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ABSTRACT. A divergence-free vector field satisfy the star property
if any divergence-free vector field in some C''-neighborhood has all
the singularities and all closed orbits hyperbolic. In this article
we prove that any divergence-free star vector field defined in a
closed three-dimensional manifold is Anosov. Moreover, we prove
that a C'-structurally stable three-dimensional conservative flow
is Anosov.
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1. INTRODUCTION, BASIC DEFINITIONS AND STATEMENT OF THE
RESULTS

Let M be a three-dimensional closed and connected C'*° Riemannian
manifold endowed with a volume-form and let p denote the Lebesgue
measure associated to it. We say that a vector field X: M — TM is
divergence-free if its divergence is equal to zero or equivalently if the
measure /. is invariant for the associated flow, X, ¢t € R. In this case
we say that the flow is conservative or volume-preserving. We denote
by X7(M) (r > 1) the space of C" divergence-free vector fields on M
and we endow this set with the usual C' Whitney topology. Let also
denote by X" (M) D X],(M) (r > 1) the space of C" (dissipative) vector
fields on M.

Given X € X' (M) let Sing(X) denote the set of singularities of X
and R := M \ Sing(X) the set of regular points.

Given z € R we consider its normal bundle N, = X (z)* c T,M
and define the linear Poincaré flow by P (z) := Hxt(y) o DX! where
Hxt@) @ Txt(xyM — Nxi(y) is the projection along the direction of
X(X*(z)). Let A C R be an X'-invariant set and N = N' & N? be a
Pl -invariant splitting over A; as X is conservative these bundles are
one-dimensional. We say that this splitting is an ¢-dominated splitting
for the linear Poincaré flow if there exists an ¢ € N such that for all
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z € A we have:

_ 1
1Px @)z [ P (X @), < 5
This definition is weaker than hyperbolicity where it is required that

1 1
P @)zl < 5 and also that [|PE(X @)1, 1< 5.

When A is compact this definition is equivalent to the usual definition
of hyperbolic flow ([8, Proposition 1.1]).

The simplest examples of hyperbolic sets are singularities and closed
orbits and it is well-know that these sets are stable by C'-perturbations,
that is, any other sufficiently C''-close system has equivalent behavior
or, in other words, it is possible to find a change of coordinates con-
jugating locally the two dynamics (for more details see [10]). Other
classical examples are the Anosov ones where M is hyperbolic, and
they form an open set of X,(M) (see e.g. [12]).

We say that a vector field is Aziom A if the closure of the union of
the closed orbits and the singularities is the non-wandering set, denoted
by ©(X), and this set is hyperbolic. Since, by Poincaré recurrence the-
orem, for conservative vector fields the non-wandering set is equal to
M, a conservative vector field that is Axiom A is actually an Anosov
system. In the dissipative case, in order to obtain stability we must
check if there exists no cycles. Recall that, by the spectral decomposi-
tion of an Axiom A flow, we have that Q(X) = U¥_, A; where each A,
is a basic piece. We define an order relation by A; < A; if there exists
x € M\ (A;UA;) such that a(x) C A; and w(z) C A;. We say that X
has a cycle if there exists a cycle with respect to < (see [12] for details).

We say that X € X'(M) is a star flow if there exists a C'-neighbor-
hood V 3 X such that if Y € V, then the all the closed orbits and all
the singularities of Y are hyperbolic. Denote the set of star flows in M
by G'(M).

Recently, Gan and Wen ([9]) proved a remarkable result about dis-
sipative star flows defined in a d-dimensional manifold, where d > 3:

Theorem 1.1. If X € GY(M?) and Sing(X) = 0 then X is Aziom A
without cycles.

In this paper we deal with these issues in the setting of three-dimen-
sional divergence-free vector fields and our approach is of a completely
different nature. We consider flows that are star flows restricted to the
conservative setting, which we denote by G.(M). That is, X € G(M)
if there exists a neighbourhood V of X in X},(M) such that any Y € V,
has all the closed orbits and all the singularities hyperbolic. Our main
result states that such a flow has no singularities and is hyperbolic
(Anosov). We note that Gan and Wen must consider non-singular
flows due, in particular, to the fact that the Lorenz strange attractor is
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in GY(M). However, Arbieto and Matheus ([1, Corollary 4.1]) proved
that, in the conservative setting, there are no geometrical Lorenz sets,
which could indicate that it should be possible to remove the hypothesis
of the non-existence of singularities.

Let us now state our main result.

Theorem 1. If X € G(M) then Sing(X) = 0 and actually X is
Anosov.

We point out that the proof of this result is a consequence of sev-
eral recent results on conservative three-dimensional flows. We believe
that the previous result is also true in any dimension and its proof
should be obtained by generalizing these recent results to any dimen-
sion' and eventually following the strategy of the cited work of Gan
and Wen, namely by using the fact that vector fields in G (M) cannot
have heterodimensional cycles.

Let Az denote the open set of divergence-free Anosov vector fields

on a three-dimensional manifold M.
It is clear that G'(M) N X, (M) C G,(M); Theorem 1 implies that
1 1 _ ol _ 43
G(M)NX,(M)=G,(M)=A,.
As a consequence of Theorem 1 we also obtain the following result.

Corollary 1.2. The boundary of AZ has no isolated points.

A vector field X € X (M) is said to be C'-structurally stable in
the conservative setting if there exists a C'* neighbourhood, V, of X in
X, (M) such that every Y € V is topological equivalent to X (see, for
example [10]).

Combining Theorem 1 with previous results of the first author with
P. Duarte ([4]) and with V. Aratjo ([2]) we are able to prove the sta-
bility conjecture for C!' conservative 3-flows.

Theorem 2. If X € X}, (M) is a C'-structurally stable three-dimen-
sional flow then X is Anosov.

2. SOME MAIN TOOLS

If p is a regular point of X € %L(M ), define the segment of orbit
L(p,7) = {X'(p); t € [0,7]}. Now consider V,V’ sub-spaces of N,
with dim(V) = j, for some 2 < j<n—1,and N, =V & V'. A one-
parameter linear family {A; }ier associated to I'(p, 7) and V' is defined
as follows:

e A;: N, — N, is a linear map, for all ¢t € R,
e A, =1Id, forallt <0,and A; = A,, forallt > T,

'In [6] the authors obtain a generalization of one of these results.
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o Aily € SL(j,R), and Ay = Id, Vt € [0, 7], in particular we
have det(A;) =1, for all t € R, and
e the family A; is C*° on the parameter ¢.

In this paper we will consider n = 3 and so V = N, and dim(V') = 2.
The following result is a kind of Franks’ Lemma for volume-preserving
flows and was proved in [5].

Theorem 2.1. Given € > 0 and a vector field X € X},(M) there exists
& = o€, X) such that V1 € [1,2], for any periodic point p of period
greater than 2, for any sufficient small flowbox T of I'(p,7) and for
any one-parameter linear family {A¢}tiepr such that ||AA7Y < &,
Vt € [0, 7], there exists Y € %i(M) satisfying the following properties

(1) Y is e-C'-close to X;

(2) Yi(p) = X' (p), for allt € R;

(3) Py(p) = P%(p)o A,, and

(4) Y\Tc X|7e.

Let us state a useful and direct application of Theorem 2.1 that,
under certain conditions, allows us to create elliptic periodic points.

Corollary 2.2. Let X € X,(M) and ¢ > 0. There exists § > 0 such
that if p € M is a X"'-closed orbit of period m > 2 and || PZ(p)—1d|| < ¢
then there exists Y € Z{L(M), e-C'-close to X, such that p is an elliptic
point of period ™ of Y.

Remark 2.1. Actually, using Theorem 2.1, we conclude that if 7 is
large enough then the condition ||P%(p) — Id|| = 0 can be replaced by
the condition || P%(p)| ~ 1.

We also recall the C'*-Closing Lemma adapted to the setting of vo-
lume-preserving flows by Pugh and Robinson [11, Section 8(c)]. The
X'-orbit of a recurrent point z can be approximated for a very long
time 7" > 0 by a closed orbit of a flow Y which is C'-close to X. In
fact, given 7, T > 0 we can find a e-C"-neighborhood 4 C X,(M) of X,
a closed orbit p of Y with period 7 and a map 7: [0,7] — [0, 7] close
to the identity such that

o dist(X'(z), Y™ (p)) <rforall 0 <t <T;
oY =X over M\ Uogtgw (B(p, r)N B(Yt(p),r)).

Another ingredient of the proofs of our theorems is a generalization of
Bochi’s dichotomy (see [7, Theorem A]) for the continuous-time class.
This result was obtained recently by combining a Theorem of [3, The-
orem 1], corresponding to the case when X has no singularities, and a
Theorem of [2, Theorem A], that corresponds to case when X can have
singularities. More precisely the following result was obtained.

Theorem 2.3. There exists a C'-residual set R C X),(M) such that
if X € R then X is Anosov or else almost every point in M has zero
Lyapunov exponents.
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3. PROOFS OF THE RESULTS

Let us recall that a singularity o of a vector field X is linear hyperbolic
if o is a hyperbolic singularity and there exists a smooth local change of
coordinates around o that conjugates X and DX, (cf. [13, Definition
4.1]).

The proof of Theorem 1 is made in two steps. First we prove that if
X € G\(M) then X has no singularities and P% admits a dominated
splitting over M (Lemma 3.1) and then we prove that if X € G}(M) is
such that P% admits a dominated splitting over M then X is Anosov
(Lemma 3.2).

Lemma 3.1. If X € G,(M) then X has no singularitics and Py admits
a dominated splitting over M.

Proof. Let us first observe that G| (M) is C*' open in X, (M).

To prove the lemma let us fix X € G| (M) and a C*-neighbourhood
Vof X in G (M). Let us choose Y € V such that all the singularities of
Y are linear hyperbolic. If M \ Sing(Y') admits a dominated splitting
for the linear Poincaré flow of Y then [13, Proposition 4.1] implies
that Sing(Y) = 0. Tt follows that there exists Y C V, Y € U, whose
elements do not have singularities and admit a dominated splitting for
the associated linear Poincaré flow. So let us now assume that M \
Sing(Y') does not admit a dominated splitting for the linear Poincaré
flow of Y.

We claim that for all m € N, there exists a Y'-invariant set I',, C
M \ Sing(Y') such that u(I';,) > 0 and I',, do not have dominated
splitting for P In fact if this claim was false, then there would exist m
such that M\ Sing(Y') has an m-dominated splitting which contradicts
our assumption.

Using the techniques involved in the proof of Theorem 2.3 (see [3])
it is straightforward to conclude that for m sufficiently large and any
t > Ty there exists Y7 € V, C'-close to Y, and such that || P} ()| ~ 1,
fora.e. x € I',,. Actually, let U C T, be a measurable set with positive
measure. Let R C U be the set given by the Poincaré recurrence
theorem with respect to Y;. Then every x € R returns to U infinitely
many times under the flow Y} and is not a periodic point. Let Z denote

the subset of I'), having zero Lyapunov exponents for Y;.
Given r € ZN R and § > 0, there exists T, € R such that

e < | Py, ()] < e’ for every t > To,.

By the C'-Closing Lemma the Y{-orbit of  can be approximated,
for a very long recurrent time T > T, by a periodic orbit of a C*-close
flow Ys: given r,T > 0 we can find a small C'-neighborhood U of Y;
in %}L(M ), a vector field Yo € U, a periodic orbit p of Y5 with period
m>T and a map g : [0,7] — [0, 7] close to the identity such that
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. dist(Yf(z),}@g(t)(p)) <rforall 0 <t<T;
[ ] }/2 - 1/1 over M \ Uogtgﬂ- (B(p7 T.) m B(}g(p)7r))
Letting » > 0 be small enough we obtain also that

T < | PL(p)l < .

Now, using Zuppa’s theorem ([14]), as p is a hyperbolic periodic point,
we can approximate Yy by Y3 € X}(M) NV such that the analytic
continuation of p, pg, is a periodic point of period close to  for Y3, and
such that

™" < [Py, (po)| < €.

Finally, using Remark 2.1, we are able to obtain Y; € G/(M) NV,
close to Y3 and such that || P¥, (po)|| = 1 and moreover py is an elliptic
point, which is a contradiction.

Therefore Sing(Y) = () and P} admits a dominated splitting over
M.

Let us now prove that X has no singularities and P% admits a dom-
inated splitting over M. In fact if X has a singularity then there exists
Yy € V such that Y, has at least one linear hyperbolic singularity.
Now we proceed as before to Y € V, arbitrarily close to Y}, having all
the singularities linear hyperbolic and with Sing(Y) # (). Repeating
the arguments above we get that Sing(Y) = (), which is a contradic-
tion. Therefore Sing(X) = () and, in previous arguments, we can take
Y = X and then conclude that X has a dominated splitting for the
linear Poincaré flow.

g

Lemma 3.2. If X € G (M) is such that Py admits a dominated split-
ting over M then X is Anosov.

Proof. Since P% admits a dominated splitting over M one gets that
there exists ¢ € N such that
_ 1
Az, 0) = [|Px (@) v 1P (X (@)|nz, || < 5 Vo e M,

X()
where N = N!' @ N2, and these subbundles are Pk-invariant and are
one dimensional.

For any i € N we have A(x,if) < 1/2'. For every t € R we may
write ¢ = if 4+ 7 and since | Py is bounded, say by L, take C' = 27 L?
and 0 = 277 to get A(x,t) < Co' for every x € M and ¢ € R. Denote
by a; the angle £(Ny.(,, N%i(,). We already know by domination
that this angle is bounded bellow from zero, say by (. Since we do
not have singularities there exists K > 1 such that for all z € M,
K~!' <||X(z)|]| € K. Since the flow is conservative and the subbundles
are both one dimensional we have that

| X (X" (@)l

X ()]

sin(an) = [[Px () w2 || Px ()| vzl sin(a)



THREE-DIMENSIONAL CONSERVATIVE STAR FLOWS ARE ANOSOV 7

So,

sin(ag) || X ()|
sin(Oét) ”X(Xt@))u
A(z, il + r)sin(8) 1 K?
o'Csin(3) K2

1P ()| vz I* Az, )

IAIA

Analogously we get

Pl = el Ay
A(z,il + r)sin(S
o'Csin(B) K2

These two inequalities show that M is hyperbolic for the linear
Poincaré flow. Then by [8, Proposition 1.1] we obtain that M is a
hyperbolic set, thus X is Anosov. This end the proof of the lemma.

O

|
>_1K2

IA A

Proof. (of Corollary 1.2) We claim that an isolated point X of the
boundary of A% do not have singularities. In fact if Sing(X) # 0 then,
since Anosov vector fields do not have singularities, the singularities
of X must be all nonhyperbolic. A nonhyperbolic singularity can be
made hyperbolic by a small perturbation, thus there are vector fields
arbitrarily close to X having (stably) hyperbolic singularities which is
a contradiction because X is an isolated point of the boundary of Ai.

Now we just have to follow the proof of Theorem 1, taking ¥ = X
(where we don’t need to assume anymore that X € G,(M)), concluding
that linear Poincaré flow of X admits a dominated splitting over M.
Now, as in the proof of the previous corollary, it follows that X is
Anosov. O

Proof. (of Theorem 2) Let us fix a C'-structurally stable vector field
in X, (M) and choose a neighbourhood V of X whose elements are
topologically equivalent to X. If X ¢ Ai = Q}L(M ) then it follows that
VN AS = 0. Using [4, 2] one gets that there exists a residual subset
R C V such that for every Y € R the set of elliptic closed orbits is
dense in M. Let us fix Y € R and choose a small neighbourhood of Y,
wWcv.

Let x be an elliptic point of large period, say w. Using Zuppa's
theorem ([14]) and the stability of elliptic points, we can approximated
Y, in the C! topology, by a C*vector field Z € W such that the
analytic continuation of x is also an elliptic point with period close
to . Now, if 7 is large enough, we apply Theorem 2.1 several times,
by concatenating small rotations (the maps A;), in order to obtain a
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new vector field W € W exhibiting a parabolic closed orbit. Since the
existence of a parabolic point prevents structural stability and W € W
we get a contradiction. Therefore X € Az, which ends the proof.

0
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