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Abstract

The goal of this paper is to present a basis of identities B for the
variety of all strict pseudosemilattices. We will then use B to obtain
some properties for the variety of all strict pseudosemilattices.

1 Introduction

A regular semigroup is a semigroup S for which every x ∈ S has an
x′ ∈ S such that xx′x = x. We shall denote the set of idempotents of a
regular semigroup S by E(S). We define the following two binary relations
on E(S):

e ωrf ⇔ e = fe and e ωlf ⇔ e = ef.

We consider also the binary relation ω = ωr ∩ ωl on E(S). Then ωr and ωl

are quasi-orders on E(S), while ω is a partial order on E(S). We shall denote
by ωr(f) the set of idempotents e such that e ωrf . Similarly, we define ωl(f)
and ω(f).

Locally inverse semigroups are regular semigroups for which any two
idempotents e and f have another idempotent g such that ωr(e) ∩ ωl(f) =
ω(g). This idempotent g is unique for each pair of idempotents e and f , and
shall be denoted by e ∧ f . Thus, any locally inverse semigroup S originates
a new binary algebra (E(S),∧) called the pseudosemilattice of idempotents
of S. These new binary algebras form a variety PS defined by the following
three identities together with the left-right duals of the last two (Namboori-
pad, [8]):

(i) x ∧ x ≈ x;
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(ii) (x ∧ y) ∧ (x ∧ z) ≈ (x ∧ y) ∧ z;

(iii) ((x ∧ y) ∧ (x ∧ z)) ∧ (x ∧ w) ≈ (x ∧ y) ∧ ((x ∧ z) ∧ (x ∧ w)).

Abstractly, a pseudosemilattice is a binary algebra satisfying these five iden-
tities, and so, any pseudosemilattice is the pseudosemilattice of idempotents
of some locally inverse semigroup.

An e-variety of regular semigroups is a class of these semigroup closed
under formation of homomorphic images, regular subsemigroups and direct
products (see [3, 4]). The class LI of all locally inverse semigroup is an
example of an e-variety of regular semigroups. Auinger [2] showed that the
mapping

ϕ : Le(LI) −→ L(PS), V 7−→ {(E(S),∧) |S ∈ V}

is a well-defined complete homomorphism from the lattice Le(LI) of e-varie-
ties of locally inverse semigroups onto the lattice L(PS) of varieties of pseu-
dosemilattices.

Pseudosemilattices are not semigroups in general. The largest variety of
pseudosemilattices whose algebras are also semigroups is the variety NB of
all normal bands and the smallest variety of pseudosemilattices with algebras
that are not semigroups is the variety SPS of all strict pseudosemilattices.
It is well known that NB ⊆ SPS. A strict pseudosemilattice is the pseu-
dosemilattice of idempotents of some [combinatorial] strict regular semigroup
and a strict regular semigroup is a subdirect product of completely simple
and/or 0-simple semigroups.

Free pseudosemilattices have been studied in [5, 7] and one solution for
the word problem for free pseudosemilattices has been presented in [9]. The
free strict pseudosemilattices were studied by Auinger [1] who gave also a
solution for the word problem for them. In this paper we shall present a
basis of identities for the variety SPS of all strict pseudosemilattices and
draw some consequences from it.

In the next section we present a model for the free pseudosemilattice on X
involving labeled connected cycle free bipartite graphs. Several other models
have been presented in [10]. However, the model presented here seems to
be more effective for our intentions. In Section 3 we reduce our scope of
identities for defining varieties of pseudosemilattices. We define the notion
of elementary identity and prove that, for varieties of pseudosemilattices, any
identity satisfied by all strict pseudosemilattices is equivalent to a finite set
of elementary identities.
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In Section 4 we define a set B of elementary identities and prove that B is
a basis of identities for SPS. Then, we use this basis to obtain some properties
for SPS. For instance, we shall prove that SPS has infinite axiomatic rank
and no independent basis of identities. We shall prove also that SPS is
∧-irreducible in the lattice of varieties of pseudosemilattices.

2 Free pseudosemilattices

Throughout this paper we shall denote by X an arbitrary alphabet and
by (F2(X),∧) the absolutely free binary algebra on X. A bipartite graph
can be described as a triple (L,D,R) where L∪R is the set of vertices with
L∩R = ∅ and D ⊆ L×R is the set of edges. Let B be the set of all 6-tuples
(l, L,D,R, r, ϕ) such that

(a) (L,D,R) is a connected cycle free bipartite graph with (l, r) ∈ D;

(b) ϕ : L ∪R→ X is a labeling for the vertices of (L,D,R).

Let Dϕ = {(aϕ, bϕ) : (a, b) ∈ D} ∪ {(aϕ, aϕ) : a ∈ L ∪R}.
We shall now inductively associate a 6-tuple αu = (lu, Lu, Du, Ru, ru, ϕu)

from B to each word u ∈ F2(X):

(i) |Lx| = |Dx| = |Rx| = 1 and lxϕx = rxϕx = x for any x ∈ X;

(ii) if u = x ∧ y with x, y ∈ X, then |Lu| = |Du| = |Ru| = 1, luϕu = x and
ruϕu = y;

(iii) if u = v∧w, then αu = (lv, Lv∪Lw, Dv∪Dw∪{(lv, rw)}, Rv∪Rw, rw, ϕu)
where ϕu is the natural labeling induced by ϕv and ϕw (note that we
are assuming that Lv, Lw, Rv and Rw are pairwise disjoint sets).

Clearly each αu belongs to B. The reverse is not so evident but it is still
true, that is, we can construct, for each α ∈ B, a word u ∈ F2(X) such
that α = αu. In fact, we can usually construct several words for each α. In
Section 3 of [9] we introduced an equivalence relation σ on F2(X). We can
check easily that αu = αv if and only if (u, v) ∈ σ for each u ∈ F2(X) such
that |c(u)| ≥ 2, where c(u) is the content of u, that is, the set of letters from
X that appear in u.

Next, we introduce the concepts of labeled subgraph and strong labeled
subgraph for members of B. These concepts will be useful later. Let αi =
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(li, Li, Di, Ri, ri, ϕi) ∈ B for i = 1, 2. We say that α1 is a labeled subgraph of
α2 if there exists an injective map ψ : L1 ∪R1 → L2 ∪R2 such that

(i) D1ψ = {(aψ, bψ) : (a, b) ∈ D1} ⊆ D2;

(ii) aψϕ2 = aϕ1 for all a ∈ L1 ∪R1.

Observe that we must have L1ψ ⊆ L2 and R1ψ ⊆ R2 since D1ψ ⊆ D2. If
we have also l1ψ = l2 and r1ψ = r2, then we say that α1 is a strong labeled
subgraph of α2.

Let A be the set of 6-tuples (l, L,D,R, r, ϕ) from B:

(c) with no degree 1 vertex a 6∈ {l, r} such that aϕ = bϕ for (a, b) ∈ D or
(b, a) ∈ D; and

(d) with neither (a, c), (b, c) ∈ D nor (c, a), (c, b) ∈ D such that aϕ = bϕ
and a 6= b.

The 6-tuples from A correspond to the R-reduced σ-equivalence classes in-
troduced in [9].

We introduce an operation ∧ on A as follows. Given

α1 = (l1, L1, D1, R1, r1, ϕ1) ∈ A and α2 = (l2, L2, D2, R2, r2, ϕ2) ∈ A,

consider the 6-tuple

α′ = (l1, L1 ∪ L2, D1 ∪D2 ∪ {(l1, r2)}, R1 ∪R2, r2, ϕ
′) ∈ B

where ϕ′ is the natural labeling induced by ϕ1 and ϕ2. Then, we apply the
following rules to α′ while possible:

(i) delete degree 1 vertices a 6∈ {l1, r2} if aϕ′ = bϕ′ and (a, b) or (b, a) is
the only edge with vertex a;

(ii) if aϕ′ = bϕ′ for (a, c), (b, c) ∈ D1 ∪ D2 ∪ {(l1, r2)} or for (c, a), (c, b) ∈
D1 ∪D2 ∪ {(l1, r2)}, then identify the vertices a and b (and the corres-
pondent edges).

From [9, Proposition 4.8] this process always ends up with the same 6-tuple
α = (l1, L,D,R, r2, ϕ) ∈ A, where ϕ is the expected labeling induced by ϕ′

(there is no ambiguity in defining ϕ since we are either eliminating vertices
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or identifying vertices with the same label). We define α1 ∧ α2 = α. From
[9, Theorem 5.7], (A,∧) is a model for the free pseudosemilattice on X.

The maximal subsemilattices of A are the disjoint sets

Ax,y = {(l, L,D,R, r, ϕ) ∈ A : lϕ = x and rϕ = y}

for x, y ∈ X; and for αi = (li, Li, Di, Ri, ri, ϕi) ∈ A, i = 1, 2, we have
α1 ω α2 if and only if α2 is a strong labeled subgraph of α1. Thus, if α1 ω α2,
then [α1, α2] is a finite semilattice with maximal subchains with at most
|L1∪R1|− |L2∪R2|+ 1 elements. Further, α2 is an ω-cover of α1 if and only
if

• L1 ∪R1 = L2 ∪R2 ∪ {a1, · · · , an} and ϕ2 = ϕ1|L2∪R2 ;

• D1 = D2 ∪ {(ai−1, ai) : 1 ≤ i ≤ n};

• a0ϕ1 = a1ϕ1 = · · · = an−1ϕ1 and anϕ1 6= a0ϕ1.

Lemma 2.1 With the notations introduced above, if α1 = αu for some u ∈
F2(X) and α2 is an ω-cover of α1 with L1ϕ1 ∩ R1ϕ1 = ∅, then α2 = αv for
some v ∈ F2(X) obtained from u by replacing either a subword a0ϕ1 ∧ a1ϕ1

or a subword a1ϕ1 ∧ a0ϕ1 with a0ϕ1.

Proof: Observe that n = 1 if L1ϕ1 ∩ R1ϕ1 = ∅. It is now obvious how to
obtain a word v ∈ F2(X) from u satisfying the conditions in the statement
of this lemma. �

3 Elementary identities

Let u, v ∈ F2(X) with αu, αv ∈ A and assume that

luϕu = lvϕv , ruϕu = rvϕv , Duϕu = Dvϕv and Luϕu ∩Ruϕu = ∅.

Let α = (l, L,D,R, r, ϕ) = α1 ∧ α2. Then Dϕ = Duϕu and Lϕ ∩ Rϕ = ∅.
Let

(i) α = αn ω αn−1 ω · · · ω α1 = αu be a maximal subchain of [α, αu]; and

(ii) α = αn ω αn+1 ω · · · ω αm = αv be a maximal subchain of [α, αv].
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Observe that if αi = (li, Li, Di, Ri, ri, ϕi) for 1 ≤ i ≤ m, then liϕi = lϕ,
riϕi = rϕ and Diϕi = Dϕ. Thus Liϕi ∩Riϕi = ∅.

Since αn ω αn−1 ω · · · ω α1 is a maximal subchain of [α, αu] and Liϕi ∩
Riϕi = ∅ for 1 ≤ i ≤ n, each αi has one more vertex than αi−1. Further, if
αn = αwn for some wn ∈ F2(X), then from Lemma 2.1 we can construct a
sequence of words wn, wn−1, · · · , w1 such that

• αi = αwi
for 1 ≤ i ≤ n;

• each wi is obtained from wi−1 by replacing either xi ∧ yi or yi ∧ xi with
xi for some xi, yi ∈ X.

Similarly, we can construct a sequence of words wn, wn+1, · · · , wm for the
maximal subchain αn ω αn+1 ω · · · ω αm of [α, αv].

Lemma 3.1 With the notations introduced above, a variety V of pseudose-
milattices satisfies the identity u ≈ v if and only if it satisfies all identities
wi ≈ wi+1 for 1 ≤ i < m.

Proof: Let δ be the congruence on A such that A/δ is the free algebra on V.
Then V satisfies u ≈ v if and only if (αu, αv) ∈ δ. Let x = lϕ and y = rϕ.
Since Ax,y is a semilattice and α = αu ∧ αv, then (αu, αv) ∈ δ if and only
if (αi, αi+1) ∈ δ for all 1 ≤ i < m, and thus if and only if V satisfies all
identities wi ≈ wi+1 for 1 ≤ i < m. �

Let β = (l, L′, D′, R′, r, ϕ′) ∈ A be an ω-cover for α = (l, L,D,R, r, ϕ) ∈
A. Hence, we can assume that L ∪ R = L′ ∪ R′ ∪ {a}, D has one more
edge than D′ and bϕ = bϕ′ for each b ∈ L′ ∪ R′. Assume Lϕ ∩ Rϕ = ∅
and let (l, s) ∈ D′ with s 6= r. Then α1 = (l, L,D,R, s, ϕ) ∈ A and β1 =
(l, L′, D′, R′, s, ϕ′) ∈ A. Further, β1 is an ω-cover for α1.

Lemma 3.2 Let ρ be a congruence on A. With the notations introduced
above, (α, β) ∈ ρ if and only if (α1, β1) ∈ ρ.

Proof: Let

αr = (l, {l}, {(l, r)}, {r}, r, ϕr) and αs = (l, {l}, {(l, s)}, {s}, s, ϕs)

where ϕr = ϕ|{l,r} and ϕs = ϕ|{l,s} and observe that

α ∧ αs = α1 and α1 ∧ αr = α .

Similarly, β ∧ αs = β1 and β1 ∧ αr = β , and thus (α, β) ∈ ρ if and only if
(α1, β1) ∈ ρ. �
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If a ∈ R, then there exist b ∈ L and c ∈ R′ such that (b, a), (b, c) ∈ D; let
α′ = (b, L,D,R, c, ϕ) and β′ = (b, L′, D′, R′, c, ϕ′). If a ∈ L, then there exist
b ∈ R and c ∈ L′ such that (a, b), (c, b) ∈ D; let α′ = (c, L,D,R, b, ϕ) and
β′ = (c, L′, D′, R′, b, ϕ′). Clearly α′ and β′ belong to A, and β′ is an ω-cover
for α′. Applying Lemma 3.2 and its dual several times if necessary, we obtain
the following corollary:

Corollary 3.3 Let ρ be a congruence on A. Then (α, β) ∈ ρ if and only if
(α′, β′) ∈ ρ.

Let u, v ∈ F2(X). We shall say that u ≈ v is an elementary identity if:

(i) αu, αv ∈ A;

(ii) (luϕu, Duϕu, ruϕu) = (lvϕv, Dvϕv, rvϕv) and Luϕu ∩Ruϕu = ∅;

(iii) there exists (x, y) ∈ Duϕu such that either luϕu = x and v is obtained
from u by replacing the first x in u with (x ∧ y), or ruϕu = y and v is
obtained from u by replacing the last y in u with (x ∧ y).

We shall say that a pair (α, β) of 6-tuples from A is elementary if there exist
words u, v ∈ F2(X) such that α = αu, β = αv and u ≈ v is an elementary
identity.

The following result follows now from Lemma 3.1 and Corollary 3.3:

Corollary 3.4 For varieties of pseudosemilattices, an identity u ≈ v sa-
tisfying the first two conditions of the definition of elementary identity is
equivalent to a finite set of elementary identities.

Let u1, v1 ∈ F2(X). Auinger [1, Corollary 4.4] proved that u1 ≈ v1 is
satisfied by all strict pseudosemilattices if and only if

(lu1ϕu1 , Du1ϕu1 , ru1ϕu1) = (lv1ϕv1 , Dv1ϕv1 , rv1ϕv1).

In particular c(u1) = c(v1) = {x1, · · · , xn} ⊆ X. Consider a set

Y = {x1,l , x1,r , · · · , xn,l , xn,r } ⊆ X

such that no two letters from Y are the same. Let u′ and v′ be the word
obtained from u1 and v1 by replacing each letter xi with xi,l ∧ xi,r. The two
identities u1 ≈ v1 and u′ ≈ v′ are clearly equivalent.
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Recall the two rules introduced earlier to transform some α ∈ B into
α′ ∈ A. If we apply these two rules to αu′ , we obtain αu ∈ A for some
u ∈ F2(X). The identity u′ ≈ u is satisfied by all pseudosemilattices due
to [9, Proposition 4.10]. We can do the same for v′ and obtain a word v.
Thus, for varieties of pseudosemilattices, the identity u1 ≈ v1 is equivalent
to the identity u ≈ v. Clearly u ≈ v satisfies the two first conditions in the
definition of elementary identity. If we consider now the Corollary 3.4, we
obtain the following result:

Proposition 3.5 Let u1 ≈ v1 be an identity satisfied by all strict pseu-
dosemilattices. Then, for varieties of pseudosemilattices, the identity u1 ≈ v1
is equivalent to a finite set of elementary identities.

A byproduct of the previous proposition is that every variety V of pseu-
dosemilattices containing SPS has a basis of identities constituted by elemen-
tary identities only. Further, to prove that a set B of elementary identities
satisfied by all pseudosemilattices from V is a basis of identities for V it is
enough to show that every elementary identity satisfied by all pseudosemi-
lattices from V is a consequence of the identities in B.

Let V be a variety of pseudosemilattices containing SPS. There exists a
congruence ρ on A such that A/ρ is the free algebra in V on the set X. This
congruence ρ is fully invariant in the sense that (αψ, βψ) ∈ ρ if (α, β) ∈ ρ
for all endomorphism ψ of A. Assuming X is countably infinite, a set I of
elementary identities is a basis of identities for V if and only if the congruence
ρ is the fully invariant congruence on A generated by the set of elementary
pairs

ΣI = {(αu, αv) : u ≈ v ∈ I}.

Let αi = (li, Li, Di, Ri, ri, ϕi) ∈ A, i = 1, 2, 3, such that α3 is a labeled
subgraph of α1 induced by θ1 : L3 ∪R3 → L1 ∪R1 and α3 is a strong labeled
subgraph of α2 induced by θ2 : L3∪R3 → L2∪R2. Consider the disconnected
labeled bipartite graph

(l1, L1 ∪ L2, D1 ∪D2, R1 ∪R2, r1, ϕ1 ∪ ϕ2),

and identify all vertices a ∈ L1 ∪R1 and b ∈ L2 ∪R2 (and the corresponding
edges) such that cθ1 = a and cθ2 = b for some c ∈ L3 ∪ R3. We obtain a
6-tuple

α = (l1, L,D,R, r1, ϕ) ∈ B.
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Now, we apply the two rules introduced in Section 2 to transform α into an
element of A. We shall denote this element of A by α1 ∧α3 α2. Observe that
α1 is always a strong labeled subgraph of α1 ∧α3 α2.

Let Σ be a set of elementary pairs of A and observe that if ψ is an
endomorphism of A and (α1, α2) ∈ Σ, then α1ψ is naturally a strong labeled
subgraph of α2ψ. A pair (α, β) of elements of A is said to be Σ-derivable if
there exist:

• a sequence α = γ0, γ1, · · · , γn = β of words from A;

• elementary pairs (αi, βi) ∈ Σ, for 1 ≤ i ≤ n; and

• endomorphisms ψi of A, for 1 ≤ i ≤ n;

such that either αiψi is a labeled subgraph of γi−1 and γi = γi−1 ∧αiψi
βiψi,

or αiψi is a labeled subgraph of γi and γi−1 = γi ∧αiψi
βiψi, for 1 ≤ i ≤ n.

The sequence γ0, γ1, · · · , γn is called a Σ-derivation. Observe that if γi =
(li, Li, Di, Ri, ri, ϕi) for 0 ≤ i ≤ n, then Di−1ϕi−1 = Diϕi since the pairs in
Σ are elementary.

We end this section with a standard result in this field of research. We
omit the proof since the argumentation is the usual one.

Lemma 3.6 Let Σ be a set of elementary pairs of A and let ρ be the fully
invariant congruence generated by Σ. Then (α, β) ∈ ρ if and only if (α, β) is
Σ-derivable.

4 The variety SPS

Let n ≥ 2 and let {x1, x2, · · · , x2n} be a set of 2n distinct letters from X.
Let

• Ln = {2i+ 1 : 0 ≤ i ≤ n} and Rn = {2i : 1 ≤ i ≤ n};

• Dn = {(i, j) : i ∈ Ln, j ∈ Rn and |i− j| = 1};

• ϕn : Ln ∪Rn → X with iϕn = xi for 1 ≤ i ≤ 2n and (2n+ 1)ϕn = x1;

• R′n = Rn ∪ {0}, D′n = Dn ∪ {(1, 0)} and ϕ′n : Ln ∪ R′n → X such that
0ϕ′n = x2n and iϕ′n = iϕn for 1 ≤ i ≤ 2n+ 1.
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Let αn = (1, Ln, Dn, Rn, 2, ϕn) ∈ A and α′n = (1, Ln, D
′
n, R

′
n, 2, ϕ

′
n) ∈ A.

Observe there is only one word un ∈ F2(X) such that αun = αn and
only one word vn ∈ F2(X) such that αvn = α′n. The identity un ≈ vn
is clearly an elementary identity, and thus they are satisfied by all strict
pseudosemilattices. Further, un ≈ vn implies um ≈ vm for m < n. Let

B = {un ≈ vn : n ≥ 2}.

We shall prove that B is a basis of elementary identities for SPS.
Let L∗n = Rn, R∗n = Ln and D∗n = {(a, b) : (b, a) ∈ Dn}, and define u∗n ∈

F2(X) such that αu∗n = (2, L∗n, D
∗
n, R

∗
n, 1, ϕn). Similarly we define v∗n ∈ F2(X)

and obtain elementary identities u∗n ≈ v∗n.

Lemma 4.1 For varieties of pseudosemilattices, the identity un+1 ≈ vn+1

implies the identity u∗n ≈ v∗n.

Proof: Consider a homomorphism θ : F2(X) → F2(X) such that x1θ = x1,
xiθ = xi−1 for 1 < i < 2n+2, and x2n+2θ = x2n∧x1. Thus, if u = x2∧(un+1θ)
and v = x2 ∧ (vn+1θ), then un+1 ≈ vn+1 implies u ≈ v. Observe now that
αu∗n ∈ A is the 6-tuple obtained from αu ∈ B applying the two rules in-
troduced earlier; whence u ≈ u∗n is satisfied by all pseudosemilattices. In
the same way we can verify that v ≈ v∗n is satisfied by all pseudosemilat-
tices. Therefore, for varieties of pseudosemilattices, the identity un+1 ≈ vn+1

implies the identity u∗n ≈ v∗n. �

Theorem 4.2 The set B is a basis of identities for SPS.

Proof: Obviously, every strict pseudosemilattice satisfies the identities from
B. Thus, to prove this proposition, it is enough to show that B implies every
elementary identity. Let u ≈ v be an elementary identity. Then αv has one
more edge than αu: (lu, a) for a 6= ru or (a, ru) for a 6= lu. By duality and
Lemma 4.1 we can assume that (lu, a) is the edge in αv not in αu. Then

αv = (lu, Lu, Du ∪ {(lu, a)}, Ru ∪ {a}, ru, ϕv),

where bϕv = bϕu for b 6= a and aϕv is such that (luϕu, aϕv) ∈ Du.
Let (b, c) ∈ Du such that (bϕu, cϕu) = (luϕu, aϕv) and let

α = (l, L,D,R, r, ϕ)
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be the smallest (connected) labeled subgraph of αv containing the edges
(lu, a) and (b, c). Let β be the 6-tuple obtained form α by deleting the vertex
a and the edge (lu, a); then β is a labeled subgraph of αu. Let u′, v′ ∈ F2(X)
such that αu′ = β and αv′ = α. Obviously, for varieties of pseudosemilattices,
the identity u′ ≈ v′ implies u ≈ v by construction of u′ and v′.

Let i be the number of vertices in β and let n be the smallest integer such
that i ≤ 2n+1. It is not hard to check that u′ ≈ v′ is a consequence of un ≈ vn
(we just have to relabel the vertices of αun and αvn , and choose a different
pair for (l, r)). Thus, for varieties of pseudosemilattices, the identities from
B imply u ≈ v. We can now conclude that B is a basis of identities for SPS.
�

Let wn ∈ F2(X) such that

αwn = (1, Ln, Dn ∪ {(2n+ 1, 0)}, R′n, 2, ϕn,1)

with 0ϕn,1 = x2 and iϕn,1 = iϕn for 1 ≤ i ≤ 2n+ 1. Then αwn ∈ A. Observe
that αvn and αwn are the only elements of A with Dvnϕ

′
n = Dwnϕn,1 = Dunϕn

for which αun is an ω-cover.
Let u′n, w

′
n ∈ F2(X) such that αu′n = (2n + 1, Ln, Dn, Rn, 2n, ϕn) and

αw′n = (2n + 1, Ln, Dn ∪ {(2n + 1, 0)}, R′n, 2n, ϕn,1). By Corollary 3.3, the
identities un ≈ wn and u′n ≈ w′n are equivalent for varieties of pseudosemi-
lattices. Further, u′n ≈ w′n and un ≈ vn are also equivalent identities since is
just a question of relabeling the vertices. Hence un ≈ vn and un ≈ wn are
equivalent identities for varieties of pseudosemilattices.

Lemma 4.3 Let I be a set of elementary identities. Then un ≈ vn is a
consequence of I if and only if it is a consequence of some u ≈ v ∈ I.

Proof: Obviously, we just have to prove the direct implication. Assume un ≈
vn is a consequence of I. Then (αun , αvn) is ΣI-derivable. Let

αun = γ0, γ1, · · · , γk = αvn

be a ΣI-derivation. We can assume that γ1 6= γ0, and thus one of these
bipartite graphs is a proper strong labeled subgraph of the other.

Observe there is no proper strong labeled subgraph (l, L,D,R, r, ϕ) of αun
such that Dϕ = Dnϕn. Thus γ0 must be a proper strong labeled subgraph
of γ1, and there exist (α, β) ∈ ΣI and an endomorphism ψ of A such that
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αψ is a labeled subgraph of γ0 and γ1 = γ0 ∧αψ βψ. Let u ≈ v ∈ I such that
α = αu and β = αv.

Since αvn and αwn are the only elements from A ω-covered by αun such
that Dunϕun = Dvnϕvn = Dwnϕwn , we must have αvn ∈ [γ1, γ0] or αwn ∈
[γ1, γ0]. Thus (αun , αvn) or (αun , αwn) belongs to the fully invariant congru-
ence onA generated by {(α, β)}; whence un ≈ vn or un ≈ wn is a consequence
of u ≈ v. By the comments made prior to this lemma, un ≈ vn and un ≈ wn
are equivalent identities, and therefore un ≈ vn is a consequence of u ≈ v ∈ I.
�

Lemma 4.4 Let u ≈ v be an elementary identity. If u ≈ v implies un ≈ vn,
then |c(u)| ≥ 2n− 2.

Proof: We begin assuming that Rv = Ru ∪ {a} for some vertex a. By the
proof of the previous result there exists an endomorphism ψ of A such that
αuψ is a labeled subgraph of αun and αvn is a strong labeled subgraph of
αun ∧αuψ αvψ. In particular, αuψ is a proper strong labeled subgraph of αvψ.

Let x = luϕu and α = αxψ. Since Dv = Du and αuψ 6= αvψ, αuψ must
contain two distinct labeled subgraphs α. Further, there must exist b ∈ Lu
with bϕu = luϕu such that b and lu induce two different labeled subgraphs α
in αuψ. Let {(ai−1, ai) : 1 ≤ i ≤ m} be the set of edges in the path from lu
to b.

Clearly αx1 is the only labeled subgraph of αun that appears in two diffe-
rent places. Since αuψ is a labeled subgraph of αun , we conclude that α = αx1 ,
and so

αuψ = (i, Ln, Dn, Rn, j, ϕn) with (i, j) ∈ Dn .

Observe now that {aiϕu : 0 ≤ i ≤ m} must contain at least 2n distinct
letters from X for b to exist since Lu ∩ Ru = ∅. We have shown that if
Rv = Ru ∪ {a}, then |c(u)| ≥ 2n.

Assume now the other case, that is, Lv = Lu ∪ {a} for some vertex a.
From Lemma 4.1 the identity u ≈ v implies u∗n−1 ≈ v∗n−1. By duality, we
conclude that |c(u)| ≥ 2n− 2 for this case. �

A variety V of pseudosemilattices has finite axiomatic rank if there exist
k ∈ N and a basis of identities I for V such that |c(u)| ≤ k and |c(v)| ≤ k
for every u ≈ v ∈ I. Otherwise, we say that V has infinite axiomatic rank.
Clearly, any infinite axiomatic rank variety has no finite basis of identities.
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Proposition 4.5 The variety SPS of all strict pseudosemilattices has infi-
nite axiomatic rank.

Proof: If I is a basis of elementary identities for SPS, then there is no k ∈ N
such that |c(u)| = |c(v)| ≤ k for all u ≈ v ∈ I by Theorem 4.2 and Lemmas
4.3 and 4.4. Further, by Proposition 3.5, if u′ ≈ v′ is an identity satisfied
by all strict pseudosemilattices with |c(u′)| = |c(v′)| = k, then u′ ≈ v′ is
equivalent to a finite set I1 of elementary identities such that |c(u)| = |c(v)| ≤
2k for all u ≈ v ∈ I1.

Let I ′ be a basis of identities for SPS. Then, we can replace each identity
from I ′ by a finite set of elementary identities and obtain another basis of
identities I for SPS constituted by elementary identities only. Since there
is no k ∈ N such that |c(u)| = |c(v)| ≤ 2k for all u ≈ v ∈ I, then there is
no k ∈ N such that |c(u′)| = |c(v′)| ≤ k for all u′ ≈ v′ ∈ I ′. Therefore, the
variety SPS has infinite axiomatic rank. �

A basis of identities I for a variety V is said to be independent if no
proper subset of I is a basis of identities for V.

Proposition 4.6 The variety SPS of all strict pseudosemilattices has no
independent basis of identities. Further, if I is a basis of identities for SPS,
then every co-finite subset of I is also a basis of identities for SPS.

Proof: The first part of this proposition follows immediately from the second
part. Thus, we shall prove only that if I is a basis of identities for SPS, then
every co-finite subset I ′ of I is also a basis of identities for SPS.

By Proposition 3.5 and Lemma 4.3, each identity un ≈ vn ∈ B is a
consequence of some u ≈ v ∈ I. Since each identity un ≈ vn implies all
identities uk ≈ vk with k < n, either I ′ or I1 = I \ I ′ implies all identities
from B. Since I1 is finite, it cannot be I1 by Proposition 3.5 and Lemmas
4.3 and 4.4 . Therefore I ′ implies all identities from B and it is a basis of
identities for SPS. �

Let L be a lattice. An element a ∈ L is ∧-irreducible if whenever a = b∧c
for some b, c ∈ L, then a = b or a = c. The element a is ∧-prime if whenever
b ∧ c ≤ a, then b ≤ a or c ≤ a. It is well known that a ∧-prime element is
also ∧-irreducible.
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Proposition 4.7 The variety SPS of all strict pseudosemilattices is ∧-pri-
me and ∧-irreducible in the lattice L(PS). Further, SPS has no covers in
L(PS).

Proof: It is well known that the lattice L(PS) is the disjoint union of the
intervals [T,NB] and [SPS,PS] with NB ⊂ SPS, where T is the variety of
all trivial binary algebras. Thus, for U, V ∈ L(PS),

U ∧V ⊂ SPS =⇒ U ⊆ NB ∨ V ⊆ NB

Assume that SPS = U ∧V and let I and I1 be basis of identities for U
and V, respectively. Then I∪I1 implies all identities from B. As in the proof
of the previous result, we can conclude that I or I1 implies all identities from
B. Thus U = SPS or V = SPS. We have shown that SPS is ∧-prime and
∧-irreducible in L(PS).

Assume now that U is a cover for SPS. Then, there exists un ≈ vn ∈ B
not satisfied by all pseudosemilattices from U. Let V be the variety of pseu-
dosemilattices generated by the identity un ≈ vn. Then U is not contained
in V, and so SPS = U ∧ V. Since V 6= SPS, we must have U = SPS,
which means that U is not a cover for SPS. Therefore, SPS has no cover in
the lattice L(PS). �
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