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Abstract. A divergence-free vector field satisfy the star property
if any divergence-free vector field in some C1-neighborhood has all
the singularities and all closed orbits hyperbolic. In this article
we prove that any divergence-free star vector field defined in a
closed three-dimensional manifold is Anosov. Moreover, we prove
that a C1-structurally stable three-dimensional conservative flow
is Anosov.
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1. Introduction, basic definitions and statement of the
results

Let M be a three-dimensional closed and connected C∞ Riemannian
manifold endowed with a volume-form and let µ denote the Lebesgue
measure associated to it. We say that a vector field X : M → TM is
divergence-free if its divergence is equal to zero or equivalently if the
measure µ is invariant for the associated flow, X t, t ∈ R. In this case
we say that the flow is conservative or volume-preserving. We denote
by Xr

µ(M) (r ≥ 1) the space of Cr divergence-free vector fields on M

and we endow this set with the usual C1 Whitney topology. Let also
denote by Xr(M) ⊃ Xr

µ(M) (r ≥ 1) the space of Cr (dissipative) vector
fields on M .

Given X ∈ X1(M) let Sing(X) denote the set of singularities of X
and R := M \ Sing(X) the set of regular points.

Given x ∈ R we consider its normal bundle Nx = X(x)⊥ ⊂ TxM
and define the linear Poincaré flow by P t

X(x) := ΠXt(x) ◦ DX t
x where

ΠXt(x) : TXt(x)M → NXt(x) is the projection along the direction of
X(X t(x)). Let Λ ⊂ R be an X t-invariant set and N = N1 ⊕ N2 be a
P t
X-invariant splitting over Λ; as X is conservative these bundles are

one-dimensional. We say that this splitting is an `-dominated splitting
for the linear Poincaré flow if there exists an ` ∈ N such that for all
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x ∈ Λ we have:

‖P `
X(x)|N2

x
‖.‖P−`X (X`(x))|N1

X`(x)
‖ ≤ 1

2
.

This definition is weaker than hyperbolicity where it is required that

‖P `
X(x)|N2

x
‖ ≤ 1

2
and also that ‖P−`X (X`(x))|N1

X`(x)
‖ ≤ 1

2
.

When Λ is compact this definition is equivalent to the usual definition
of hyperbolic flow ([8, Proposition 1.1]).

The simplest examples of hyperbolic sets are singularities and closed
orbits and it is well-know that these sets are stable by C1-perturbations,
that is, any other sufficiently C1-close system has equivalent behavior
or, in other words, it is possible to find a change of coordinates con-
jugating locally the two dynamics (for more details see [10]). Other
classical examples are the Anosov ones where M is hyperbolic, and
they form an open set of X1

µ(M) (see e.g. [12]).
We say that a vector field is Axiom A if the closure of the union of

the closed orbits and the singularities is the non-wandering set, denoted
by Ω(X), and this set is hyperbolic. Since, by Poincaré recurrence the-
orem, for conservative vector fields the non-wandering set is equal to
M , a conservative vector field that is Axiom A is actually an Anosov
system. In the dissipative case, in order to obtain stability we must
check if there exists no cycles. Recall that, by the spectral decomposi-
tion of an Axiom A flow, we have that Ω(X) = ∪ki=1Λi where each Λi

is a basic piece. We define an order relation by Λi ≺ Λj if there exists
x ∈M \ (Λi ∪Λj) such that α(x) ⊂ Λi and ω(x) ⊂ Λj. We say that X
has a cycle if there exists a cycle with respect to ≺ (see [12] for details).

We say that X ∈ X1(M) is a star flow if there exists a C1-neighbor-
hood V 3 X such that if Y ∈ V , then the all the closed orbits and all
the singularities of Y are hyperbolic. Denote the set of star flows in M
by G1(M).

Recently, Gan and Wen ([9]) proved a remarkable result about dis-
sipative star flows defined in a d-dimensional manifold, where d ≥ 3:

Theorem 1.1. If X ∈ G1(Md) and Sing(X) = ∅ then X is Axiom A
without cycles.

In this paper we deal with these issues in the setting of three-dimen-
sional divergence-free vector fields and our approach is of a completely
different nature. We consider flows that are star flows restricted to the
conservative setting, which we denote by G1

µ(M). That is, X ∈ G1
µ(M)

if there exists a neighbourhood V of X in X1
µ(M) such that any Y ∈ V ,

has all the closed orbits and all the singularities hyperbolic. Our main
result states that such a flow has no singularities and is hyperbolic
(Anosov). We note that Gan and Wen must consider non-singular
flows due, in particular, to the fact that the Lorenz strange attractor is
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in G1(M). However, Arbieto and Matheus ([1, Corollary 4.1]) proved
that, in the conservative setting, there are no geometrical Lorenz sets,
which could indicate that it should be possible to remove the hypothesis
of the non-existence of singularities.

Let us now state our main result.

Theorem 1. If X ∈ G1
µ(M) then Sing(X) = ∅ and actually X is

Anosov.

We point out that the proof of this result is a consequence of sev-
eral recent results on conservative three-dimensional flows. We believe
that the previous result is also true in any dimension and its proof
should be obtained by generalizing these recent results to any dimen-
sion1 and eventually following the strategy of the cited work of Gan
and Wen, namely by using the fact that vector fields in G1

µ(M) cannot
have heterodimensional cycles.

Let A3
µ denote the open set of divergence-free Anosov vector fields

on a three-dimensional manifold M .
It is clear that G1(M) ∩ X1

µ(M) ⊂ G1
µ(M); Theorem 1 implies that

G1(M) ∩ X1
µ(M) = G1

µ(M) = A3
µ.

As a consequence of Theorem 1 we also obtain the following result.

Corollary 1.2. The boundary of A3
µ has no isolated points.

A vector field X ∈ X1
µ(M) is said to be C1-structurally stable in

the conservative setting if there exists a C1 neighbourhood, V , of X in
X1
µ(M) such that every Y ∈ V is topological equivalent to X (see, for

example [10]).
Combining Theorem 1 with previous results of the first author with

P. Duarte ([4]) and with V. Araújo ([2]) we are able to prove the sta-
bility conjecture for C1 conservative 3-flows.

Theorem 2. If X ∈ X1
µ(M) is a C1-structurally stable three-dimen-

sional flow then X is Anosov.

2. Some main tools

If p is a regular point of X ∈ X1
µ(M), define the segment of orbit

Γ(p, τ) = {X t(p); t ∈ [0, τ ]}. Now consider V, V ′ sub-spaces of Np,
with dim(V ) = j, for some 2 ≤ j ≤ n − 1, and Np = V ⊕ V ′. A one-
parameter linear family {At}t∈R associated to Γ(p, τ) and V is defined
as follows:

• At : Np → Np is a linear map, for all t ∈ R,
• At = Id, for all t ≤ 0, and At = Aτ , for all t ≥ τ ,

1In [6] the authors obtain a generalization of one of these results.
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• At|V ∈ SL(j,R), and At|V ′ ≡ Id, ∀t ∈ [0, τ ], in particular we
have det(At) = 1, for all t ∈ R, and
• the family At is C∞ on the parameter t.

In this paper we will consider n = 3 and so V = Np and dim(V ) = 2.
The following result is a kind of Franks’ Lemma for volume-preserving

flows and was proved in [5].

Theorem 2.1. Given ε > 0 and a vector field X ∈ X4
µ(M) there exists

ξ0 = ξ0(ε,X) such that ∀τ ∈ [1, 2], for any periodic point p of period
greater than 2, for any sufficient small flowbox T of Γ(p, τ) and for
any one-parameter linear family {At}t∈[0,τ ] such that ‖A′tA−1

t ‖ < ξ0,
∀t ∈ [0, τ ], there exists Y ∈ X1

µ(M) satisfying the following properties

(1) Y is ε-C1-close to X;
(2) Y t(p) = X t(p), for all t ∈ R;
(3) P τ

Y (p) = P τ
X(p) ◦ Aτ , and

(4) Y |T c ≡ X|T c.

Let us state a useful and direct application of Theorem 2.1 that,
under certain conditions, allows us to create elliptic periodic points.

Corollary 2.2. Let X ∈ X4
µ(M) and ε > 0. There exists δ > 0 such

that if p ∈M is a X t-closed orbit of period π ≥ 2 and ‖P π
X(p)−Id‖ < δ

then there exists Y ∈ X1
µ(M), ε-C1-close to X, such that p is an elliptic

point of period π of Y .

Remark 2.1. Actually, using Theorem 2.1, we conclude that if π is
large enough then the condition ‖P π

X(p) − Id‖ ≈ 0 can be replaced by
the condition ‖P π

X(p)‖ ≈ 1.

We also recall the C1-Closing Lemma adapted to the setting of vo-
lume-preserving flows by Pugh and Robinson [11, Section 8(c)]. The
X t-orbit of a recurrent point x can be approximated for a very long
time T > 0 by a closed orbit of a flow Y which is C1-close to X. In
fact, given r, T > 0 we can find a ε-C1-neighborhood U ⊂ X1

µ(M) of X,
a closed orbit p of Y with period π and a map τ : [0, T ] → [0, π] close
to the identity such that

• dist
(
X t(x), Y τ(t)(p)

)
< r for all 0 ≤ t ≤ T ;

• Y = X over M \
⋃

0≤t≤π
(
B(p, r) ∩B(Y t(p), r)

)
.

Another ingredient of the proofs of our theorems is a generalization of
Bochi’s dichotomy (see [7, Theorem A]) for the continuous-time class.
This result was obtained recently by combining a Theorem of [3, The-
orem 1], corresponding to the case when X has no singularities, and a
Theorem of [2, Theorem A], that corresponds to case when X can have
singularities. More precisely the following result was obtained.

Theorem 2.3. There exists a C1-residual set R ⊂ X1
µ(M) such that

if X ∈ R then X is Anosov or else almost every point in M has zero
Lyapunov exponents.
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3. Proofs of the results

Let us recall that a singularity σ of a vector fieldX is linear hyperbolic
if σ is a hyperbolic singularity and there exists a smooth local change of
coordinates around σ that conjugates X and DXσ (cf. [13, Definition
4.1]).

The proof of Theorem 1 is made in two steps. First we prove that if
X ∈ G1

µ(M) then X has no singularities and P t
X admits a dominated

splitting over M (Lemma 3.1) and then we prove that if X ∈ G1
µ(M) is

such that P t
X admits a dominated splitting over M then X is Anosov

(Lemma 3.2).

Lemma 3.1. If X ∈ G1
µ(M) then X has no singularities and P t

X admits
a dominated splitting over M .

Proof. Let us first observe that G1
µ(M) is C1 open in X1

µ(M).

To prove the lemma let us fix X ∈ G1
µ(M) and a C1-neighbourhood

V of X in G1
µ(M). Let us choose Y ∈ V such that all the singularities of

Y are linear hyperbolic. If M \ Sing(Y ) admits a dominated splitting
for the linear Poincaré flow of Y then [13, Proposition 4.1] implies
that Sing(Y ) = ∅. It follows that there exists U ⊂ V , Y ∈ U , whose
elements do not have singularities and admit a dominated splitting for
the associated linear Poincaré flow. So let us now assume that M \
Sing(Y ) does not admit a dominated splitting for the linear Poincaré
flow of Y .

We claim that for all m ∈ N, there exists a Y t-invariant set Γm ⊂
M \ Sing(Y ) such that µ(Γm) > 0 and Γm do not have dominated
splitting for P t

Y . In fact if this claim was false, then there would exist m
such that M \Sing(Y ) has an m-dominated splitting which contradicts
our assumption.

Using the techniques involved in the proof of Theorem 2.3 (see [3])
it is straightforward to conclude that for m sufficiently large and any
t > T0 there exists Y1 ∈ V , C1-close to Y , and such that ‖P t

Y1
(x)‖ ≈ 1,

for a.e. x ∈ Γm. Actually, let Û ⊂ Γm be a measurable set with positive
measure. Let R ⊂ Û be the set given by the Poincaré recurrence
theorem with respect to Y1. Then every x ∈ R returns to Û infinitely
many times under the flow Y t

1 and is not a periodic point. Let Z denote
the subset of Γm having zero Lyapunov exponents for Y1.

Given x ∈ Z ∩R and δ > 0, there exists Tx ∈ R such that

e−δt < ‖P t
Y1

(x)‖ < eδt for every t ≥ Tx.

By the C1-Closing Lemma the Y t
1 -orbit of x can be approximated,

for a very long recurrent time T > Tx, by a periodic orbit of a C1-close
flow Y2: given r, T > 0 we can find a small C1-neighborhood U of Y1

in X1
µ(M), a vector field Y2 ∈ U , a periodic orbit p of Y2 with period

π > T and a map g : [0, T ]→ [0, π] close to the identity such that
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• dist
(
Y t

1 (x), Y
g(t)
2 (p)

)
< r for all 0 ≤ t ≤ T ;

• Y2 = Y1 over M \
⋃

0≤t≤π
(
B(p, r) ∩B(Y t

2 (p), r)
)
.

Letting r > 0 be small enough we obtain also that

e−δπ < ‖P π
Y2

(p)‖ < eδπ.

Now, using Zuppa’s theorem ([14]), as p is a hyperbolic periodic point,
we can approximate Y2 by Y3 ∈ X4

µ(M) ∩ V such that the analytic
continuation of p, p0, is a periodic point of period close to π for Y3, and
such that

e−δπ < ‖P π
Y3

(p0)‖ < eδπ.

Finally, using Remark 2.1, we are able to obtain Y4 ∈ G1
µ(M) ∩ V ,

close to Y3 and such that ‖P π
Y4

(p0)‖ = 1 and moreover p0 is an elliptic
point, which is a contradiction.

Therefore Sing(Y ) = ∅ and P t
Y admits a dominated splitting over

M .
Let us now prove that X has no singularities and P t

X admits a dom-
inated splitting over M . In fact if X has a singularity then there exists
Y0 ∈ V such that Y0 has at least one linear hyperbolic singularity.
Now we proceed as before to Y ∈ V , arbitrarily close to Y0, having all
the singularities linear hyperbolic and with Sing(Y ) 6= ∅. Repeating
the arguments above we get that Sing(Y ) = ∅, which is a contradic-
tion. Therefore Sing(X) = ∅ and, in previous arguments, we can take
Y = X and then conclude that X has a dominated splitting for the
linear Poincaré flow.

�

Lemma 3.2. If X ∈ G1
µ(M) is such that P t

X admits a dominated split-
ting over M then X is Anosov.

Proof. Since P t
X admits a dominated splitting over M one gets that

there exists ` ∈ N such that

∆(x, `) = ‖P `
X(x)|N1

x
‖‖P−`X (X`(x))|N2

X`(x)
‖ ≤ 1

2
, ∀x ∈M,

where N = N1 ⊕ N2, and these subbundles are P t
X-invariant and are

one dimensional.
For any i ∈ N we have ∆(x, i`) ≤ 1/2i. For every t ∈ R we may

write t = i` + r and since ‖P r
X‖ is bounded, say by L, take C = 2

r
`L2

and σ = 2−
1
` to get ∆(x, t) ≤ Cσt for every x ∈M and t ∈ R. Denote

by αt the angle ](N1
Xt(x), N

2
Xt(x)). We already know by domination

that this angle is bounded bellow from zero, say by β. Since we do
not have singularities there exists K > 1 such that for all x ∈ M ,
K−1 ≤ ‖X(x)‖ ≤ K. Since the flow is conservative and the subbundles
are both one dimensional we have that

sin(α0) = ‖P t
X(x)|N1

x
‖‖P t

X(x)|N2
x
‖ sin(αt)

‖X(X t(x))‖
‖X(x)‖

.
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So,

‖P t
X(x)|N2

x
‖2 =

sin(α0)

sin(αt)

‖X(x)‖
‖X(X t(x))‖

∆(x, t)

≤ ∆(x, i`+ r) sin(β)−1K2

≤ σtC sin(β)−1K2.

Analogously we get

‖P−tX (x)|N1
x
‖2 =

sin(αt)

sin(α0)

‖X(X t(x))‖
‖X(x))‖

∆(x, t)

≤ ∆(x, i`+ r) sin(β)−1K2

≤ σtC sin(β)−1K2.

These two inequalities show that M is hyperbolic for the linear
Poincaré flow. Then by [8, Proposition 1.1] we obtain that M is a
hyperbolic set, thus X is Anosov. This end the proof of the lemma.

�

Proof. (of Corollary 1.2) We claim that an isolated point X of the
boundary of A3

µ do not have singularities. In fact if Sing(X) 6= ∅ then,
since Anosov vector fields do not have singularities, the singularities
of X must be all nonhyperbolic. A nonhyperbolic singularity can be
made hyperbolic by a small perturbation, thus there are vector fields
arbitrarily close to X having (stably) hyperbolic singularities which is
a contradiction because X is an isolated point of the boundary of A3

µ.
Now we just have to follow the proof of Theorem 1, taking Y = X

(where we don’t need to assume anymore that X ∈ G1
µ(M)), concluding

that linear Poincaré flow of X admits a dominated splitting over M .
Now, as in the proof of the previous corollary, it follows that X is
Anosov. �

Proof. (of Theorem 2) Let us fix a C1-structurally stable vector field
in X1

µ(M) and choose a neighbourhood V of X whose elements are

topologically equivalent to X. If X /∈ A3
µ = G1

µ(M) then it follows that

V ∩ A3
µ = ∅. Using [4, 2] one gets that there exists a residual subset

R ⊂ V such that for every Y ∈ R the set of elliptic closed orbits is
dense in M . Let us fix Y ∈ R and choose a small neighbourhood of Y ,
W ⊂ V .

Let x be an elliptic point of large period, say π. Using Zuppa’s
theorem ([14]) and the stability of elliptic points, we can approximated
Y , in the C1 topology, by a C4-vector field Z ∈ W such that the
analytic continuation of x is also an elliptic point with period close
to π. Now, if π is large enough, we apply Theorem 2.1 several times,
by concatenating small rotations (the maps At), in order to obtain a
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new vector field W ∈ W exhibiting a parabolic closed orbit. Since the
existence of a parabolic point prevents structural stability and W ∈ W
we get a contradiction. Therefore X ∈ A3

µ, which ends the proof.
�
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