant part of f , that is, for all σ ∈ ΣS

σf̃(x) = f̃(σx)

or more explicitly,

[

σfS(xS , xC\S)

f̃C\S(xS , xC\S)

]

=

[

fS(σxS , xC\S)

f̃C\S(σxS , xC\S)

]

(3.6)

since ΣS acts trivially on PC\S . Equation (3.5) can be seen as a decomposition
of the vector field f as the sum of a ΣS-equivariant vector field and a non-
equivariant “perturbation” with null components in S.

Example 3.8 Consider the network G2 of Figure 1. Recall from Example
2.7 the general form of the ODE’s associated with the network G2. Using the
decomposition (3.3) we have xS = (x1, x2, x3) and xC\S = (x4) where xi ∈ Rk

(i = 1, 2, 3), x4 ∈ Rl. Then by (3.5) we can write a general ODE for the
network G2 as

ẋ1 = f(x1, x2, x3, x4)

ẋ2 = f(x2, x3, x1, x4)

ẋ3 = f(x3, x1, x2, x4)

ẋ4 = g(x4, x1, x2, x3) + h(x4, x1, x2, x3)

where f : R3k × Rl → Rk is a smooth map invariant under permutation
of the second and third argument, g : Rl × R3k → Rl is S3-invariant with
respect to (x1, x2, x3) and h : Rl × R3k → Rl is a general smooth map. 3
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Now we introduce another set of coordinates on P , adapted to the action
of the interior symmetry group. By Proposition 3.5 the subspace FixP (ΣS)
is flow-invariant. Since FixP (ΣS) is ΣS-invariant and ΣS acts trivially on the
cells in C \ S we have that PC\S ⊂ FixP (ΣS). Let

U = FixP (ΣS) (3.7)

The action of the group ΣS decomposes the set S as

S = S1 ∪ . . . ∪ Sk

where the sets Si (i = 1, . . . , k) are the orbits of the ΣS-action. Let

W =

{

x ∈ P : xc = 0 ∀ c ∈ C \ S and
∑

s∈Si

xs = 0 for 1 6 i 6 k

}

(3.8)

Since W is a ΣS-invariant subspace of PS and W∩U = {0} we can decompose
the phase space P as a direct sum of ΣS-invariant subspaces

P = W ⊕ U (3.9)

In particular, (3.8) implies that vectors in W , when written in coupled cell
coordinates, have zero components on all cells in C \ S.

We can choose coordinates (w, u) with w ∈ W and u ∈ U adapted to the
decomposition (3.9) and write any admissible vector field f as

f(w, u) =

[

fW (w, u)
fU(w, u)

]

+

[

0
h(w, u)

]

(3.10)

where fU , h : P → U and fW : P → W satisfies

σfW (w, u) = fW (σw, u) ∀ σ ∈ ΣS

With respect to the decomposition (3.9), the equivariant part of f is written
as f̃(w, u) = (fW (w, u), fU(w, u)) and for all σ ∈ ΣS we have

[

σfW (w, u)
fU(w, u)

]

=

[

fW (σw, u)
fU(σw, u)

]

(3.11)

since ΣS acts trivially on U = FixP (ΣS).
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Example 3.9 Consider the network G2 of Figure 1. With respect to the
decomposition (3.3) adapted to the network structure, the total phase space
P has coordinates xS = (x1, x2, x3) and xC\S = (x4) where xi ∈ Rk (i =
1, 2, 3), x4 ∈ Rl. Now with respect to the decomposition (3.9) adapted to
the S3-action on P we have that

W = {(w1, w2,−w1 − w2, 0) : w1, w2 ∈ Rk}

and
U = FixP (S3) = {(u1, u1, u1, u2) : u1 ∈ Rk, u2 ∈ Rl}

3

In the linear case, we may choose a basis of P adapted to the decom-
position (3.9) and then a G-admissible linear vector field L can be written
as

L =

[

A 0
C B

]

(3.12)

where B = L|U : U → U , C : W → U and A : W → W satisfies (by (3.11))

A σ = σA ∀ σ ∈ ΣS

The spectral properties of L in (3.12) are given by Golubitsky et al. [4,
Lemma 1, p. 399]. Since we will use these results several times we reproduce
it here.

Lemma 3.10 (Golubitsky et al. [4]) Let G be a network admitting a
non-trivial group of interior symmetries ΣS and fix a total phase space P .
Let L : P → P be a G-admissible linear vector field and consider the decom-
position of L given by (3.12). Then

(i) The eigenvalues of L are the eigenvalues of A together with the eigen-
values of B.

(ii) A vector u ∈ U = FixP (ΣS) is an eigenvector of B with eigenvalue ν

if and only if u is an eigenvector of L with eigenvalue ν.

(iii) If w ∈ W is an eigenvector of A with eigenvalue µ, then there exists
an eigenvector v of L with eigenvalue µ of the form

v = w + u

where u ∈ U = FixP (ΣS).
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(iv) All eigenspaces of A are ΣS-invariant.

Proof. Parts (i) (ii) and (iii) are consequences of the block form (3.12) of
L. Part (iv) follows from the ΣS-equivariance of A. 2

Example 3.11 We continue our running example, the networks G1 and G2

of Figure 1. The general form of the admissible linear mappings associated
with the networks G1 and G2 of Figure 1 are (in cell coordinates)

L1 =









a b b d

b a b d

b b a d

e e e c









and L2 =









a b b d

b a b d

b b a d

e1 e2 e3 c









where a, b are k × k matrices, c is a l × l matrix, d is a k × l matrix and
e, e1, e2, e3 are l × k matrices. Choosing adequate bases for W and U the
linear mappings L1 and L2 can be written as

L1 =









a − b 0 0 0
0 a − b 0 0
0 0 a + 2b d

0 0 3e c









and

L2 =









a − b 0 0 0
0 a − b 0 0
0 0 a + 2b d

e1 − e3 e2 − e3 e1 + e2 + e3 c









3

4 Synchrony Breaking Bifurcations

Now we study local bifurcations in coupled cell networks with non-trivial in-
terior symmetries. We are interested in codimension-one synchrony-breaking
bifurcations. Steady-state and Hopf of bifurcations in coupled cell networks
with interior symmetries were studied by Golubitsky et al. [4].
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4.1 Local Bifurcations in Coupled Cell Systems

Let G be a coupled cell network and fix a phase space P . Let f : P ×Rk → P

be a smooth k-parameter family of G-admissible vector fields in P and assume
that the ODE

dx

dt
= f(x, λ) (4.1)

has a synchronous equilibrium x0 in △I (the polydiagonal subspace of P

associated with the input equivalence relation ∼I). In the present context
we may assume that

f(x0, λ) ≡ 0

and that a bifurcation occurs at λ = 0. Let L = (df)(x0,0) be the linearization
of f at (x0, 0) and denote by Ec the center subspace of L.

Local bifurcations in coupled cell networks can be divided into two types
according to Ec is contained or not into the flow-invariant subspace △I .

Definition 4.1 We say that a coupled cell system (4.1) undergoes a
synchrony-preserving bifurcation at a synchronous equilibrium in △I if
Ec ⊂ △I and that (4.1) undergoes a synchrony-breaking bifurcation if
Ec 6⊂ △I . 3

Now we specialise to codimension-one bifurcations, that is, f : P×R → P

is a smooth 1-parameter family of G-admissible vector fields in P . These
bifurcations fall into two classes: steady-state bifurcations (L|Ec has a zero
eigenvalue) and Hopf bifurcations (L|Ec has a pair of purely imaginary eigen-
values). The new steady-states and periodic solutions that emanate from the
synchrony-preserving bifurcations are themselves synchronous solutions. For
the remainder of this paper we will focus on codimension-one synchrony-
breaking bifurcations from a synchronous equilibrium.

4.2 Local Bifurcations with Interior Symmetry

Interior symmetries introduce genuine restrictions on the form of the lin-
earization and this structure can be used to study certain kind of synchrony-
breaking bifurcations, namely, the bifurcations that break the interior sym-
metry.

Let G be a network admitting a non-trivial group of interior symmetries
ΣS on S and fix a phase space P . First, note that the polydiagonal subspace
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△I associated to the input equivalence relation ∼I satisfies

△I ⊆ FixP (ΣS)

Since we are interested in synchrony-breaking bifurcations that also break the
interior symmetry we may assume that x0 ∈ FixP (ΣS) and that the center
subspace Ec(L) associated to the critical eigenvalues satisfies

Ec(L) 6⊂ FixP (ΣS) (4.2)

However, this is not enough to exclude the possibility of having critical eigen-
vectors in FixP (ΣS) in a synchrony-breaking bifurcation. That is, we could
have a situation where some critical eigenvectors belong to FixP (ΣS) and
the others are outside FixP (ΣS). Indeed, it is well known [3] that (non-
symmetric) coupled cell systems generically can exhibit mode interaction in
codimension-one bifurcations. In this paper we make a stronger assumption.
We assume

Ec(L) ∩ FixP (ΣS) = {0} (4.3)

and so we exclude the possibility of having eigenvectors in FixP (ΣS). This
situation corresponds to a synchrony-breaking bifurcation that “breaks only
the interior symmetry”.

Definition 4.2 Let f : P → P be a G-admissible vector field and let L =
(df)(x0) be the linearization of f at x0. Consider the decomposition (3.9) of
P adapted to the ΣS-action and write L in block form as

L =

[

A 0
C B

]

Then the matrix A is called the ΣS-equivariant sub-block of L. 3

If we write f using coordinates (w, u) adapted to the decomposition P =
W ⊕ U as

f(w, u) =

[

fW (w, u)
fU(w, u)

]

+

[

0
h(w, u)

]

then
A =

(

d(1)fW

)

(w0)

where x0 = (w0, u0) and
(

d(1)fW

)

(w0)
· w =

(

dfW

)

(w0,u0)
· (w, 0)

for all w ∈ W .
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Remark 4.3 It can be shown that the following three conditions are equiv-
alent:

(a) Ec(L) ∩ FixP (ΣS) = {0}.

(b) dim Ec(L) = dim Ec(A).

(c) All the critical eigenvalues of L come from the ΣS-equivariant sub-
block A of L.

It is obvious that (a) implies both (b) and (c). On the other hand, to prove
that (b) implies (a), we observe that by Lemma 3.10 (iii), we always have
dim Ec(A) 6 dim Ec(L). Finally, to prove that (c) implies (a), we observe
that the block form of L guarantees that no generalised eigenvector associated
to an eigenvalue coming from sub-block A belong to FixP (ΣS). 3

In general f is not ΣS-equivariant and L does not commute with ΣS . In
particular, Ec(L) 6⊂ W . However, the block matrix A does commute with ΣS

and thus Ec(A) ⊂ W is ΣS-invariant. Moreover, if A has purely imaginary
eigenvalues there is a natural action of ΣS × S1 on Ec(A), where S1 acts by
exp(sAt).

Definition 4.4 Consider a 1-parameter family of coupled cell systems (4.1)
with interior symmetry group ΣS on S undergoing a codimension-one
synchrony-breaking bifurcation at a synchronous equilibrium x0 when λ = 0.
We say that f undergoes a codimension-one interior symmetry-breaking bi-
furcation if the following conditions hold:

(a) All the critical eigenvalues µ of L come from the ΣS-equivariant sub-
block A of L.

(b) The critical eigenvalues µ extend uniquely and smoothly to eigenvalues
µ(λ) of (df)(x0,λ) for λ near 0.

(c) The eigenvalue crossing condition:

d

dλ
Re(µ(λ))

∣

∣

∣

∣

λ=0

6= 0 (4.4)

More specifically, the bifurcation problem (4.1) is called
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(1) A codimension-one interior symmetry-breaking steady-state bifurcation
if, in addition to the conditions (a), (b), (c) above, the matrix A has a
zero eigenvalue and the associated center subspace is given by

E0(A) = ker(A) (4.5)

(2) A codimension-one interior symmetry-breaking Hopf bifurcation if, in
addition to the conditions (a), (b), (c) above, the matrix A is non-singular
and (after rescaling time if necessary) all the critical eigenvalues have the
form ±i and the associated center subspace is given by

Ei(A) = {x ∈ P : (A2 + 1)x = 0} (4.6)

3

Example 4.5 Consider the networks G1 and G2 of Figure 1. Suppose that
for all cells c we choose the internal phase space to be Pc = C and so the
total phase space is P = C4. Consider the decomposition of P = W ⊕ U

adapted to the S3-action. Then

W = {(w1, w2,−w1 − w2, 0) : w1, w2 ∈ C},

U = FixP (S3) = {(u1, u1, u1, u2) : u1, u2 ∈ C}

and W is a S3-simple representation (W = W1 ⊕ W2 where W1, W2 are two
isomorphic S3-absolutely irreducible spaces). Now consider a 1-parameter
family f : P × R → P of G-admissible vector fields on P undergoing a
codimension-one interior symmetry-breaking Hopf bifurcation at an equilib-
rium point x0 when λ = 0. Since W is a S3-simple representation, one
necessarily have that Ec(A) = W . Moreover, the action of the circle group
S1 defined by exp(sAt) is equivalent to the standard action of S1 on C4, that
is,

θ · (z1, z2) = (eiθz1, e
iθz2) (4.7)

for all θ ∈ S1 and z1, z2 ∈ C. 3

4.3 Interior Symmetry-Breaking Hopf Theorem

The Hopf Bifurcation Theorem concerns periodic solutions to differential
equations near a point where the linearization has purely imaginary eigen-
values.
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Let G be a coupled cell network admitting a non-trivial group of interior
symmetries ΣS on a subset S of cells and choose a total phase space P .
Consider a smooth 1-parameter family f : P × R → P of G-admissible
vector fields on P and assume that

dx

dt
= f(x, λ) (4.8)

has an equilibrium x0, such that for λ = 0 the linearization L = (df)(x0,0) of
f at (x0, 0) is non-singular but has purely imaginary eigenvalues.

Before stating the next theorem let us introduce an important concept
which generalises the notion of C-axial subgroup from equivariant bifurcation
theory.

Definition 4.6 Let G be a coupled cell network admitting a non-trivial
group of interior symmetries ΣS on a subset S. Let P denote the total phase
space and consider the decomposition (3.9) of P adapted to the ΣS-action.
Suppose that there is an action of circle group S1 on W which commutes
with the action of ΣS . Let E ⊂ W be a ΣS × S1-invariant subspace. An
isotropy subgroup ∆ ⊆ ΣS × S1 is called interiorly C-axial (on E) if

dimR FixE(∆) = 2

3

Now suppose that the family (4.8) undergoes a codimension-one interior
symmetry-breaking Hopf bifurcation at the equilibrium x0 when λ = 0. Then
the center subspace Ec(A) of the ΣS-equivariant sub-block of the linearization
L = (df)(x0,0) of f at (x0, 0) is a ΣS -invariant subspace of W . Therefore, the
action of the circle group S1 defined by exp(sAt) commutes with the action
of ΣS and so there is a well-defined action of ΣS × S1 on W and Ec(A) is a
ΣS × S1-invariant subspace.

Example 4.7 Consider the networks G1 and G2 of Figure 1. Suppose that
for all cells c we choose the internal phase space to be Pc = C and so the
total phase space is P = C4. Suppose that a smooth 1-parameter family
f : P ×R → P of G-admissible vector fields on P undergoes a codimension-
one interior symmetry-breaking Hopf bifurcation at the equilibrium x0 = 0
when λ = 0. Then Ei(A) = W , where A is the ΣS-equivariant sub-block of
the linearization L = (df)(0,0) of f at (0, 0). In Example 4.5 we observed
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that the action of S1 on W , given by exp(sAt), can be identified with the
standard action of S1 on C4. There are three non-trivial conjugacy classes
of isotropy subgroups of S3 × S1 acting on W . The first conjugacy class of
subgroups is represented for example by the subgroup

Z2 =
〈

((1 2), 1)
〉

The fixed-point subspace of Z2 is

FixW (Z2) = {(−w,−w, 2w, 0) : w ∈ C}

The second conjugacy class of subgroups is represented for example by the
subgroup

Z̃2 =
〈

((1 2), π)
〉

The fixed-point subspace of Z̃2 is

FixW (Z̃2) = {(w,−w, 0, 0) : w ∈ C}

The third conjugacy class of subgroups is represented for example by the
subgroup

Z̃3 =
〈

((1 2 3), 2π
3

)
〉

The fixed-point subspace of Z̃3 is

FixW (Z̃3) = {(w, ei 2π

3 w, ei 4π

3 w, 0) : w ∈ C}

3

The main result of this paper is the interior symmetry-breaking Hopf
bifurcation Theorem.

Theorem 4.8 Let G be a coupled cell network admitting a non-trivial group
of interior symmetries ΣS relative to a subset S of cells and fix a phase
space P . Consider (4.8) where f : P × R → P is a smooth 1-parameter
family of G-admissible vector fields on P . Suppose that a codimension-one
interior symmetry-breaking Hopf bifurcation (see Definition 4.4) occurs at
an equilibrium point x0 ∈ FixP (ΣS) when λ = 0. Let ∆ ⊂ ΣS × S1 be
an interiorly C-axial subgroup (on Ec(A)). Then generically there exists a
family of small amplitude periodic solutions of (4.8) bifurcating from (x0, 0)

27



and having period near 2π. Moreover, to lowest order in the bifurcation
parameter λ, the solution x(t) is of the form

x(t) ≈ w(t) + u(t) (4.9)

where w(t) = exp(tL)w0 (w0 ∈ FixW (∆)) has exact spatio-temporal symme-
try ∆ on the cells in S and u(t) = exp(tL)u0 (u0 ∈ FixP (ΣS)) is synchronous
on the ΣS-orbits of cells in S.

We call such a state a synchronously modulated ∆-symmetric wave on S.

Remarks 4.9

(a) The above theorem asserts no restriction on uj(t) when j ∈ C \ S.

(b) Theorem 4.8 generalises the interior symmetry Hopf Theorem of Golu-
bitsky et al. [4, Theorem 3]. Given a subgroup ∆ ⊆ ΣS × S1 we define
the spatial subgroup of ∆ to be K = ∆ ∩ ΣS . A subgroup ∆ is called
spatially C-axial if

dimR FixEi(A)(∆) = dimR FixEi(A)(K) = 2

where K is the spatial subgroup of ∆. Obviously every spatially C-axial
subgroup is interiorly C-axial. Since the Hopf Theorem of [4] is proved
for all spatially C-axial subgroups, it is a special case of Theorem 4.8.

(c) Theorem 4.8 holds if the assumption (4.6) is generalised to: the matrix
A is non-singular, semi-simple and (after rescaling time if necessary) all
the critical eigenvalues have the form kli (kl ∈ Z). 3

The proof of Theorem 4.8 follows from a couple of lemmas that we state
and prove below. We start by setting up the framework.

Let C0
2π(P ) be the space consisting of all continuous 2π-periodic mappings

from R to P endowed with the C0 norm and C1
2π(P ) be the space consisting

of all continuous differentiable 2π-periodic mappings from R to P endowed
with the C1 norm.

By introducing a perturbed period parameter τ we can re-scale time
again, from t to s(1 + τ)t, and consider the operator F : C1

2π(P )×R×R →
C0

2π(P ) given by

F(x, λ, τ) = (1 + τ)
dx

ds
(s) − f(x(s), λ) (4.10)
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The 2π-periodic solutions of the equation F(x, λ, τ) = 0 near (0, 0, 0) cor-
respond bijectively to the small amplitude periodic solutions of (4.8) near
x0 and with period near 2π. As it is well known, the operator F is S1-
equivariant with respect to the phase shift action of S1 on the spaces C1

2π(P )
and C0

2π(P ), that is, if x ∈ C0
2π(P ) and θ ∈ S1 then

(

θ · x
)

(s) = x(s + θ)

and thus
θ · F(x, τ, λ) = F(θ · x, τ, λ)

The linearization of F about the origin is

L(x) =
dx

ds
(s) − L x(s) (4.11)

and ker(L) consists of all functions Re(eisv) where v is an eigenvector of L

associated to the eigenvalue i.
In the standard Hopf Bifurcation Theorem [5, Theorem VIII 3.1] ker(L) is

two-dimensional and Lyapunov-Schmidt reduction in the presence of symme-
try leads to a reduced equation that can be solved for a unique branch of 2π-
periodic solutions as long as the eigenvalues crossing condition is valid. In the
equivariant context, ker(L) may be higher-dimensional – generically ker(L)
is a Γ-simple representation. The proof of the Equivariant Hopf Bifurcation
Theorem [8, Theorem XVI 4.1] proceeds by restricting the Lyapunov-Schmidt
reduced equation to the fixed-point subspace FixEi(L)(∆) of a C-axial sub-
group ∆, which is two-dimensional. Then the proof is completed as in the
standard Hopf Bifurcation Theorem.

That approach does not work in the context of interior symmetries since
in general there is no action of ΣS ×S1 on Ei(L), because the original vector
field f (and its linearization L) is not ΣS-equivariant. Nevertheless, we shall
introduce a “modified Lyapunov-Schmidt procedure” that does work in the
context of interior symmetries.

The decomposition in (3.9) induces the decompositions

C0
2π(P ) = C0

2π(W ) ⊕ C0
2π(FixP (ΣS))

and
C1

2π(P ) = C1
2π(W ) ⊕ C1

2π(FixP (ΣS))
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Lemma 4.10 For any subgroup ∆ of ΣS × S1 we have the decompositions

FixC0

2π
(P )(∆) = C0

2π(FixW (∆)) ⊕ C0
2π(FixP (ΣS))

and
FixC1

2π
(P )(∆) = C1

2π(FixW (∆)) ⊕ C1
2π(FixP (ΣS))

Proof. Let x ∈ C0
2π(P ) be written as x(s) = (w(s), u(s)) where w ∈ C0

2π(W )
and u ∈ C0

2π(FixP (ΣS)). If w(s) ∈ FixW (∆) for all s then it is clear that

C0
2π(FixW (∆)) ⊕ C0

2π(FixP (ΣS)) ⊆ FixC0

2π
(P )(∆)

On the other hand, let (δ, θ) ∈ ∆ and suppose x ∈ FixC0

2π
(P )(∆). Then

(δ, θ) · x(s) = (δx)(s + θ) = x(s)

for all s. The decomposition x(s) = (w(s), u(s)) yields
(

(δw)(s + θ), u(s + θ)
)

= (w(s), u(s))

that is, w(s) ∈ FixW (∆) and so we have

FixC0

2π
(P )(∆) ⊆ C0

2π(FixW (∆)) ⊕ C0
2π(FixP (ΣS))

Therefore,

FixC0

2π
(P )(∆) = C0

2π(FixW (∆)) ⊕ C0
2π(FixP (ΣS))

The same argument with C1
2π instead of C0

2π gives the other equality. 2

Lemma 4.11 Let L : P → P be a G-admissible linear mapping. Let L :
C1

2π(P ) × R × R → C0
2π(P ) be the linear operator given by equation (4.11)

and ∆ ⊂ ΣS × S1 be a subgroup. Then we have that

L
(

C1
2π(FixP (ΣS))

)

⊆ C0
2π(FixP (ΣS))

L
(

C1
2π(FixW (∆))

)

⊆
(

C0
2π(FixW (∆)) ⊕ C0

2π(FixP (ΣS))
)

and
L

(

FixC1

2π
(P )(∆)

)

⊆ FixC0

2π
(P )(∆) (4.12)

In particular, we can define a linear operator

L∆ : FixC1

2π
(P )(∆) −→ FixC0

2π
(P )(∆) (4.13)

by restriction.
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Proof. Note that since the circle group S1 acts on the domain of the map-
pings all the decompositions above are S1-invariant.

First suppose x(s) = (0, u(s)) with u(s) ∈ C1
2π(FixP (ΣS)). Then

L(x) =
du

ds
(s) − L(0, u(s))

If σ ∈ ΣS then

σL(x) = σ
du

ds
(s) − σL (0, u(s))

=
dσu

ds
(s) − L (0, u(s))

=
du

ds
(s) − L (0, u(s))

= L(x)

The second equality above follows from the fact that

σ
(

L (0, u)
)

= L (0, u)

for all σ ∈ ΣS . Therefore, we have L(x(s)) ∈ C0
2π(FixP (ΣS)).

Next suppose that x(s) = (w(s), 0) with w(s) ∈ C1
2π(FixW (∆)). Since

w(s) ∈ W for all s ∈ R, we have that

(δ, θ) · w(s) = δw(s + θ) = w(s)

for all (δ, θ) ∈ ∆, s ∈ R. Write

L(x) =
(

[L(x)]1(s), [L(x)]2(s)
)

with
[L(x)]1(s) ∈ W for all s ∈ R

and
[L(x)]2(s) ∈ FixP (ΣS) for all s ∈ R

Then

[L(x)]1(s) =
dw

ds
(s) − A w(s)
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and
[L(x)]2(s) = −[C w(s) + B 0] = −Cw(s)

Clearly, [L(x)]2(s) ∈ FixP (ΣS). Let (δ, θ) ∈ ∆ then

(δ, θ) · [L(x)]1(s) = (δ, θ) ·
dw

ds
(s) − (δ, θ) · A w(s)

= δ
dw

ds
(s + θ) − δA w(s + θ)

=
dδw

ds
(s + θ) − Aδ w(s + θ)

=
dw

ds
(s) − A w(s)

= [L(x)]1(s)

and thus [L(x)]1(s) ∈ FixW (∆). Therefore

L(x) ∈ C0
2π(FixW (∆)) ⊕ C0

2π(FixP (ΣS))

Thus by linearity of L and Lemma 4.10 we have

L
(

FixC1

2π
(P )(∆)

)

⊆ FixC0

2π
(P )(∆)

2

Consider now a 1-parameter family of G-admissible vector fields f(x, λ)
such that L = (df)(x0,0) satisfies the conditions of the definition of interior
symmetry-breaking Hopf bifurcation (Definition 4.4 (2)), where A is the ΣS-
equivariant sub-block of L.

Lemma 4.12 Let L∆ : FixC1

2π
(P )(∆) → FixC0

2π
(P )(∆) be the operator given

by formula (4.13), where L = (df)(x0,0). Let ∆ ⊂ ΣS × S1 be a subgroup.
Then

dimR ker(L∆) = dimR FixEi(A)(∆)

Proof. By Lemma 3.10 and assumption (4.6), ker(L∆) consists of all func-
tions Re(eisv0) where v0 is an eigenvector of L associated to the eigenvalue i

which can be decomposed as

v0 = w0 + u0
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where u0 ∈ FixP (ΣS) is uniquely determined by an eigenvector w0 ∈ FixW (∆)
of A with purely imaginary eigenvalue and

(δ, θ) · Re(eisw0) = Re(ei(s+θ) δw0) = Re(eisw0)

for all (δ, θ) ∈ ∆. Hence

w0 ∈ FixW (∆) ∩ Ei(A) = FixEi(A)(∆)

By uniqueness of the decomposition v0 = w0+u0 and the dimension condition
(b) of Remark 4.3 we have

dimR ker(L∆) = dimR FixEi(A)(∆)

2

Lemma 4.13 Let us write the 1-parameter family of admissible vector fields
f(x, λ) in the form

f(x, λ) =

[

fS(x, λ)

f̃C\S(x, λ)

]

+

[

0
h(x, λ)

]

(4.14)

where

f̃(x, λ) =

[

fS(x, λ)

f̃C\S(x, λ)

]

is the ΣS-equivariant part of f . Let F , F̃ be operators on C1
2π(P )×R×R →

C0
2π(P ) defined by formula (4.10) using f and f̃ , respectively. Define

H(x, τ, λ) = h(x(s), λ)

so that
F(x, τ, λ) = F̃(x, τ, λ) −H(x, τ, λ)

Then
F

(

FixC1

2π
(P )(∆) × R× R

)

⊆ FixC0

2π
(P )(∆)

In particular, we may define the operator

F∆ : FixC1

2π
(P )(∆) × R× R −→ FixC0

2π
(P )(∆) (4.15)

by restriction and the linearization of F∆ about the origin is the linear oper-
ator L∆ given by the formula (4.13), where L = (df)(x0,0).
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Proof. The ΣS-equivariance of f̃ implies that F̃ is ΣS × S1-equivariant
(see [8, Lemma XVI 3.2]). It follows then that

F̃
(

FixC1

2π
(P )(∆) × R× R

)

⊆ FixC0

2π
(P )(∆)

Then it is enough to show that

H
(

FixC1

2π
(P )(∆) × R× R

)

⊆ FixC0

2π
(P )(∆)

Now let x(s) ∈ FixC1

2π
(P )(∆). Recall that h : P → PC\S and PC\S ⊂

FixP (ΣS). Therefore,

H(x, τ, λ)(s) = h(x(s), λ) ∈ FixP (ΣS) (s ∈ R)

for all λ, τ ∈ R. By Lemma 4.10 we have that

C0
2π(FixP (ΣS)) ⊂ C0

2π(FixW (∆)) ⊕ C0
2π(FixP (ΣS)) = FixC0

2π
(P )(∆)

and the result follows. 2

Remark 4.14 Equation (4.12) of Lemma 4.11 can derived directly from the
above lemma. 3

Proof of Theorem 4.8. Consider the operator

F∆ : FixC1

2π
(P )(∆) × R× R −→ FixC0

2π
(P )(∆)

The linearization of F∆ about the origin is the linear operator L∆. Now we
invoke the assumption that ∆ is C-axial for the natural ΣS × S1-action on
Ei(A), which together with Lemma 4.12 implies that

dimR ker(L∆) = 2

Now we may proceed as in the proof of the standard Hopf Bifurcation The-
orem. If we identify ker(L∆) ∼= C and then the action of S1 on ker(L∆) is
equivalent to the standard the action of S1 on C. The Lyapunov-Schmidt
reduction applied to F∆ yields a S1-equivariant bifurcation equation

φ : C × R× R → C

Moreover, the assumptions of the definition of codimension-one interior
symmetry-breaking bifurcation are exactly the conditions necessary to carry
out the proof. 2
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Example 4.15 Consider the network G2 of Figure 1. Suppose that for all
cells c we choose the internal phase space to be Pc = C. Then the total
phase space is P = C4. Suppose that a smooth 1-parameter family f :
P × R → P of G-admissible vector fields on P undergoes a codimension-
one interior symmetry-breaking Hopf bifurcation at the equilibrium x0 = 0
when λ = 0. Then Ei(A) = W , where A is the ΣS-equivariant sub-block
of the linearization L = (df)(0,0) of f at (0, 0). By Theorem 4.8 there are
three branches of synchronously modulated ∆-symmetric waves associated
to the three conjugacy classes of interiorly C-axial subgroups of ΣS ×S1 (see
Table 1). Observe that the first periodic state of Table 1 is associated to a
spatially C-axial subgroup and so is predicted by [4, Theorem 3]. The third
periodic state of Table 1 is an approximate rotating wave. 3

Subgroup Form of solution to lowest order in λ

Z2 (w1(t) + u(t), w1(t) + u(t), w2(t) + u(t), v(t))

Z̃2 (w1(t) + u(t), w1(t + 1
2
) + u(t), ŵ(t) + u(t), v(t))

Z̃3 (w1(t) + u(t), w1(t + 1
3
) + u(t), w1(t + 2

3
) + u(t), v(t))

Table 1: Branches of synchronously modulated ∆-symmetric waves sup-
ported by the network G2. The hat ·̂ indicates that ŵ has twice the frequency.

4.4 Numerical Simulation

In this last section we illustrate the conclusions of Example 4.15 with a
numerical simulation. In order to write down an explicit coupled cell system
associated to network G2 we choose the internal phase space of all four cells
to be Pc = C ∼= R2.

Consider the coupled cell system

ẋ1 = g(x1, x2, x3) + 2x4

ẋ2 = g(x2, x3, x1) + 2x4

ẋ3 = g(x3, x1, x2) + 2x4

ẋ4 = − x4 + e1x1 + e2x2 + e3x3

(4.16)
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where g : (R2)3 → R2 is given by

g(x, y, z) = − x + (a − 2b2) x‖x‖2 + b1 (y + z) + b2 (y‖y‖2 + z‖z‖2)

+ a (x‖y‖2 + x‖z‖2) + b3 (y‖y‖4 + z‖z‖4)

and a, b1(λ), b2, b3, e1, e2, e3 are 2×2 matrices with b1 depending smoothly on
a parameter λ. Let f be the vector field defined by (4.16). Observe that the
origin is an equilibrium point for all λ

f(0, λ) ≡ 0

The linearization of f at (0, λ) is given by (as 2 × 2 block matrix)

L(λ) =









−1 b1 b1 1
b1 −1 b1 1
b1 b1 −1 1
e1 e2 e3 −1









where ±1 represents ±
(

1 0
0 1

)

.
We need to choose the coefficients b1 and e1, e2, e3 in order to have purely

imaginary eigenvalues for some λ coming from the sub-block A when L is
written in the form (3.12). The following values will do the work:

b1(λ) =

(

−1 − λ −1.5
1.5 −1

)

and any values between −1 and 1 for the entries of the matrices e1, e2, e3.
The spectrum of the matrix L(λ) has the following properties:

(1) For λ < 0 all eigenvalues of L(λ) have negative real parts.

(2) For λ = 0 the matrix L = L(0) has two pairs of eigenvalues ±i and the re-
maining eigenvalues have negative real parts. Moreover, the eigenvectors
associated to the purely imaginary eigenvalues are not in Fix(S3).

(3) For λ > 0 all eigenvalues of L(λ) whose associated eigenvectors are in
Fix(S3) have negative real parts and the remaining eigenvalues have pos-
itive real parts.
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Thus (4.16) undergoes a interior symmetry-breaking Hopf bifurcation when
λ = 0 giving rise to one branch of periodic solutions for each one of the three
interiorly C-axial subgroups of S3 ×S1 as in Table 1, when λ > 0. However,
depending on the choice of the coefficients a, b2 and b3 of g, one can make
at least of these periodic solutions to be stable. In our simulations we have
chosen the following coefficients:

a =

(

−0.5 0
0 −0.5

)

in all simulations and

(1) to obtain the solution with symmetry Z̃3:

b2 =

(

0.6 2
2 0.6

)

, b3 =

(

0 0
0 0

)

(2) to obtain the solution with (interior) symmetry Z̃2:

b2 =

(

−0.6 1
1 −0.6

)

, b3 =

(

0.2 −0.7
−0.7 0.2

)

(3) to obtain the solution with (interior) symmetry Z2:

b2 =

(

−0.6 0
0 −0.6

)

, b3 =

(

0 0.7
0.7 0

)

The coefficients e1, e2 and e3 represent the coupling that break the S3-
symmetry. If e1 = e2 = e3 then the coupled cell system (4.16) is admissible
for the network G1 of Figure 1 and so it is S3-symmetric. On the other hand,
if e1 6= e2 6= e3 then the coupled cell system (4.16) is admissible for the
network G2 of Figure 1 and have genuine S3-interior symmetry.

In the following we present the results of numerical simulations obtain-
ing the three types of periodic solutions mentioned above, for both of the
networks G1 and G2 of our running example. In Figures 3, 4 and 5 we super-
impose the time series of all four cells, which are identified by colours:

1 = blue 2 = red 3 = green 4 = black

37



0 5 10 15 20 25 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

x i,1

0 5 10 15 20 25 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

x i,2

0 5 10 15 20 25 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

x i,1

0 5 10 15 20 25 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

x i,2

Figure 3: Solutions with Z̃3 (interior) symmetry. (left) Network G1 with
exact S3-symmetry. (right) Network G2 with S3-interior symmetry.
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Figure 4: Solutions with Z̃2 (interior) symmetry. (left) Network G1 with
exact S3-symmetry. (right) Network G2 with S3-interior symmetry.

The upper panels show the first components and the lower panels show
the second components. The left panels refer to network G1 with exact S3-
symmetry and the panels on the right refer to network G1 with S3-interior
symmetry. Figure 6 present the solution with interior symmetry Z̃3 of net-
work G2, i.e., the approximate rotating wave from Figure 3 (right), viewed in
difference coordinates: blue = x1 − x2, green = x2 − x3 and red = x3 − x1.
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Figure 5: Solutions with Z2 (interior) symmetry. (left) Network G1 with
exact S3-symmetry. (right) Network G2 with S3-interior symmetry.

0 5 10 15 20 25 30
−0.5

0

0.5

t

x i,1
−

x i+
1,

1

0 5 10 15 20 25 30
−0.5

0

0.5

t

x i,2
−

x i+
1,

2

Figure 6: Approximate rotating wave in network G2, viewed in difference
coordinates: x1 − x2, x2 − x3 and x3 − x1.
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