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1 Introduction

Consider the following problem of the calculus of variations

/ab L(x(t), i(t))dt — inf, (1)
z(a) = A, xz(b) = B,

where L : Rx R — R is a sufficiently smooth function satisfying the usual growth condition. We
obtain new sufficient conditions for the existence of solution to problem (1) without convexity
assumptions. The approach we use is based on the equivalence between problem (1) and the
time optimal control problem

© — inf,
dty)0) _ (1Lu(0)
do L(y(0), u(0))’

(t,9)(0) = (a, 4), (t,y)(©) = (b, B),

established by Gamkrelidze [6]. The corresponding convexified time optimal control problem
always has a solution (£(-),9(-)) satisfying

a(E, )(6) (10 (6) (1, u2(6)
o~ 050wy T TG0), we)

where ug(+) and \g(+), k& = 1,2, are measurable functions such that A\, (6) € [0, 1], A1 (8)+X2(0) =
1. Under some local monotonicity or concavity conditions on the function L(-,u) we show
that if 6y is a regular point of the functions Ai(-), & = 1,2, and 0 < A(f) < 1, then exist
0 < 71 < 73 < 73 such that the solution (Z(-),%(-)) to the Cauchy problem

d(t, )(0) Lw@)

o Iy S0
LD __(Lw)

d@ —L(y<8), (9» 96[604‘7’1,904‘7’2],
(::9)(00) = (£.9) (00,

satisfies (¢,9) (6 +72) = (£,9)(0o+73). This implies that the optimal solution to the convexified
problem must be a trajectory of the original control system, that is, that problem (1) has a
solution.

The existence for a problem of calculus of variations without convexity assumptions was
considered by many authors, if the Lagrangian has the form L(t,z,u) = f(t,x) + g(t,u), where
the function f(t,-) satisfies some special conditions, like linearity, monotonicity or concavity
(see, for example, [1, 2, 3, 7]).

We consider only the one-dimensional case. One of the results presented here (Theorem 1)
gives sufficient conditions without assumptions on the structure of L. Theorem 2 concerns the
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Lagrangian of the form L(z,u) = f(z) + g(u) and is proved under local concavity assumptions
(f"(x) < 0 whenever f'(y) = 0). This theorem is not contained in the Cellina and Colombo
result [2] and does not generalized it even in the one-dimensional case. Sufficient conditions of
existence in the case L(z,u) = f(z)g(u) are contained in Theorem 3. The known results on
the bang-bang property of optimal solutions of optimal control problems, [4, 8, 9], for example,
cannot be applied to study the time optimal problem that we face here. For this reason we
developed new techniques adequate to the problem.

We use the following notations. If C' C R™ is a subset, then we denote by coC' and by clC
its convex hull and closure, respectively. The components of a vector G are denoted by GV,
Let G : R™ — R™ be a twice differentiable function. Its second derivative at z € R™ along the
vectors hy, hy € R™ we denote by V2G(2)[h, he] € R™. Let G : R — R™ be a function, and let
{sn}52, be a sequence that tends to zero. The limit lim, (G (s,) — G(0))/s, is denoted by
Dy5,3G(0), if it exists. Assume that the limit Dy,,;G(0) exists. Then we denote by D, ,G(0)
the limit lim,,_. 2(G(sn) — G(0) — Dy5,1G(0)s,,)/s2, if it exists.

2 Main results and examples

Put H(y, u,p,q) = (p+qu)/L(y,u). We will consider problems satisfying the following condition

(C):
1. the function L : R x R — R is twice continuously differentiable;

2. there exist constants ¢ > 0 and ¢ > 0 such that L(y,u) > c¢(1 + |u])'*, (y,u) € R x R;

3. for any (y,p,q) € R x R x R, p*> + ¢* > 0, there exist at most two points u; and us
satisfying
H(y,ur,p,q) > H(y,u,p,q), k=12, YueR (2)

4. if uy and uy satisfy (2), then

aQH(yJ Uk, P, Q)

<0, k=12 3
Ou? ’ ’ (3)
Theorem 1 Assume that
1. condition (C) is satisfied;
2. uy and uy satisfying (2) also satisfy
OL(y,u1) OL(y, us)
—_— —u. 4
By uy # y Uy ( )

Then problem (1) has a solution.



If condition (4) is not satisfied, then the techniques we use can be applied only to problems
with a special structure of the function L.

Theorem 2 Assume that
1. L(y,u) = f(y) + g(u), where f: R — R and g : R — R are functions;
2. condition (C) is satisfied;
3. f"(y) < 0 whenever f'(y) = 0.
Then problem (1) has a solution.
Theorem 3 Assume that
1. L(y,u) = f(y)g(u), where f : R — R and g : R — R are positive functions;
2. condition (C) is satisfied;
3. f"(y) < 0 whenever f'(y) =0;
4. uy and us satisfying (2) also satisfy

g(ur)uy # g(ug)us. (5)

Then problem (1) has a solution.
Consider a few examples. Let
L(z,#) = (14 ") (14 (1—%)?).

This function satisfies all conditions of Theorem 1 and problem (1) has a solution. The function

L(z,z) = (1 - > + (1 +(1— x’2)2)

1+ 22

does not satisfy (4), but Theorem 2 guarantees the existence of solution to problem (1). If

) (14 (1 -7,

then condition (4) is not satisfied. However the existence of solution to problem (1) follows
from Theorem 3.

L(z,2) = (1 +

1+ 22



3 Reduction to a time optimal control problem
Recall the following result [6].

Lemma 1 Assume that the fiunctz'on L s continuously differentiable and L(x,u) > ¢ > 0, for
all (z,u). Let (£(-),y(-),u(-),©) be an optimal process in the time-optimal control problem

O — inf,
i) 1

N TOONTO NG
WO

A ITORTO NG
u(f) € R,

10)=a, t©)=b y(0)=A, y(©)=B5.

Then there exists an absolutely continuous inverse function 0(t) = T-'(t), and the function

z(t) = g(0(t)), t € [a,b], is a solution to problem (1).
Set
z=(t,y) e Rx R, f(z,u)=(1,u)/L(y,u), z=(a,A), z"=(bDB).

By Lemma 1 it suffice to prove that the time optimal control problem

O — inf,
dz
@:f(Z,U), UGR, (6)

2(0) = 2z, 2(©) =27,
has a solution. Consider the convexification of problem (6)

O — inf,

d
£ € cleof(z, R), (7)

2(0) = 2z, 2(©)=2z"

This problem always has a solution 2(6) = (£,%)(0), § € [0,0]. Applying the necessary con-
ditions of optimality for differential inclusions [5, Theorem 3.6.1], after simple calculations we
see that there exist a constant p and an absolutely continuous function ¢(-) satisfying

d(t,9,q)(0) ; OH (§(0), u, p,q(0))
DD ¢ o (stat0)., IO 100
max H (g(0),w, p,q(#)) = (const) > 0,

w

ue U(z](ﬁ),p,qw))}



where
Uly,p,q) = {u| H(y,u,p,q) = max H(y,w,p,q).

The set-valued map U(y, p,q) is upper semi-continuous. The set U(g(0),p,q(f)) contains at
most two points 4y and 4y (condition (C)). By the Implicit function theorem (3) imply that there
exist continuously differentiable functions ug(y, p,q), k = 1, 2, satisfying @, = ug(3(0), p, ¢(9)),
k = 1,2, and such that

Uy(s), pa(s)) C {ur(y(s),p,q(s)) | k=1,2}, s€]f—5,6+6N[0,0], &> 0.

Thus, applying the Filippov lemma we see that there exist measurable functions Me(4), k=1,2,
such that A\, (0) € [0,1], A1 (0) + \2(0) =1, 6 € [0,0], and

UEDYO) _ ) £(3(0). 0 (6)) + Ma0)1(3(6) 12(6)), ©)
() OHWO), 1 (0)p.4(®) , ) IHO),us(6), p.4(0)

HH0),ue(60).,0(0) 2 H(60), w.p,0(0), k=12, VueR (10
H(H(0), u4(6). . 0(0)) = (const) > 0. (1)

where the functions w(-), k = 1,2, are locvally absolutely continuous. It suffice to prove that
A1(0) € {0,1} for almost all points 6 € [0, ©].

4 Proof of Theorem 1

Suppose that § = 0 is a regular point of the functions A\y(-) and dug(-)/df, k = 1,2, and
u1(0) # u2(0). We show that A1(0) € {0,1}. Set

Fi(z,0) = f(y,ux(0)), k=1,2, and F(z,0) =\ (0)Fi(z,0) + \o(0)F2(2,0).
Lemma 2 Let z(-) be a solution to the Cauchy problem dz/df = F(z,0), z(0y) = z«. Then

¢ 0 — 0y)*
2(0) = z. + ; F(z*,s)ds—l—g
0

V. F(2e,00)F (2., 00) + o((6 — 6y)?).

Proof. Indeed, we have

0 0 s
2(0) =z + | F(2(s),8)ds =z + | F(ze+ | F(2(r),r)dr,s)ds
0o o 0o

=2, + o (F(z*,s) + V.F(z,s5) /9: F(z(r),r)dr 4+ o((s — 6’0))> ds

=z, + ' (F(24,8) + SV, F (24, 8)F(24,60) + 0o((s — 6p))) ds



0
=z + | (F(24,8) 4+ (s —00)V.F(24,00)F (24, 00)

)
+(s — 00)(V.F (24, 8) — V. F(24,00)) F (24, 00) + 0((s — 6p)))ds
=z, + ’ F(z,,8)ds + MVZF(Z*, 00)F(2.,00) + o((0 — 65)%). O

0o

Lemma 3 Let 2(-) be a solution to the following Cauchy problem

dz(0) .
0 Fi(2(0),0), 6€]0,7],
dz(0) . .
0 F»(2(0),0), 6¢€[r, 6],
2(0) = z,

where 0 < 7 < 0. Then

N T 6
2(0) = 2. —i—/o Fl(z*,s)der/T Fy(z,, s)ds

2 ~

+%VZF1(2*, 0)F1(2.,0) + (0 — 7)7V, Fy(2,, 0) Fi (24, 0)

V. Fy (2, 0)Fy(z,,0) + o(6?).

6—1)°
- 2

Proof. As in the proof of Lemma 2 we have
- 2
3(r) = +/ Fi(2,, 8)ds + %vzmz*, 0)Fi (2., 0) + o(r2)
0

and

) : i_ 2 )
2(0) = z(7) —I—/ Fy(3(7),s)ds + ( 27—) V. Ey(3(7), 7)Fy(2(7), ) + o((6 — 7)?).
Combining these two equalities, we get

. T 2
2(0) = z, +/0 Fi(24,8)ds + %VZFl(Z*, 0)F1 (2, 0)

o T 0 — )2 .
—l—/ F <z* —I—/ Fi(zy,7)dr, s> ds + ( 27) V. Fy(2,,0)Fy(2,,0) + o(6?)
T 0
T 0
:z*—l—/ Fl(z*,s)ds—i-/ Fy(z4,s)ds
0 T
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2 A

+—V_F1(2:,0)F1(2,0) + (0 — 7)TV, F5(2,,0) F1 (24, 0)
0 — )2

(6-7) V. Fy(2,0)Fy(2,,0) + 0(6%). O

2
m: R®— R3 m =1,2, as follows:

Set w = (6,0, 7) and define the functions ®

0
(Pgl) :/ FY(z,,s)ds,
0

6
o :/ F(l)(z*,s)ds—i-/ F{Y (2, s)ds
) T 6
(/0 PO syds + [ FPe, >ds),

g
o :/ F3(z,,s)ds
0

é2
) = 5 (VaF (2, 0)F (2, 0) ",
2
T ~
o — 5 (VaFi(z, 0)Fi(=., Y + (6 — 7)7 (V. Fa(24, 0) Fy (2, 0)) Y
é_ 2
( 27-) (VzF2(Z*,0)F2(Z*7O>>( )7
3 0 @ (T (2)
Oy = — (V,F(24,0)F(2,0)) 5 (V. Fi(2,0)Fi(24,0))
5 @ (0—1)? (@)
+(0 )T (V. Fo(24,0)F1(24,0)) + 5 (V. F5(z4,0)F3(24,0)) .
Set also
0( ) - ( t? _t70)7
O(w,t) = Po(t) + P1(w) + Po(w),
(w,1) = (20(0) — 20 — £, 20(0) — 20 — 1, 20(F) — 22(9)).
Then from Lemma 2 and Lemma 3 we have
U(w,t) = ®(w,t) + R(w), (12)
where |R(w)| = o(Jw|?). The condition
U(w,t) =0 (13)
= {(6) = a+t and

implies :00) = 2@ = M 4t and 3 2(6) = 23(0), that is, £(6)

7(6) = 9(9).



Lemma 4 FEquation (13) defines a differentiable function w = w(t). Its deriative at t =0 is
given by

4i(0)
do(0) [ ) L(Au(0)L(A, us(0) | 4)
dt
Proof. By definition of ® and from (12) we have
F(z,.0 0 0
ov0.0) _0%:(0) %Z | V(2,00 FY(2,0) - FV(2.,0)
o o F(Z)(Z*’ O) - 2(2)(Z*a 0) - 1(2)(2*7 0) + F2(2)(Z*7 O)
Since
det aq;io) = FO(2.,0) (F (2, 0) F? (2.,0) = F* (2., 0)F{" (2., 0))
_ < A1(0) A2(0) ) (u2(0) — w1 (0)) 20
L(A7u1(0)) L(A7u2(0)) L(A7ul<0))L(A7u2(O>) 7

by the Implicit function theorem equation (13) defines a differentiable function w = w(t).
Solving the equation
0V (0,0) dw(0) N ov(0,0)
ow dt ot

=0,

we obtain (14). O

Consider a sequence {t,}, t, | 0, and suppose that the limits Dy 3 e(0), & = 1,2,
Dy,3dw(0)/dt, and Dy, dW(w(0),0)/dt exist. Then the equality Dy, d¥(w(0),0)/dt = 0 is
equivalent to

8@1(0)D dw(0)
Ow g

=, (15)

where v = v; + v9, and

L(A,u;(0))L(A, ux(0)) 2
(M(O)L(A, u2(0)) 4+ A2 (0)L(A, m(O))) Vi+Va+Vs),

0 LA wm0) dun(0) M) OL(Aus(0) dus(0)Y [ !
1= <L2(A,u1(0)) u 0 T D(Auw0) o 40 >(>\110)>’

V2 = =A1(0)A2(0)

0
_ 1 OL(Au1(0)) dur(0) 1 AL(A,u2(0)) dua(0)
X L2(A,u1(0)) u do L2(A,u2(0)) ou do )
_ w0 9L(Awm(0) | 1 du1(0) | uz(0)  9L(Auz(0)) 1 dus(0)
L2(A,u1(0)) ou L(A,u1(0)) do L2(A,u2(0)) ou L(A,uz2(0)) do
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u1(0) u9 (0)

1 1

L(Au1(0))  L(Au2(0))

Vs = D{tn})\l (0) 0
L(Awu1(0))  L(Au2(0))

(1)
2=~ (O 10) ) e
A (0)L(A, u2(0)) + A2(0)L(A, u1(0)) UEB) ’

1) _ _ (OL(A, u3(0))/0y)us(0)

2= L(A, u3(0))3
(6L(A, U2(O))/3y)ul(0) (aL(A7 ul(O))/ay)uz(O) (8L(A, uQ(O))/ﬁy)uQ(O)
thal0) (‘L(A,u1<o>>L<A,u2<o>>2 T LA mOPLA m0) T2 L w(0)? )
2 ~(0L(A,u1(0))/9y)ui(0)  (OL(A,u2(0))/0y)us2(0)

“1“”( L(A, 0y (0))° L(A, us(0))?
(OL(A,u1(0))/0y)ua(0) n (OL(A,us(0 ))/8y)u1(0)>
L(A,u1(0))2L(A,u2(0)) ~ L(A,u1(0))L(A, uz(0))% )’

,@ _ _ (0L(A,12(0))/0y)uz(0)
? L(A, uz(0))3
(OL(A, u2(0))/0y)us(0)  (OL(A, u2 ))/0y)us (0

+2A1(0)< LA, w())? LA ui(0)L(A, ua(0 )

2(0) <_(3L(A7 u1(0))/0y)ui(0)  (OL(A, u2(0))/9y)u2(0 ) (aL(A U2(0))/5y)ul(0)>
! L(A;u1(0))3 L(A; u3(0))3 L(A,u1(0))L(A, u3(0))?

o (OL(Aw(0)) /0y (0)us(0) | (LA, us(0))/Iy)uu (0)us(0)
K ‘A1(0)< LA (0 LA u00) T LA u(0)L(A, ul0)? )

oo ((OL(A 0 (0))/0y)ur(0)us(0)  (OL(A, us(0))/y)ur (0)us(0)
“1(0)< LA w(0) LA, 10) L(A 1 (0) L(A, 1(0))? )

To calculate the derivatives OL(A, ui(0))/0u, k = 1,2, we need the following lemma.

Lemma 5 The following equality holds

OL(A, ur(0)) _ L(A,uz(0)) = L(A, wa(0))
o (0~ (0) , k=12

Proof. Without loss of generality L(A,u2(0)) # L(A,u:(0)). By the Pontriagin maximum

principle we have
OH (A, u(0),p, (0)) _




or, equivalently,

OL(A, ux(0))
ou

Since H(A,u2(0),p,q(0)) = H(A,u1(0),p,q(0)), we have

u2(0) L(A, 41 (0)) — w1 (0) L(A, u5(0))
L(A,u5(0)) = L(A,wa(0))
(

(p + Q(O)uk(o)) = Q(O)L(Avuk’<0))a k=1,2. (16)

p=q(0)2 (17)

From this we see that ¢(0) # 0. Substituting (17) for p in (16), we get the result. O

From this lemma we obtain

1
v oo L(Auw(0) - (A,ul(O))< MO0)  dwu(0) | A (0) du2(0)> )
1=
1(0) — u(0) FAw®) @ " EAw0) )| o
and
Vo = —=X1(0)A2(0)
0
% L(Au2(0))—L(Au1(0)) (_ 1 du1 (0) + 1 dus(0)
u2(0)—u1(0) L2(Auq(0)) do L2(Au2(0)) do
L(Au2(0))—L(A,u1(0)) ( u2(0) duz(0) i u1(0) du1(0)) + 1 du1(0) . 1 duz2(0)
u2(0)—u1(0) L2(Auz(0)) db L2(Awu1(0)) do L(Au1(0)) do L(Au2(0)) do

Lemma 6 The following equality holds
D{tn}dw(l)(())/dt — D{tn}dw@)((])/dt

 AOMOLABO)LA w0)  (OLmw0) )
‘<A1<0>L<A,u2<o>>+A2<0>L<A,u1<o>>>2( oy 20—, 1“”)' 18)

Proof. From (15) we have
D{tn}dw(l)(())/dt — D{tn}dw@)((])/dt

(v —v®) (ua(0) L(A, 11(0)) — w1 (0) L(A, u2(0))) + v (L(A, us(0)) — L(A, ui(0)))
u2(0) — u1(0) '
Substituting the obtained values v*), k = 1,2,3, we get (18). O

Note that the right-hand side of (18) does not depend on the sequence {t,}. Since

OL(y, u1(0)) OL(y, u(0))

ay us(0) # 3y

uy(0),
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without loss of generality

OL(y,u1(0))
Jdy

us(0) — Wul(m > 0.

(If this condition is not satisfied, we change the indices.) Thus we have

6(t) — O(t) = A1(0)A2(0)L(A, u1(0))L(A, uz(0))
(M(0)L(A, uz(0)) + A2(0) L(A, u1(0)))?

OL(y,u1(0)) OL(y,u2(0))
X <ayUQ(O) — a—y

whenever ¢ > 0 is sufficiently small and A (0) €]0, 1[. Therefore the trajectory Z(-) cannot be
optimal, if A;(0) €]0, 1[. This contradiction proves Theorem 1.

u1(0)> 2 +o(t*) >0

5 Proof of Theorems 2 and 3

Suppose that § = 0 is a regular point of the functions A (-) and du(-)/df, k = 1,2, and u,(0) #
ug(0). We show that A;(0) € {0,1}. If (OL(A,u1(0))/0y)us # (OL(A,u(0))/0y)us, then
arguing as in the proof of Theorem 1 we have the results. Suppose that (O0L(A,u1(0))/0y)us =
(OL(A,u2(0))/0y)us.

As in the proof of Theorem 1 we show that if z(-) is a solution to the Cauchy problem
dz/df = F(z,0), z(6p) = 2., then we have

0 0 s
2(0) =z + | F(2,8)ds+ | V.F(z, 8)/ F(z.,r)drds
o ) 0
(6 — 6p)?
* 6
and if Z(+) is a solution to the Cauchy problem

((VoF(22,00)) F (22, 00) + V2 F (22, 00)[F (2, 60), F(24,600)]) + o((6 — 60)%), (19)

where 0 < 7 < é, then

R T 0 T s
2(0) :z*+/0 Fl(z*,s)ds—i-/ Fg(z*,s)ds—i-/o VZFl(z*,s)/O Fy(z.,7)drds

g T g s
—|—/ VZF2(Z*,s)ds/ Fl(z*,r)dr—i—/ Vng(z*,s)/ Fy(z,7)drds
T 0 T T

11



7_3

+5 ((VaFi(20,0)*Fa(2,0) + V2 (20, 60) [Fi (21, 60), Fi (2. 60)])

+(9_27) (V Fy(24,0) V. F1 (2, 0)Fy (24, 0) + V2Fy( 2., 00)[F1 (24, 00), Fi (24, @0)])

+(9_27)T ((VoF2(24,0))*Fi (2., 0) + V2Fy (2, 00) [F1 (22, 60), F (2., 60)))

6 — 1)
6
From (19) and (20) we see that the function

+

((VZF2<Z*, O))QFz(Z*, 0) + V§F2(Z*, 90>[F2(Z*, 90), FQ(Z*, 90)]) + 0(@3).

U(w,t) = (30(0) =2V —1,20(0) — 2V —1,20(9) — 22(9))

can be represented as
U(w,1) = B(w, 1) + R(w),

where |R(w)| = o(|w|?), and
O(w,t) = Dy(t) + D1 (w) + Po(w) + P3(w),

with ®q(t) = (—t,—t,0) and

M = /é FY(z,, s)ds,
0
@ _ /TFf” (22, ) ds+/éF2(1) (2., 5)ds,
P = /F (24, 8 ds—(/ FP (2, s d8+/ F? (2,5 )ds),
i)(l) /9 / (V.F(z,s Z*,T‘))(l)deS,
o
o :/0 /0 (VZFl(z*,S)Fl(z*,r))(l)drds~|—/Té /OT(VZFQ(z*,s)Fl(Z*,T))(l)drds
+/Té /TS(Vng(Z*,S)FQ(z*,T))(I)drds,
q>§3) = /95 /OS(VZF(Z*,S)F(z*,r))(z)drds - </OT /OS(VZFl(z*, 8)Fi(z,7)) @ drds
4—/é /T<VZF2(Z*, $)Fy(2,, 7)) Pdrds + /é /S<VZF2(Z*, s)F2(z*,r))(2)drds> ,
r Jo . T Jr
+ 6

B =+ ((VoF (2, 00))*F (2, 00) + V2F (24, 00)[F (2., 00), F (., 90)])(1) :

7 (1)
o =+ ((VaFi(20.0))°Fi (20, 0) + V2F1 (20, 60) [Fi (2, 60), Fa (24 60)])

12
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1)
(VZFQ(Z*, O)VZF1(Z*, 0)F1(Z*, 0) + VEFQ(Z*7 90)[F1(Z*, 90), Fl (Z*, 90)])

(é —7)%r

T (V. Fy(24,0))°Fil24, 0) + V2 Fy(ze, 60) [Fi (20, 60), a2, 60)])

+( - 7)° ((Vze(z*, 0))*F (24, 0) + VZFy (24, 00)[Fo (24, 00), Fo(zs, 90)])(1)

3

0 (2
Y = - ((VaF (2, 00))° F (24 60) + V2F (22, 60) [F (22, 60), F (2. 60)])

_ <T6 ((VZF1(Z*,0))2F1(Z*,O) + V2Fi (2., 00)[F1(20, 0), Fl(z*>€0)])(2)

6 — 2
+(27—)7_ (VZFQ(Z*a O)VZF1(2*7 0)F1(2*7 0) + ngQ(zﬂﬂ 00)[F1<Z*7 00)) Fl(Z*, 00)])
(é —7)%r

2

+< _67') ((VZFQ(Z*,O))QFz(Z*,O) + V2 (24, 00) [Fa(24, o), F2(2*790)]>(2)> .

2)

()

+ ((V2Fa(2,0))2Fi(24, 0) + V2 (2, 00)[Fi (24, 60), Fa(2., 60)])

Consider a sequence {t,}, t, | 0, and suppose that the limits D%tn})\k(O)7 D%tn}uk(()), k=
1,2, D}, 1d¥(w(0),0)/dt, and D?, dw(0)/dt exist. Then the equality Df, ,d¥(w(0),0)/dt =0

is equivalent to the system of linear equations
dw(0)

991(0) _, B
Ow Dty a0 (22)

where

v=-2|D (21 + 2,)(0) D dw(0) (5 O(P1+ P2+ P3)(0)) dw(0)
{tn} Ow {tn} dt {tn} o 7

The components of the vector v are rational functions depending on the function L and
its first and second derivatives calculated at the points (A, ux(0)), & = 1,2, on the values
Ae(0), ur(0), duy(0)/df, k = 1,2, and on the limits Dy;,3dw(0)/dt, D,y e(0), DF, 3 A (0),
and Dy, ydug(0)/df, k = 1,2. The limit Dy 3dw(0)/dt can be found solving (15). To find
du(0)/df, k = 1,2, one should differentiate the equalities 0H (y(0), ux(0),p,q(#))/0u = 0,
k = 1,2, and use (8) and (9). The limits Dy, 1dui(0)/df, k = 1,2, can be found from the
equalities Dy, yd(OH (y(0), ux(0),p,q(0))/0u)/df =0, k = 1,2 (see (11)).

Under the condition (OL(A,u1(0))/0y)us = (OL(A,u2(0))/0y)u; we solved system (22)
using the computer algebra system Maple 6 and obtained the following result:

D}, 4dw™(0)/dt — D, 1dw™®(0)/dt = A+ BDy, 3\ (0), (23)
where
u3(0) OL(A, u1(0)) (L(A, u1(0)) = L(A,u3(0))) L*(A, u1(0))

P00 oy (MO)LA w(0) + A(0)L(A, u(0)))*
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9 <U2«DL(AWU1@U)-UKO)L@4MM(0D>
u2(0) — u1(0) ’
and A is a rational function depending on the function L and its first and second derivatives
calculated at the points (A, ux(0)), £k = 1,2, and on the values A\;(0) and ux(0), &k = 1,2. Since
(23) contains the limit Dy, 1A1(0), we see that without additional assumptions on the structure
of the function L the method we use does not allow to get any information concerning the

difference 0 — 6, if (OL(A, u1(0))/0y)us = (OL(A, u3(0))/dy)uy. However, if either L(y, u) =
f(y) + g(u) or L(y,u) = f(y)g(u), then we have B =0 and from (23) we get

0(t) — O(t) = A> + o(t?). (24)
To study the sign of A we need the following lemma.

Lemma 7 Let ug, np > 0, & > 0, k= 1,2, and X €0, 1] be real numbers. Assume that

§iug — Souy 7é 0 (25)
and
(£1U2 — §2u1)((1 — )\)U27)1 + )\u17]2) S 0. (26)
Then (&ug — Eaug)uy < 0.
Proof. Suppose that (§1us — &aup)uy > 0. If (§ua — Sui)uy = 0, then (25) implies u; = 0.

From (26) we obtain &m1(1 — A)ud < 0. Therefore uy = 0. This contradicts (25).
If (&ug — &uyp)ug > 0, then there are two possibilities:

€1U2 — fgul > O, and wu; > O, (27)

and
§1U2 — §2u1 < O, and up < 0. (28)

If (27) is satisfied, then us > &uy /& and from (26) we have
0> (1= Nuany + Mune > ug (1 — N)mé&a /& + Ang) > 0,
a contradiction. If (28) is satisfied, then uy < &u, /& and from (26) we have
0 < (1= XNugnm + Muine < ug((1 — N)mé&a/& + Anpg) <0,

a contradiction. Thus (& uy — &aug)uy < 0. O

Proof of Theorem 2. Since L(y,u) = f(y) + g(u), the condition (OL(A,u1(0))/0y)us =
(OL(A, u2(0))/0y)uy is equivalent to f'(A) = 0. Therefore f”(A) < 0. The function A has the

form

A (0) A0 (0)L(A, ur (0))L(A, us(0)) f(A

A= MOV LA, 1s(0)) + Ao (0)L(A, uy (0)))°
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X (u2(0) — u1(0))(A2(0)uz(0)L(A, ui(0)) + 2A1(0)uy (0)L(A, us(0))).
Without loss of generality

(u2(0) — u1(0))(A2(0)ua(0) L(A, u1(0)) + A1(0)us (0)L(A, uz(0))) < 0.

(If this condition is not satisfied, we change the indices.) Since f”(A) < 0, by Lemma 7 we have
A > 0. Hence 0(t) — 0(t) > 0 whenever ¢ > 0 is sufficiently small and A;(0) €]0, 1[. Therefore
the trajectory Z(-) cannot be optimal, if A\;(0) €]0, 1[. We achieve a contradiction and the proof
of Theorem 2. O

Proof of Theorem 3. Since L(y,u) = f(y)g(u) and condition (5) is satisfied, the equality
(OL(A,u1(0))/0y)us = (OL(A, uz(0))/0y)uy is equivalent to f'(A) = 0. The function A has the

form
A= A1(0)A2(0)g(u1(0))g(u2(0)) f"(A)
(A1(0)g(u2(0)) + A2(0)g(u1(0)))?
% (g(u1(0))uz(0) — g(uz(0))u1(0))(A2(0)u2(0)g(ui(0)) + 2A1(0)u1(0)g(u2(0))).

Without loss of generality

(9(u1(0))u2(0) = g(u2(0))ur(0))(A2(0)u2(0)g(u1(0)) + A1 (0)u1(0)g(u2(0))) < 0.

Since f”(A) < 0, by Lemma 7 we have A > 0. Hence 6(t)—6(t) > 0 whenever ¢ > 0 is sufficiently
small and A\;(0) €]0,1[. Therefore the trajectory Z(-) cannot be optimal, if A;(0) €]0, 1[. This
proves Theorem 3. O
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