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Abstract
Inspired by a basis of identities for the variety of all strict pseu-
dosemilattices obtained in [12], we define a class of identities and study
the varieties defined by them. This study will give us some incite into
the structure of the lattice of varieties of pseudosemilattices. Some
interesting conclusions about this lattice will be drawn. In particular,
we shall prove this lattice is uncountable.

1 Introduction

We shall denote the set of idempotents of a regular semigroup S by E(S5).
Define the binary relation w” on E(S) as follows:

ew"f if and only if e = fe.

Let w' be the dual relation of w” and let w be the relation w” N w!. We shall
denote by w”(f) the set of idempotents e such that ew” f. Similarly, we define
W(f) and w(f).

Locally inverse semigroup can be characterized as regular semigroups S
such that, for any e, f € E(S), there exists (a unique) g € E(S) satisfying
the equality w”(e) Nw!(f) = w(g). Thus, if S is a locally inverse semigroup,
then we can consider the algebra (E(S), A) where e A f is the unique element
g € E(S) such that w"(e) NW!(f) = w(g). The algebras (E(S),A) are called
pseudosemilattices.

Nambooripad [9] showed that the class of all pseudosemilattices consti-
tutes a variety of algebras. This result was generalized by Auinger [3] who
proved that the mapping

¢ : L(LI) — L(PS), V+—{(E(S),N)|S eV}
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is a well-defined complete homomorphism from the lattice £.(LI) of e-varie-
ties of locally inverse semigroups (see [4, 5]) onto the lattice L(PS) of varie-
ties of pseudosemilattices. Thus, any information about £(PS) is useful to
understand the structure of £.(LI).

A regular semigroup is called strict if it is a subdirect product of com-
pletely simple and/or 0-simple semigroups. A strict pseudosemilattice is the
pseudosemilattice of idempotents of some [combinatorial] strict regular semi-
group. The class SPS of all strict pseudosemilattices is a variety. In fact, the
lattice L(PS) is divided into two disjoint intervals [T, NB] and [SPS, PS],
where the former is the 8-element lattice of varieties of normal bands. Fur-
ther, NB C SPS and SPS is the smallest variety of pseudosemilattices with
algebras that are not semigroups.

A basis of identities for the variety SPS was introduced in [12]. In this
paper we shall generalize those identities and study the varieties define by
these generalized identities. In the next section we recall some results and
terminology used in [12] and introduce the identities w,, ;; & vy, 5. In Section
3 we define the varieties G,, ;; and study the inclusion relation between these
varieties.

We can define the duals of the varieties G, x;. In Section 4 we study
the connections between the varieties Gy, ;; and their duals. In this section
we study also the varieties defined by the join or meet of infinite chains of
varieties G, 1;. Finally, in last section, we shall use the results obtained in
the previous sections to show some properties of the lattice L(PS).

2 A class of identities

In this paper we shall denote by X a countably infinite alphabet, by
(F5(X), A) the absolutely free binary algebra on X and by c¢(u) the content
of u € Fy(X), that is, the set of letters from X that appear in u. The variety
PS of all pseudosemilattices is defined by the identities [9]:

(i) ANz ~x;
(1) (xAyY)AN(xAz)=(xAYy)Az;
(1it) (xAYAN(xA2)A(zAw)=(xAy)A(zA2)A(xAw));

together with the right-left duals of the last two.



Free pseudosemilattices have been studied in [6, 8] and one solution to the
word problem for free pseudosemilattices has been presented in [10]. Several
models for the free pseudosemilattice on X are described in [11]. In [12]
we gave another model for the free pseudosemilattice on X using bipartite
graphs that we shall briefly describe next. The omitted details can be found
in [12].

A bipartite graph can be defined as a triple (L, D, R) with LN R = () and
D C L x R. The elements of L U R are called vertices and the elements of D
are called edges. Let B be the set of all 6-tuples (I, L, D, R, r,¢) such that

(a) (L, D, R) is a connected cycle free bipartite graph with (I,r) € D;
(b) ¢: LUR — X is a labeling for the vertices of (L, D, R).

Let Dy = {(ap,bp) : (a,b) € D} U{(cp,cp) : ¢ € LU R}.
In [12, Section 2] we associated a natural 6-tuple

Ay, = (lu, Luy Du7 R’UJTU? SDU) € B

recursively for each u € F5(X). We observed that, for every a € B, there
exists u € F»(X) such that a = «,, although we may have several possibilities
for u. Let A be the 6-tuples o = (I, L, D, R,r,¢) € B verifying also the
following two conditions:

(c) If a ¢ {l,r} is a vertex of degree 1 and (a,b) € D or (b,a) € D, then
ap # byp.

(d) If (a,c), (b,c) € D or (c,a),(c,b) € D with a # b, then ap # bep.

An operation A on A was introduced in [12, Section 2]. With this operation,
the algebra (A, A) becomes a model for the free pseudosemilattice on X.

Let a« = (I,L,D,R,7,) € B. A labeled subgraph of « is a 6-tuple
ay = (ly, Ly, Dy, Ry, 71, 1) € B such that

Dy CD and ¢ =¢|LuR -

Observe that L; € L and R; C R since D; C D. If we have also [; = [ and
r1 = r, then we say that a; is a strong labeled subgraph of a.

Two elements o; = (I;, L;, Dy, Ry, i, 0;) € B, i = 1,2, are isomorphic if
there exists a bijection v : L1 U Ry — Lo U Ry such that



(Z) D1¢ = {(a'l?b,blb) : (CL, b) € Dl} = D27
(17) aps = aypy for all a € Ly U Ry.

If 8 is isomorphic to a [strong] labeled subgraph of «, then we shall say also
that /5 is a [strong] labeled subgraph of a. We observed in [12] that aw f if
and only if J is a strong labeled subgraph of a.

Let u,v € F5(X). If Dypy = Dy, then Lo, = Ly, and Ryp, = Ry,
. The identity u = v is called an elementary identity if

(1) ay,a, € A;
(”) (lugpvw Du@u; Tugpu) — (lvgpva D’USOvu TUQOU) and LuSOu N Rugpu - Q)y

(7i1) there exists (x,y) € Dy, such that either l,p, = = and v is obtained
from w by replacing the first z in u with (x A y), or r,¢, =y and v is
obtained from u by replacing the last y in u with (z A y).

In particular, if u &~ v is an elementary identity, then D, has one more edge
than D,, either (I,,a) or (a,r,) for some vertex a & L, U R,.

Auinger [1] gave a solution to the word problem for the free strict pseu-
dosemilattice on X. He proved that an identity u ~ v is satisfied by all strict
pseudosemilattices if and only if (l,¢u, Dupus Tupn) = (Lopu, Do, Tops).
Thus, every elementary identity is satisfied by all strict pseudosemilattices.
In [12, Proposition 3.5] we proved the following result:

Result 2.1 Let u ~ v be an identity satisfied by all strict pseudosemilattices
with |c(u)| = n. Then, for varieties of pseudosemilattices, the identity u = v
is equivalent to a finite set I of elementary identities such that |c(u')| < 2n
for every v’ =" € I.

Let n > 1, k> 0and 1 <i < 2n, and consider a set {xy, s, -+ ,xa,} of
2n distinct letters from X. Let

(i) Lyy={jodd : 0<j<m} and R,, ={jeven: 0<j<m};
(it) Dy ={(j,h) : j € Ly, h € Ry, and |j — h| = 1};

(131) @nri: Lonk+i U Ropkrs — X with jo, . = @5 for 1 < h < 2n such that
J=h mod 2n .



Define 7,010 = o, and

{ (7, Lonk+i, Danktis Ronktir J + 1, on i) for 1 < j < 2nk 4+ odd;
Ynkij =

(7 + 1, Lonkvi, Donkyis Ronkri, J, @nki) for 1 <j < 2nk + i even.

Then each 7,1, € A. In fact, for the Green relations R = w” N (w")~! and
L=uwnN(W)ton A,

q/ﬂ,k‘,i,j*l R ’Yn,k,i,j £ fYTL,k,’L,]+1

if j odd. Thus, for each n > 1, £ > 0 and 1 <7 < 2n, the elements 7, 1.
with 1 < j < 2nk + ¢ constitute an E-chain of idempotents from A, which

imply they all belong to the same D-class of A.
Let ap ki = Vnkin1- Define R, = R,,, U{0}, D;, = D,, U{(1,0)} and

i - Lonkys U Ry — X
such that 0¢], ;. ; = @2, and jo,, 1 ; = jonr: for 0 < j < 2nk +id. Let

/ / /
Bn,k,i = ( 1 ) L2nk+i ) D2nk+i y “Lonk+i s 2 » Pk )

Clearly oy, i, Bk, € Aif n > 2 and there exist unique words uy, ;. i, Vn ki €
F5(X) such that apri = oy, ,, and Buri = o, . Further, u,p; = vy,
are elementary identities if n > 2 and k£ > 1. Note that if n = 1 then
Onkis ki € A, and if k = 0 then u, ;; = v, 1 is not elementary.

Observe that, for n > 2, u, 1, and v, ;1 were designated by w,, and v,, in
[12], respectively. Thus, by [12, Theorem 4.2], we have the following result:

Result 2.2 B = {uy11 ® vp11 1 n > 2} is a basis of identities for SPS.

By Lemmas 4.3 of [12], if u,11 & v, 11 is a consequence of a set I of
elementary identities, then there exists uw ~ v € I such that u,;1 ~ v,11
is a consequence of u ~ v. Further, the proof of Lemma 4.4 of [12] also
tells us that |c(u)| > 2n if D, = D, U {(ly,a)} for some vertex a, and
that |c(u)] > 2n — 2 if D, = D, U{(a,r,)} for some vertex a. If we look
carefully into the proofs of these lemmas, we can check easily that they can
be adapted for the general case of the identities u, x; ~ vy 1. Thus, we have
the following lemma.



Lemma 2.3 Letn > 2, k > 1 and 1 < i < 2n. If uppi = Upgi 15 @
consequence of a set I of elementary identities, then un, i, = Un i 1S a con-
sequence of some uw ~ v € I. Further, |c(u)| > 2n if D, = D, U{(ly,a)} or
lc(u)| > 2n —2if D, = D, U{(a,r,)}, for some vertex a.

From the previous lemma we conclude that if w,,;; ~ v,,;; implies
Un ki R Unki, then m > n. Clearly, u,;; = v, ; implies upk; ~ Upp, if
I <korifl =k and j < i since, in these cases, u,;; and v,;; are strong
labeled subgraphs of w,, ;. ; and v, ;. ; , respectively. The next proposition gives
more information about these identities. However, we need to define a partial
order < on N x N first. Let (, ), (k,i) € N x N. Then

(1,7) < (ki) if L<k orif l=Fk and j > i.

Note that < is not the lexicographic order on N x N. We are considering the
reverse order on N for the second component.

Proposition 2.4 Letn,m > 2, k1 >1, 1 <i<2nand1l <j <2m. If
m >n and (I,2m—7) < (k,2n—1), then Upj & U implies U g; = Un k-

Proof: Let 1 be an endomorphism of A such that

’ gy if s<2m —2n;
Oéxs - .
if 2m —2n<s<2m,

Oé$572m+2n

and observe that ay,,, ¥ A ag, = o and YA g, = Vo, s for
' =max{l,j —2m+2n}. Thus w,;; = vy, Implies w, 0 = vy -

If | <k then (I,2n —j") < (k,2n — ). If | = k, then 2m — j > 2n — i,
and so 2n — j' > 2n —i. Thus, we have always ([,2n — j') < (k,2n — ).
Consequently w,;; = vy, implies upr; ~ Upki, and we conclude that
Ui j = Upyj IMplies Uy i = Up i - [

3 The varieties G, ;. ;
Let G, k; be the variety of pseudosemilattices defined by the identity

Un ki N Unki, for m > 2, k>1and 1 <i < 2n. Then G, ;,; contains SPS.
The following result is an obvious corollary of Proposition 2.4.



Corollary 3.1 Letn,m > 2, k1l > 1,1 < i< 2nand 1 < j < 2m. If
m >n and (1,2m — j) < (k,2n — i), then Gy C Gk,

The remainder of this section is devoted to the proof of the converse of
this corollary. For vertices a and b of a € A, let d,(a,b) be the number of
edges in the path from a to b. Let a; = (I;, L;, Dy, Ry, 14, ;), for i = 1,2, be
two isomorphic labeled subgraphs of &« € A and let 7 : L1 UR; — Ly U Ry
be the isomorphism from a; onto as. Note that 7 is unique since oy € A.
Define

do (0, a0) = min{d,(a,ar) : a € Ly URy}.

If ¢ is an endomorphism of A, then a;1 and asy are two isomorphic labeled
subgraphs of atp. Further d, (a1, ) > doy(0q9), agt)).
Fixn>2,k>1and 1 <i < 2n for the remainder of this section. Let

gy ifi=1;
A:{{ )

{%,o,z‘,j cg<i}p ifi#1,
and
B={y1ij:i<j<2n}.

Let C be the subpseudosemilattice of A generated by C' = AU B.
The set

C'={aeC: Do Z Dyy192,41 for a=(I,L,D,R,r,¢)}
is an ideal of C. Let A,,; be the quotient algebra C/C’, that is, the algebra
Ani={a: aeC\C}U{0}
where a; A ap is defined to be 0 if a; A ag € C'. In fact, if 7 # 1, then
Ani ={Vuij : 1>0 and 1 <j<2nl+i}U{0}.

The case ¢+ = 1 is more complex. Beside the elements indicated above with
i =1, A, 1 contains also the elements

{a$1} U {’7n,l,1,2nj+1 A (07 P 0< j < l} .

Let Z), be the set of all 6-tuples from A, ; with more than 2n(k + 1)
vertices, together with the element 0. Then 7 is an ideal of A,, ;. We define
the quotient algebra

An,k,i - An,i/Ik .
Observe that if @ € A, x; \ {0} and oy and as are two isomorphic labeled
subgraphs of «, then d, (a1, as) is multiple of 2n.
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Lemma 3.2 Letn,m > 2, k,1>1, 1<i<2n and 1< j<2m. Then
A i & Gugi. Further, Apgi € Gy if m <n or (k,2n—1) < (I,2m — j).

Proof: Consider a homomorphism ¢ : A — A,,; such that

Yn,0,i,5 if j <i;
Qg0 =< Ynogi-1 A J=1;
Tn,1,i,5 if i< j < 2n.

Then o, ki = anki = Vnki1 and Bn i = Ynk+1i2n+1- 1f ™ denotes the
projection of A, ; onto A, j;, then

Oén,k,ﬂ/)ﬂ = On ki and 5n,k,z’¢77 =0.

Thus A, 1, fails to satisfy the identity w, x; = vnk,i, and A, ki € Go k-
Let us prove that A, 1, € G, if m < nor (k,2n—1i) < ([,2m —j). Let
¢ A— Apki be a homomorphism. If a,,; ;1 = 0, then ay, ;0 = B .
Hence, assume oy ;1 # 0.
The vertices of ;. ; labeled with z; are the vertices from

A={2ms+1: 0<s<I}.

Consider the labeled subgraphs of a,,; ;9 that correspond to the images of
these vertices. These labeled subgraphs are isomorphic obviously. Taking
into account the structure of a,,;;, these labeled subgraphs are either all
the same or pairwise distinct. Further, if the former case occurs, then

Oém,l,j¢ = Oém,1,1¢ = 5m,l,j¢-

We shall prove that the latter case does not occur, thus concluding that
Q1 j¥ = By for any homomorphism ¢ : A — A, ;. Hence u,,;; ~
Um,,; is satisfied by A, 1, , and A, i € Gy -

Let a and 3 be the labeled subgraphs of a,,; ;¢ that correspond to the
images of the vertices 1 and 2m + 1. Since a and [ are isomorphic distinct
labeled subgraphs of a9 € A, x; \ {0}, then

2n < do,,, (@, B) < dg,,,(1,2m + 1) = 2m.

Thus m > n. Since A has [ + 1 vertices, a,,; ;1 has at least [ + 1 copies of
o, (one for each vertex from A). However, every element of A, ;; has at
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most k+1 copies of some a € A; whence I < k. Then (k,2n—1) < (I,2m—j)
if and only if [ = k and 2n — ¢ > 2m — j.

Let n <m, k=1land 2n—7 > 2m — j. Let & = a9 € Anxi \ {0}
Observe that if a has more than 2n vertices, then o, ;1 has more than
2n(l + 1) vertices. However, since k = [, no element of A, 5, has more than
2n(l + 1) vertices. Thus, o has at most 2n vertices, and so a = ay, if i =1
Or & = Yp0,i,n for some 1 < h <7 if ¢ # 1.

Let as = (I, L, D%, R, r..") = a9 for 1 < s < 2m and

CREN-1

Lol if s odd;
Ys =

riel if s even.
Let M ={(ys,y:) : 1 <s,t<2m and |s—t| =1} U{(y1,y2m)} and
N ={(zs,zy): 1 <s,t<2nand |s—t| =1} U{(x1,22,)} C Dopnt1¥2nt1 -

Observe that N C M since otherwise the labeled subgraphs of o, ;1 cor-
responding to the images of the vertices 1 and 2m + 1 of a,,;; could not be
distinct. Let

My ={(ys,yr) € M : s,t <j} and My = {(ys,u) € M : j < s,t}.

Then |M| < |My| 4+ |Ms| and |My| < 2m — j < 2n — 4. Further, |M;] is
less than the number of vertices of « since a = ay,0,;9. Thus |M;]| < i and
|M| < 2n—1. Then N is not contained in M since |[N| = 2n — 1. We proved
we cannot have n < m, k = [ and 2n —¢ > 2m — j. Then the latter case does
not occur. ]

Proposition 3.3 Let n,m > 2, k1> 1, 1 <i<2n and 1 < 5 < 2m.
Then G j € G if and only if m > n and (1,2m — j) < (k,2n — ).

Proof: The direct implication follows from Lemma 3.2 since if m < n or
(k,2n—1i) < (I,2m—j), then A, 1; € Gy \ Gk The reverse implication
is Corollary 3.1. [

An obvious corollary is the following result.

Corollary 3.4 Letn,m > 2, k,1>1, 1<i:<2n and 1 <75 <2m. Then
Gn,kz,i = Gm,l,j Zf and Only Zf (na ka Z) = (m7 la])



4 The varieties G and Gy,

Let L* = Ry, R, = Ly, and D, = {(h,5) : (j,h) € Dy} Let

*
n,k,i ?

* *
an ki — (2 L2nk+z y Honk+i tonk+tio 1? Pn.k,i ) )

and let uj, ; ; be the unique word of F3(X) such that o}, ; = cv:, . Then

n,k,i n,k,i
ay, . and uy ;. ; are the duals of v, , ; and uy respectlvely Slmllarly, we
define B ki and v, 1. » the duals of 5n,k,z and v, 1; , respectively.
The results from the previous two section have their duals with respect
to the words uy, ;. ; and vy, , ;. Then
u:;,k,i R vn ki
are elementary identities if and only if n > 2 and k > 1. Let Gj, ;; be the

variety defined by the identity u* , . ~ v* forn>2k>1and1l <i<2n.

n,k,i n,k,i

Proposition41 Letnym > 2, k,1>1,1<i<2n and 1 < j < 2m.
Then G if and only zfm>nand(l 2m —j) < (k,2n —1).

mlj nkz

The next three results compare the varieties Gy, x; and Gy, . ;.

Proposition 4.2 Letn,m > 2, k,l>1, 1 <i<2n and 1 <75 < 2m with
i even. Then Gy, = G- Further, Gy, C Gk, of and only if m > n
and (1,2m — j) X (k: 2n —1).

Proof: We just need to prove that G, x; C Gy, ;; if ¢ even since the equality
Gn,k,z =G,

» i follows then by duality and the second part of this proposition
follows from Proposmon 4.1. Recall that o, i = Ynk41 and

/ / /
Bn,k,i = ( 1 ’ L2nk+i ) D2nk+z’ ) Ran+i ) 2 » Pk, ) )
and define o = 7y, g i 20k i1 and
. / / . /
B=(2nk+i—1, Lonkyi, Doppris Roppris 20k +1, ¢, 1.5)

(note that [ is a well defined 6-tuple of A since i is even). Let u,v € F5(X)
such that o, = o and o, = . Applying Lemma 3.2 of [12] and its dual
several times if necessary, we conclude that w,;;, ~ v,i,;, and u ~ v are
equivalent identities.
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Relabel the vertices of «, and «, using the mapping 6 defined by

9 Tit1—j if j<i;
x;0 =
’ Tonsivi—y i i+1<j<2n,

and observe that we obtain o, 5 from a,,, and o~
if i = 2n from o,. Thus u,k; & vpk; implies uy,, ; &~ uy ;0 if © # 2n or
implies uy, ;. ; &~ uy o if @ = 2n. We shall assume that i # 2n and prove
this case only. The argumentation works as well for ¢ = 2n but it needs some
minor adaptations.

Let ) be an endomorphism of A such that a9 = ay,,, for j < 2n and
gy V= gy, Ay - Lhen

5 hist if ¢ £ 2n or M

My YN Uy = 0rr o and g DN = O

N e s e . .

Thus upk; = vy implies uy, ;1 & vy 4,0, and so it implies the identity
* ~ ook : .

Up ki A U pivp- Finally, since

W Qpr W Qg

n,k,i ?

*
vn,k,i+1 n,k,i

we conclude that wu, i ; ~ v, x; implies Uy i R0, . Thus G, 1; C G

Proposition 4.3 Letn,m > 2, k> 1, 1 <i<2n and 1 <75 <2m. If1
odd and 2m — j = 2n — 1, then G}, . and Gy, are incomparable varieties
in the lattice L(PS). In partwular Gnk and Gy, ;; are incomparable.

7

Proof: By Lemma 3.2 we just need to prove that A, ;; € G, ; to conclude
that G, ;. i € Gpi. The result follows by duality. Let 1) : A — A1 be a
homomorphlsm. Mimicking the proof of Lemma 3.2, we can assume that

Wi = (LD, Ryr,0) € Api \ {0}

Let A={2ms+1: 0 <s <k} and consider the labeled subgraphs of
a;, 1, ;4 that correspond to the images under ¢ of the vertices of A. Mimicking
again the proof of Lemma 3.2, we can conclude that it is enough to show that
these labeled subgraphs cannot be pairwise distinct. However, if they were
pairwise distinct, we could prove that |R| > (2nk + ¢ + 1)/2, but no non-
zero element of A, 1, has such property. Therefore, these labeled subgraphs

cannot be distinct and A, i; satisfies the identity u, ~ v* ]

m,k,j m,k,j *
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Proposition44 Letn,m >2, k,i1>1,1<:<2n and 1 < j < 2m with
odd. Then Gy, ; C Gy, 1 if and only zfm >n and (I,2m—j) < (k,2n—i+1).

Proof: Assumem>nand (l,2m —j) < (k,2n —i+1). If i # 1, then
gG*kl 1_Gnk1 ICGnkz

m,l,J

by Propositions 4.1, 4.2 and 3.3. If = 1 and m = n, then 2m — j =2n — j
and 2n —i+1 = 2n. Thus [ < k since otherwise (k,2n —i+1) < (I,2m — j).
Again by the results indicated above,

mJ"] g Gnk 1,2n — Gn,k—l,?n g Gn,k,l .

If : =1 and m > n, then m > n + 1. Further, if [ = k then 2m — 57 > 2n >
2n —2. Thus (,2m —j) < (k,2n—2) if i = 1 and m > n, and once more by
the results above

C Gn+1 k2 — Gn+1,k,2 g Gn,k,l .

m1lvj -

Assume Gy, |
4.2; whence m > n and (I,2m — j) < (k,2n — i) by Proposition 3.3. Since
i is odd, we must have (I,2m — j) < (k,2n — i + 1) as wanted. It remains
to show the case j odd. By Propositions 3.3 and 4.2, and since i < 2n (i is
odd), we have

C Gy ki If j even, then G,,;; € Gy ; by Proposition

*
mlj g Gnkl C Gnk’z—i—l Gn,k,i—i—l .

Then m > nand (I,2m—j) < (k,2n—i—1) by Proposition 4.1. If | < k, then
([,2m—j) < (k,2n—i+1) as wanted. If [ = k, then ([,2m —j) < (k, 2n—z)
since both ¢ and j are odd numbers; and by Proposition 4.3, we have in fact
(l,2m —j) < (k,2n —i+1).

We have shown that G, ; € Gy, if and only if m > n and (I, 2m—j) <
(k,2n —i+1). ]

In this section we have study the dual varieties of G, ;; until now. From
now on we are going to study another class of varieties. For £k > 1 and ¢ > 0,
we define the following varieties of pseudosemilattices:

Gk,i = ﬂ{Gmk,Qn_i | n > 2} and Gk = m{Gn,k,l |n > 2}.

Then Gi; = {Unk2n—i = Unkon—i |1 > 2} is a basis of identities for Gy ; and
Gr = {unk1 = vpp1|n > 2} is a basis of identities for Gg. Then G; = SPS
by Result 2.2.

Next, we present a list of some trivial consequences of Lemma 2.3 and
Proposition 3.3:
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(i) The varieties Gy ; and Gy, are pairwise distinct varieties and they all
contain the variety SPS.

(ii) No Gy, ,; is contained in Gy; or in Gy.

(ili) Gk C Gy, if and only if k < [; and Gy; € Gy, if and only if k£ < [
or k=1and 2m — j <.

(iv) The varieties Gy; and Gy form a subchain of L(PS):
G =Ni>0Gpi C - C Griy1 C G C - C Gro C Gy -
(v) If (Us)s>1 is a sequence of varieties Gy, ; such that Uy C Uy, then
Ns>1Us is one of the varieties Gy ; or Gy,.
We shall discuss the dual varieties G} ; and Gj, briefly now. Clearly,
GZ,Z- = {uz,k,%—i ~ U:,kzn—z' |n > 2}
is a basis of identities for Gy ; and
Gy = {u;‘;kl ~ U:L,k,l |n > 2}

is a basis of identities for Gj. If i even, then Gy ; = GJ ; by Proposition 4.2.
If 7 odd, no identity from Gy ; is a consequence of an identity from G} ; by
Proposition 4.3; whence Gy; # Gy ; by Lemma 2.3. By Propositions 4.4,

nitk1 © Gog; whence G C Gy. By duality we conclude that Gj = Gy
for all k > 1.

5 The lattice L(PS)

We begin this section showing that any finite pseudosemilattice is con-
tained in some Gy.

Lemma 5.1 Let E be a pseudosemilattice with t elements. Then E € Gy.

Proof: In [12] we proved that u, 11 & v,11 and u, 11 & Uy,12 are equivalent
identities (see the comments made before Lemma 4.3 in [12]). In the same
way we can show that w, ;1 ~ vy 1 and u, k1 ~ Uy, 2 are equivalent identi-
ties too, for each k > 1. We shall prove that E satisfies w1 ~ Uy 2 for all
n > 2.

13



Fix n > 2 and let ¢ : A — E be a homomorphism. Let ¢; = a9 for
[ > 1. Then e, we;. Since E has t elements, there must exist s, > 1 such
that e; = esy, and s +r <t + 1. However, due to the structure of a,, 1,
we must have in fact e, = ¢; for all [ > s. In particular, e, = e¢;;7. Thus
Q120 = Q119 since
Apt+1,1 W Apto W Qg .

We conclude that E satisfies the identities u, ¢ 1 ~ w2 for all n > 2, and so
FE e Gt. ]

Corollary 5.2 PS = V;>1Gy.

Proof: The e-variety LI of all locally inverse semigroups is generated by its
finite combinatorial members by [2, Corollary 5.14]. Hence, PS is generated
by the finite pseudosemilattices. The previous lemma tells us that V> Gy
contains all finite pseudosemilattices. Consequently PS = V>, Gy. [

In Figure 1 we depict the inclusion relation (not the actual sublattice)
between the varieties Gy, 1, Gi; and Gji. The dashed and dotted lines
represent the meet and join of infinite chains of these varieties.

A variety V has finite axiomatic rank if there exist £k > 1 and a basis of
identities V' for V such that |c(u)]|, |c(v)| < k for all u ~ v € V. Otherwise,
we say that V has infinite axiomatic rank. An infinite axiomatic rank variety
has no finite basis of identities obviously. A basis of identities V for a variety
V is independent if no proper subset of V' is a basis of identities for V. An
element a of a lattice £ is A-prime if whenever bAc < a, then b < a or ¢ < a;
and it is A-irreducible if whenever b A ¢ = a, then b = a or ¢ = a. Clearly, a
A-prime element is A-irreducible.

In [12] we proved that the variety SPS has infinite axiomatic rank and
no independent basis of identities. In fact, we proved that every cofinite
subset of a basis of identities for SPS still is a basis of identities for SPS.
We proved also that SPS is a A-prime element and a A-irreducible element
of L(PS), and has no covers. These results follow from the fact that if a
set I of identities imply u,11 ~ v,11, then there exists v ~ v € I with
lc(u)| > 2n — 2 such that u ~ v implies u, 11 = v, 11. Using Lemma 2.3 and
its dual, we can replicate, for G, G and G ; , the proofs presented in [12]
for the previous results. Therefore, we just state bellow those results for the
varieties Gy, Gy,; and G;i.
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Gy
Gy

G

G, - SPS
Figure 1: Inclusion relation in the lattice L(PS).
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Proposition 5.3 Let k> 1 and i > 0.
(1) Gk, Gy, and Gy ; have infinite aviomatic rank.

(i3) A cofinite subset of a basis of identities for Gy, |Gy, GJ.;, respectively]
stills a basis of identities for Gy, (G, Gy ;, respectively].

(iii) Gy, Gy, and Gj; have no independent basis of identities.

(iv) Gg, Gi; and Gy ; are A-prime elements and A-irreducible elements of

L(PS).
(v) Gg, G and Gy ; have no covers in the lattice L(PS).

The proof for the A-prime and A-irreducible properties work also for the

varieties G, 1, and GZIH

Proposition 5.4 Letn > 2, k> 1 and 1 < ¢ < 2n. Then, the varieties
G ki and Gy, ; are A-prime and A-irreducible elements of L(PS).

We end this paper showing that £(PS) is uncountable.

Theorem 5.5 The lattice L(PS) of varieties of pseudosemilattices is un-
countable.

Proof: Let Uy = Ggpypq for K > 1. Then {Uy |k > 1} is a set of pairwise
incomparable varieties of pseudosemilattices by Proposition 3.3. Let A and
B be two subsets of Z™, and let

U= mkeAUk and V = mkeBUk-

Then, by Lemma 2.3 and Proposition 3.3, U = V if and only if A = B.
Therefore, for any subset of Z", we have a new variety of pseudosemilattices,
and so L(PS) is uncountable. ]
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