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e-mail: rebelo@noe.ubi.pt

Georgi V. Smirnov

Centro de Matemática da Universidade do Porto,
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Abstract

A phase separation process model formed by the Cahn-Hilliard equation and the heat
equation is considered. The mobility coefficient in the Cahn-Hilliard equation is assumed to
be an increasing function of the temperature. This property is of importance at the latest
stage of the cooling process. The existence and uniqueness of a weak solution is proved, and
a uniform cooling problem is studied. Obtained results can be used to control the cooling
process and to create alloys with a uniform structure.



1 Introduction

In 1958 Cahn and Hilliard introduced the equation

ut =
(−κ2uxx − u + u3

)
xx

, (1)

describing the dynamics of phase separation in binary systems like alloys, glasses, and poly-
mer mixtures [2]. Here u(t, x) is a perturbation of the concentration of one of the phases.
The Cahn-Hilliard equation was largely studied, see [3], for example. In [6] Penrose and
Fife derived a thermodynamically consistent model of phase separation process. Later Alt
and Pawlow, see [1], proposed another mathematical model for the non isothermal phase
separation. These models describe the beginning of phase separation. In this paper we
consider a model formed by the Cahn-Hilliard equation with the mobility coefficient κ be-
ing an increasing function of temperature, and a heat equation. Although the model may
not be thermodynamically consistent it has the most relevant properties of other models.
Moreover the mobility coefficient in this model decrease when the temperature drops. This
phenomenon is observed at the latest stage of the cooling process. The model under consid-
eration can be used to control the cooling process and to create alloys with a given structure.

The necessity of a controlled cooling process is obvious from the following numerical
simulation. A typical behavior of the concentration perturbation u, when the temperature
governed by a heat equation drops at the very beginning of the process is presented in Fig.
1-3. At an early stage of cooling all concentration fluctuations are amplified (Fig. 2). This
phenomenon is known as granulation process. During the process development some of the
concentration peaks disappear. This effect is known as aggregation of grains. Its speed
depends on the temperature. Since the temperature inside the alloy is higher than at the
neighborhood of the boundary, the speed of aggregation inside is higher than the speed near
the boundary (Fig. 3). Controlling the temperature at the boundary of the alloy we can
control the cooling process and create materials with desired concentration distribution, for
example, a uniform one. How should we control the temperature in order to get a uniform
concentration distribution? This is the main problem addressed in the paper.

The paper is organized as follows. In the next section we consider the Cahn-Hilliard
equation

ut = (− (κux)x + Fu (u))xx , (t, x) ∈ QT =]0, T [×]0, L[, (2)

where κ = κ (t, x) is a sufficiently smooth function and F (u) = 2u4−u2 +1/8. The solution
satisfies the following initial and boundary conditions

u (0, x) = u0 (x) , x ∈ [0, L], (3)

ux = 0, x ∈ {0, L} , (4)

(κux)xx = 0, x ∈ {0, L} . (5)

To prove a mathematical correctness of the model under consideration we establish the
existence and uniqueness of a weak solution to this problem.
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Figure 1: Concentration distribution at t = 0.
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Figure 2: Granulation.
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Figure 3: Aggregation of grains

In the last section we consider a uniform cooling problem. The aim is to drive the
temperature θ (t, x) satisfying θ(0, x) ≡ Θ0 and governed by the heat equation, to a given
value ΘT < Θ0 and to guarantee a uniform cooling, that is, to ensure the condition

θ (t, x) ≈ 1

L

∫ L

0

θ (t, y) dy, (t, x) ∈ QT .

The temperature satisfies non-homogeneous Robin boundary conditions of the form





ξθx (t, 0) = θ (t, 0)− q (t) ,

−ξθx (t, L) = θ (t, L)− q (t) ,

where the function q (t) is a control we have in our disposal. The problem is formalized as an
optimal control problem. In order to get an analytical result we consider a finite dimensional
approximation to the heat equation [5] and show that the control law ensuring a uniform
cooling has the form

q (t) ≈ c1 + c2t.

From the practical point of view this means that the uniform cooling problem can be reduced
to a simple two-dimensional minimization problem.
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2 Existence and uniqueness

We say that u ∈ L2 (0, T ; H3 ([0, L])) is a weak solution to problem (2)-(5) if for any υ ∈
H1 ([0, L]) the relation

d

dt
(u, υ) = ((κux)xx , υx)− (uxFuu (u) , υx) . (6)

holds. The main result of this section is

Theorem 1 Assume that F (u) = 2u4 − u2 + 1/8, κ ∈ C3(QT ), and there exist positive
constants C ′

0, C0, C1, C2, and C3 such that

C0 ≤ κ ≤ C ′
0, |κx| ≤ C1, |kxx| ≤ C2. (7)

Then for every u0 ∈ H3 ([0, L]) problem (2)-(5) has a unique weak solution.

To prove the theorem we need the following a priopi estimates. Let u be a solution to
(2)-(5) .

Lemma 2 The inequalities

∫ L

0

u2dx ≤ (const)

∫ L

0

u2
0dx (8)

and ∫ T

0

∫ L

0

u2
xxdxdt ≤ (const)

∫ L

0

u2
0dx (9)

hold.

Proof. Multiplying (2) by u and integrating with respect to x we obtain

1

2

d

dt

∫ L

0

u2dx = −
∫ L

0

κxuxuxxdx−
∫ L

0

κu2
xxdx−

∫ L

0

Fuu (u) u2
xdx.

Since ∫ L

0

κxuxuxxdx =
1

2

∫ L

0

κx

(
u2

x

)
x
dx,

we have
1

2

d

dt

∫ L

0

u2dx = −1

2

∫ L

0

κx

(
u2

x

)
x
dx−

∫ L

0

κu2
xxdx

= −
∫ L

0

ku2
xxdx +

∫ L

0

(
kxx

2
− Fuu(u)

)
u2

xdx.
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From (7) we get
1

2

d

dt

∫ L

0

u2dx ≤ −
∫ L

0

κu2
xxdx + (const)

∫ L

0

u2
xdx.

Since (4) is satisfied, by Young’s inequality we have

∫ L

0

u2
xdx = −

∫ L

0

uuxxdx ≤ ε2

2

∫ L

0

u2
xxdx +

1

2ε2

∫ L

0

u2dx, ε > 0.

Setting ε =
√

C ′
0, we get

1

2

d

dt

∫ L

0

u2dx ≤ −C ′
0

2

∫ L

0

u2
xxdx + (const)

∫ L

0

u2dx.

Applying the Gronwall inequality we obtain (8) and (9). 2

Set

J (u) (t) =

∫ L

0

e
R t
0 min{0,−maxx∈[0,L](κt/κ)}dτ

(κ

2
u2

x + F (u)
)

dx,

Lemma 3 The inequality

J (u) (t) ≤ J (u) (0), t ∈ [0, T ]. (10)

holds

Proof. Indeed, we have:

d

dt
J (u) (t) =

1

2

∫ L

0

e
R t
0 min{0,−maxx∈[0,L](κt/κ)}dτ

[
min

{
0,− max

x∈[0,L]
(κt/κ)

}
κ + κt

]
u2

xdx

+

∫ L

0

e
R t
0 min{0,−maxx∈[0,L](κt/κ)}dτ min

{
0,− max

x∈[0,L]
(κt/κ)

}
F (u) dx

+

∫ L

0

e
R t
0 min{0,−maxx∈[0,L](κt/κ)}dτ (κuxuxt + Fu (u) ut) dx.

Since F (u) ≥ 0, we obtain

d

dt
J (u) (t) ≤ (const)

∫ L

0

(κuxuxt + Fu (u) ut) dx.

Integrating by parts we have

∫ L

0

(κuxuxt + Fu (u) ut) dx =

∫ L

0

(− (κux)x + Fu (u)) utdx.
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Using (2) and integrating by parts we get

d

dt
J (u) (t) ≤ −(const)

∫ L

0

[
(− (κux)x + Fu (u))

x

]2
dx ≤ 0.

Thus we have dJ /dt (u) (t) ≤ 0. This implies (10). 2

From Lemma 3 we have
∫ L

0

(
κ

2
u2

x + 2u4 − u2 +
1

8

)
dx ≤ (const).

Combining this with Lemma 2 we obtain

∫ L

0

u2
xdx +

∫ L

0

u4dx ≤ (const). (11)

Therefore we have
sup

x∈[0,L]

|u(t, x)| ≤ (const) (12)

whenever t ∈ [0, T ].

Lemma 4 The inequality ∫ T

0

∫ L

0

u2
xxxdxdt ≤ (const) (13)

holds.

Proof. Multiplying (2) by uxx and integrating with respect to x we obtain

−1

2

d

dt

∫ L

0

u2
xdx = −

∫ L

0

uxx((κux)x)xxdx +

∫ L

0

(Fu(u))xxuxxdx.

From this we get

1

2

d

dt

∫ L

0

u2
xdx = −

∫ L

0

uxxx(κux)xxdx +

∫ L

0

(Fu(u))xuxxxdx

= −
∫ L

0

κu2
xxxdx−

∫ L

0

(2κkuxx + kxxux)uxxxdx +

∫ L

0

(Fu(u))xuxxxdx.

Applying the Young inequality and using (7) we have

1

2

d

dt

∫ L

0

u2
xdx ≤ −C0

∫ L

0

u2
xxxdx +

ε2

2

∫ L

0

u2
xxxdx + (const)

∫ L

0

(u2
xx + u2

x)dx

+
ε2

2

∫ L

0

u2
xxxdx + (const)

∫ L

0

F 2
uu(u)u2

xdx
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Taking ε =
√

C0/2 and invoking (12) we obtain

1

2

d

dt

∫ L

0

u2
xdx ≤ −C0

2

∫ L

0

u2
xxxdx + (const)

∫ L

0

(u2
xx + u2

x)dx

From this and estimates (9) and (11) we get (13). 2

Proof of Theorem 1. Using the Galerkin method and the a priori estimates from Lemmas
2-4 and following the proof of Theorem 4.2 from [7, Chapter III] we obtain the result. 2

3 Uniform Cooling

In this section we study the problem of uniform cooling for the heat equation

θ = σ2θxx, (t, x) ∈ QT , (14)

with non-homogeneous Robin boundary conditions



ξθx (0, t) = θ (t, 0)− q (t) ,

−ξθx (t, L) = θ (t, L)− q (t) ,
t ∈ [0, T ],

where q (t) is a control we have in our disposal. At the initial moment of time t = 0 the
temperature is constant, θ (0, x) = Θ0, x ∈ [0, L]. Our aim is to drive the temperature to a
given value ΘT < Θ0 (at least approximately) and to guarantee a uniform cooling, that is,

to ensure the condition θ (t, x) ≈ 1
L

∫ L

0
θ (t, x) dx, (t, x) ∈ QT .

The problem can be formalized in the following way: one has to minimize the functional

κ1

∫ L

0

(θ (T, x)−ΘT )2 dx + κ2

∫ T

0

∫ L

0

(
θ (t, x)− θ̄ (t)

)2
dxdt + κ3

∫ T

0

(q̇ (t))2 dt,

where θ̄ (t) = L−1
∫ L

0
θ (t, y) dy and κj > 0, j = 1, 2, 3. The last term in the functional is

needed to ensure the existence and uniqueness of the optimal control, see [4]. Set η = θ − q
and α = q̇. Then we have the following optimization problem:

κ1

∫ L

0

(θ (T, x)−ΘT )2 dx + κ2

∫ T

0

∫ L

0

(
θ (t, x)− θ̄ (t)

)2
dxdt

+κ3

∫ T

0

(α (t))2 dt → inf,

ηt (t, x) = σ2ηxx (t, x)− α (t) ,

ξηx (0, t) = η (t, 0) ,

ξηx (t, L) = −η (t, L) ,

q̇ (t) = α (t) , t ∈ [0, T ],

η0 (x) = 0,

q (0) = Θ0.
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Here α (t) is a control. The solution to the initial boundary value problem can be written in
the form

θ (t, x) =
∞∑

k=1

ηk (t) υk,

where υk (x) = βk cos (βkx) + sin (βkx), βk are positive solutions of the equation

− tan (Lβ) =
2βξ

1− ξ2β2

and the functions ηk(·) are solutions to the equations

η̇k (t) = −λkηk (t)− hkα (t) , k = 1, 2, . . . ,

with

λk = (σβk)
2 , hk =

γk

‖υk‖2 ≡
∫ L

0
υkdx

‖υk‖2 .

Here ‖υk‖ stands for the L2-norm of the function υk. Thus, the optimization problem can
be written in the form

ψ (T, η (T ) , q (T )) +

∫ T

0

φ (t, η (t) , α (t)) dt → inf,

η̇k (t) = −λkηk (t)− hkα (t) , k = 1, 2, . . . ,

q̇ (t) = α (t)

ηk (0) = 0,

q (0) = Θ0.

where

ψ (T, η (T ) , q (T )) = κ1L (q (T )−ΘT )2 + κ1

∞∑

k=1

‖υk‖2 η2
k (T )

+2κ1 (q (T )−ΘT )
∞∑

k=1

γkηk (T ) ,

and

φ (ηk (t) , α (t)) = κ2

( ∞∑

k=1

‖υk‖2 η2
k (t)− 1

L

( ∞∑

k=1

γkηk (t)

))2

+ κ3 (α (t))2 .

Consider a finite dimensional approximation to this problem

ψN (T, η (T ) , q (T )) +

∫ T

0

φN (t, η (t) , α (t)) dt → min,
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η̇k (t) = −λkηk (t)− hkα (t) , k = 1, N,

q̇ (t) = α (t) ,

ηk (0) = 0, k = 1, N,

q (0) = Θ0,

where

ψN (T, η (T ) , q (T )) = κ1L (q (T )−ΘT )2 + κ1

N∑

k=1

‖υk‖2 η2
k (T )

+2κ1 (q (T )−ΘT )
N∑

k=1

γkηk (T ) ,

and

φN (ηk (t) , α (t)) = κ2




N∑

k=1

‖υk‖2 η2
k (t)− 1

L

(
N∑

k=1

γkηk (t)

)2

 + κ3 (α (t))2 .

The optimal control α̂ (t) obviously exists. Applying the Pontriagin Maximum Principle
we see that there exist functions pk (t), k = 1, N , and pq (t) satisfying the following conditions:

ṗk (t) = λkpk (t) + κ2

(
2 ‖υk‖2 ηk (t)− 2γk

L

N∑
j=1

γjηj (t)

)
,

ṗq (t) = 0,

pk (T ) = −κ1

(
2 ‖υk‖2 ηk (T ) + 2γk (q (T )−ΘT )

)
, k = 1, N,

pq (T ) = −κ1

(
2L (q (T )−ΘT ) + 2

N∑

k=1

γkηk (T )

)
.

max
α∈R

((
−

N∑

k=1

hkpk (t) + pq (t)

)
α− φ (ηk (t) , α (t))

)
=

−
N∑

k=1

hkpk (t) + pq (t)− 2κ3α̂ (t) .

From the maximum condition we find

α̂ (t) =
1

2κ3

(
−

N∑
j=1

hkpk (t) + pq (t)

)
.
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Therefore to solve the optimal control problem it suffices to solve the boundary value problem

η̇k (t) = −λkηk (t)− hk

2κ3

pq (t) +
hk

2κ3

N∑
j=1

hjpj (t) , k = 1, N, (15)

q̇ (t) =
1

2κ3

(
pq (t)−

N∑
j=1

hjpj (t)

)
, (16)

ṗk (t) = λkpk (t) + κ2

(
2 ‖υk‖2 ηk (t)− 2γk

L

N∑
j=1

γjηj (t)

)
, k = 1, N, (17)

ṗq (t) = 0, (18)

ηk (0) = 0, k = 1, N, (19)

q (0) = Θ0, (20)

pk (T ) = −κ1

(
2 ‖υk‖2 ηk (T ) + 2γk (q (T )−ΘT )

)
, k = 1, N, (21)

pq (T ) = −κ1

(
2L (q (T )−ΘT ) + 2

N∑
j=1

γjηj (T )

)
. (22)

Consider the matrix of system (15)-(18)

M =




−Λ 0 1
2κ3

HH∗ − 1
2κ3

H

0 0 − 1
2κ3

H∗ 1
2κ3

2κ2

(
V − 1

L
ΓΓ∗

)
0 Λ 0

0 0 0 0


 ,

where Λ is N × N diagonal matrix with the elements λk, k = 1, N , V is N × N diagonal
matrix with the elements ‖υk‖2, Γ is a column matrix with the elements γk, k = 1, N , and
H is a column vector with the elements hk, k = 1, N . To find the matrix M eigenvalues and
eigenvectors consider the system

µη = −Λη +
1

2κ3

HH∗p− 1

2κ3

Hpq, (23)

µq = − 1

2κ3

H∗p +
1

2κ3

pq, (24)

µp = 2κ2

(
V − 1

L
ΓΓ∗

)
η + Λp, (25)

µpq = 0. (26)

We are looking for nontrivial solutions to (23)-(26).

Lemma 5 If system (23)-(26) with µ 6= 0 has a nontrivial solution, then µ satisfies
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Fξ,N (µ) = 1− κ2

2κ3

H∗ (µIN − Λ)−1 V (µIN − Λ)−1 H

+
κ2

Lκ3

H∗ (µIN − Λ)−1 ΓΓ∗ (µIN + Λ)−1 H = 0. (27)

Proof. If µ 6= 0 then from (26), we have pq = 0, and system (23)-(25) takes the form

µη = −Λη +
1

2κ3

HH∗p, (28)

µq = − 1

2κ3

H∗p, (29)

µp = 2κ2

(
V − 1

L
ΓΓ∗

)
η + Λp. (30)

Invoking (29) and (28) we get

η = −µq (µIN + Λ)−1 H. (31)

From (30) and (31) we obtain

p = −2κ2µq (µIN − Λ)−1

(
V − 1

L
ΓΓ∗

)
(µIN + Λ)−1 H. (32)

If q = 0, then η = 0, p = 0, and pq = 0. Therefore, q 6= 0. Now from (32) and (29) we have
(27). 2

Lemma 6 If ξ = 0 and N = ∞, then

F0,∞ (iω) = 1 +
κ2L

5

κ3σ4π6

2π
√

ω
2

(
sinh π

√
ω
2

+ sin π
√

ω
2

)

ω3
(
cosh π

√
ω
2

+ cos π
√

ω
2

)

− 4κ2L
5

κ3σ4π6

cosh π
√

ω
2
− cos π

√
ω
2

ω3
(
cosh π

√
ω
2

+ cos π
√

ω
2

) > 1, ω > 0.

Proof. After simple calculations we get

Fξ,N (µ) = 1− κ2

κ3

(
N∑

k=1

γkhk

µ2 − λ2
k

− 1

L

N∑
j=1

γjhj

µ− λj

N∑

k=1

γkhk

µ + λk

)
.

Set ν = ξ/L, δk(ν) = βk(ν)L, and

rk(ν) =
(ν sin δk(ν)− cos δk(ν) + 1)2

(ν2δ2
k(ν) + 2ν + 1)

.
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Since tan δk (ν) = 2νδk (ν) /(ν2δ2
k (ν)− 1), we have

γkhk =
2

L

(ξβk sin (βkL)− cos (βkL) + 1)2

β2
k (ξ2β2

k + 2ξ/L + 1)
=

2L

δ2
k(ν)

rk(ν).

It is easy to see that δk (0) = kπ and rk(0) = (1− (−1)k)2. Thus we have

F0,∞ (µ) = 1− κ2

κ3

( ∞∑

k=1

2L5

δ2
k(0)

rk (0)

L4µ2 − σ4δ4
k(0)

− 1

L

∞∑

k=1

2L3

δ2
k(0)

rk (0)

L2µ− σ2δ2
k(0)

∞∑

k=1

2L3

δ2
k(0)

rk (0)

L2µ + σ2δ2
k(0)

)
. (33)

Set y = µ(L/(σπ))2. Then we have

F0,∞ (µ) = 1− 8κ2L
5

κ3σ4π6

( ∞∑

k=1

1

(2k − 1)2 (
(2k − 1)4 − y2

)

− 8

π2

∞∑

k=1

1

(2k − 1)2 (
(2k − 1)2 − y

)
∞∑

k=1

1

(2k − 1)2 (
(2k − 1)2 + y

)
)

.

The series can be easily evaluated using residues. We have

∞∑

k=1

1

(2k − 1)2 (
(2k − 1)4 − y2

) =
∞∑

k=1

1

4
(
k − 1

2

)2
(
16

(
k − 1

2

)4 − y2
)

= −π

2

K∑

k=1

resz=zk
[f (z) cot (πz)] ,

where f (z) =
(
4 (k − 1/2)2 (

16 (k − 1/2)4 − y2
))−1

and the residues are calculated at singu-
larities of f . From this we get

∞∑

k=1

1

(2k − 1)2 (
(2k − 1)4 − y2

) =
π2

8 (iy)2


1−

√
2

π
√−iy

sin π
√
− iy

2
+ sinh π

√
− iy

2

cos π
√
− iy

2
+ cosh π

√
− iy

2


 .

Analogously we obtain

∞∑

k=1

1

(2k − 1)2 (
(2k − 1)2 + y

) =
π2

8y
− π

4y3/2
tan

π
√

y

2
,

and ∞∑

k=1

1

(2k − 1)2 (
(2k − 1)2 − y

) = −π2

8y
+

π

4y3/2
tan

π
√

y

2
.
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After simple calculations we have

F0,∞ (iω) = 1 +
κ2L

5

κ3σ4π6

2π
√

ω
2

(
sinh π

√
ω
2

+ sin π
√

ω
2

)

ω3
(
cosh π

√
ω
2

+ cos π
√

ω
2

)

− 4κ2L
5

κ3σ4π6

cosh π
√

ω
2
− cos π

√
ω
2

ω3
(
cosh π

√
ω
2

+ cos π
√

ω
2

) .

Show that F0,∞ (iω) > 1, ω > 0. Set x = π
√

ω/2. It suffices to prove the inequality

g (x) = 2x (sinh x + sin x)− 4 (cosh x− cos x) > 0, x > 0.

Obviously g (0) = 0, g′ (0) = 0, and g′′ (x) = 2x (sinh x− sin x) > 0 whenever x > 0.
Therefore we have g (x) =

∫ x

0

∫ y

0
g′′ (z) dzdy > 0, x > 0. Since

F0,∞ (0) = 1 +
κ2L

5

κ3σ46!
> 1,

we obtain F0,∞ (iω) > 1 whenever ω > 0. 2

Obviously F0,∞ (iω) = F0,∞ (−iω). Therefore F0,∞ (iω) > 1 for all real ω. It is easy to
see that there exists a positive integer N0 such that F0,N (iω) > F0,∞ (iω) − 1/2, ω > 0,
whenever N > N0.

Lemma 7 Let N > N0. Then there exists ξ0 such that Fξ,N (iω) > 0 whenever ξ ∈ [0, ξ0]
and ω is real.

Proof. Since limξ→0 |Fξ,N (iω)−F0,N (iω)| = 0, there exists ξ0 such that Fξ,N (iω) >
F0,N (iω)− 1/2 > F0,∞ (iω)− 1 > 0 whenever ξ ∈ [0, ξ0]. 2

Let µ 6= 0 be an eigenvalue of M . Using (31) and (32) we obtain the corresponding
eigenvector




η (µ)
q (µ)
p (µ)
pq (µ)


 =




−µ (µIN + Λ)−1 H
1

−2µκ2 (µIN − Λ)−1 (
V − 1

L
ΓΓ∗

)
(µIN + Λ)−1 H

0


 . (34)

The degree of the polynomial P (µ) = F (µ)
∏N

k=1 (µ2 − λ2
k) equals 2N . Obviously the

equalities P (µ) = 0 and F (µ) = 0 are equivalent and the polynomial P has exactly 2N
roots. From Lemma 7 we see that the roots do not belong to the imaginary axis. Thus we
have proved the following result.

Lemma 8 If the numbers N and 1/ξ are big enough then matrix M has 2N non-zero ei-
genvalues. These eigenvalues are solutions to the equation Fξ,N (µ) = 0. The corresponding
eigenvectors are given by (34).

13



From this lemma we see that µ = 0 is an eigenvalue of M and its multiplicity is equal to
two. Simple calculations show that the corresponding eigenvector and the principal vector
are given by




0
1
0
0


 and




η0

q0

p0

p0
q


 =




−Λ−1H
0

2κ2Λ
−1

(
V − 1

L
ΓΓ∗

)
Λ−1H

2
(
κ3 + κ2H

∗Λ−1
(
V − 1

L
ΓΓ∗

)
Λ−1H

)


 .

Thus we have the following result.

Lemma 9 If the numbers N and 1/ξ are big enough then the solution to system (15)-(18)
has the form




η
q
p
pq


 (t) =

N∑

k=1

c+
k eµ+

k t




η
(
µ+

k

)
q
(
µ+

k

)
p

(
µ+

k

)
pq

(
µ+

k

)


 +

N∑

k=1

c−k eµ−k t




η
(
µ−k

)
q
(
µ−k

)
p

(
µ−k

)
pq

(
µ−k

)




+c1




0
1
0
0


 + c2


t




0
1
0
0


 +




η0

q0

p0

p0
q







where c+
k are c−k complex constants, c1 and c2 are real constants, the numbers µ±k are the

non-zero eigenvalues of matrix M satisfying Re µ+
k > 0 and Re µ−k < 0, for k = 1, N .

Let A+ be N × N matrix with the columns e−µ+
k T η

(
µ+

k

)
, k = 1, N , α0 = 0, A−

be N × N matrix with the columns η
(
µ−k

)
, k = 1, N , α1 = η0/T , B+ be N × N ma-

trix with the columns p
(
µ+

k

)
+ 2κ1

(
V η

(
µ+

k

)
+ Γq

(
µ+

k

))
, k = 1, N , B− be N × N ma-

trix with the columns eµ−k T
(
p

(
µ−k

)
+ 2κ1

(
V η

(
µ−k

)
+ Γq

(
µ−k

)))
, k = 1, N , D+ be a row

with the elements pq

(
µ+

k

)
+ 2κ1

(〈
Γ, η

(
µ+

k

) 〉
+ Lq

(
µ+

k

))
, and D− be a row with the el-

ements eµ−k T
(
pq

(
µ−k

)
+ 2κ1

(〈
Γ, η

(
µ−k

) 〉
+ Lq

(
µ−k

)))
. Set δ0 = 2κ1L, β0 = 2κ1L, β1 =

(p0 + 2κ1V η0 + 2κ1 (T + q0) Γ)/T , and δ1 = (2κ1L (T + q0) + p0
q)/T . Boundary conditions

(19), (21), and (22) can be written in the matrix form




A+ A− α0 α1

B+ B− β0 β1

D+ D− δ0 δ1







C+

C−

C1

C2


 =

1

X




0
2κ1ΘT Γ
2κ1LΘT


 , (35)

where X =
∑N

k=1

(∣∣∣cke
µ+

k T
∣∣∣ +

∣∣c−k
∣∣
)
+|c1|+|c2T |, C+ and C− are vectors with the components

C+
k = c+

k eµ+
k T /X and C−

k = c−k /X , respectively, C1 = c1/X , and C2 = c2T/X .
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The solution C±
k , k = 1, N , C1, and C2 to (35) depends on T . Denote by C the set of all

limits limj→∞ (C+,C−,C1,C2) (Tj), where limj→∞ Tj = ∞. Obviously

N∑

k=1

(∣∣C+
k

∣∣ +
∣∣C−

k

∣∣) + |C1|+ |C2| = 1

for all (C+,C−,C1,C2) ∈ C.

Lemma 10 If the numbers N and 1/ξ are big enough, then there exist at most N numbers
qk, k = 1, N1, N1 ≤ N , and a constant χ such that

N∑

k=1

(∣∣C+
k

∣∣ +
∣∣C−

k

∣∣) ≤ χ (|C1|+ |C2|)

for all
(
C+,C−,C1,C2

) ∈ C, whenever κ2/κ1 6= qk, k = 1, N1.

Proof. Suppose that for any χ > 0 there exists a vector
(
C+,C−,C1,C2

) ∈ C,

such that
∑N

k=1

(∣∣C+
k

∣∣ +
∣∣C−

k

∣∣) > χ (|C1|+ |C2|). Since the set C is compact, dividing the
inequality by χ and passing to the limit as χ goes to infinity, we see that there exists a

vector
(
Ĉ+, Ĉ−, 0, 0

)
∈ C. To prove the lemma it suffices to show that there exist at most

N numbers qk, k = 1, N1, N1 ≤ N , such that Ĉ± = 0 whenever κ2/κ1 6= qk, k = 1, N1. Let
Tj →∞ be a sequence such that

lim
j→∞

(
C+,C−,C1,C2

)
(Tj) =

(
Ĉ+, Ĉ−, 0, 0

)
.

Passing to the limit in (35) as j goes to infinity, we have



0 A−

B+ 0
D+ 0




(
Ĉ+

Ĉ−

)
=




0
2κ1δΓ
2κ1δL


 , (36)

where δ is a constant. From this we obtain A−Ĉ− = 0. Applying the well known Cauchy
determinant formula, we get

detA− = (const)

∣∣∣∣∣∣∣∣

1
µ+

1 +λ1
· · · 1

µ+
N+λ1

...
. . .

...
1

µ+
1 +λN

· · · 1
µ+

N+λN

∣∣∣∣∣∣∣∣

= (const)

∏
1≤j<i≤N (µi − µj) ·

∏
1≤j<i≤N (λi − λj)∏N

i,j=1 (µi + λj)
6= 0.
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Therefore Ĉ− = 0. Set z = κ2/κ1. The second line of system (36) can be written in the form

(zP + V) Ĉ+ = δΓ,

where P is a square matrix with the columns

µ+
k

(
µ+

k I − Λ
)−1

(
V − 1

L
ΓΓ∗

) (
µ+

k I + Λ
)−1

H,

and V is a square matrix with the columns −µ+
k V

(
µ+

k I + Λ
)−1

H +Γ. The third line of (36)

can be written as P0Ĉ
+ = δL, where P0 is a vector with the coordinates

−
〈
Γ, µ+

k

(
µ+

k I + Λ
)−1

H
〉

+ L.

If z = 0, then we have the system




µ+
1 |υ1|2h1

µ+
1 +λ1

− γ1 · · · µ+
N |υ1|2h1

µ+
N+λ1

− γ1 γ1

...
. . .

...
µ+

1 |υ1|2hN

µ+
1 +λN

− γN · · · µ+
N |υN |2hN

µ+
N+λN

− γN γN

ρ1 · · · ρN L







Ĉ+
1
...

Ĉ+
N

δ


 =




0
...
...
0


 ,

where ρk = µ+
k

〈
Γ,

(
µ+

k I + Λ
)−1

H
〉
− L. Obviously we have

det




µ+
1 |υ1|2h1

µ+
1 +λ1

− γ1 · · · µ+
N |υ1|2h1

µ+
N+λ1

− γ1 γ1

...
. . .

...
µ+

1 |υ1|2hN

µ+
1 +λN

− γN · · · µ+
N |υN |2hN

µ+
N+λN

− γN γN

ρ1 · · · ρN L




= det




µ+
1 |υ1|2h1

µ+
1 +λ1

· · · µ+
N |υN |2h1

µ+
N+λ1

γ1

...
. . .

...
µ+

1 |υ1|2hN

µ+
1 +λN

· · · µ+
N |υN |2hN

µ+
N+λN

γN

ρ1 + L · · · ρN + L L




= (const) det




1
µ+

1 +λ1
· · · 1

µ+
N+λ1

γ1

|υ1|2h1

...
. . .

...
1

µ+
1 +λN

· · · 1
µ+

N+λN

γN

|υN |2hN∑N
k=1

γkhk

µ+
1 +λk

· · · ∑N
k=1

γkhk

µ+
N+λk

L



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= (const) det




1
µ+

1 +λ1
· · · 1

µ+
N+λ1

γ1

|υ1|2h1

...
. . .

...
1

µ+
1 +λN

· · · 1
µ+

N+λN

γN

|υN |2hN

0 · · · 0 L−∑N
k=1

γ2
k

|υk|2




.

From this we see that the determinant is equal to zero if and only if

L =
N∑

k=1

γ2
k

|υk|2
=

N∑

k=1

2L

δ2
k(ν)

rk(ν)

=
N∑

k=1

2L

δ2
k (ν)

(ν sin δk (ν)− cos δk (ν) + 1)2

ν2δ2
k (ν) + 2ν + 1

.

Since ∞∑

k=1

1

(2k − 1)2 =
π2

8
,

we have
N∑

k=1

2L

δ2
k(0)

rk (0) =
8L

π2

N∑

k=1

1

(2k − 1)2 < L.

Therefore there exists ξ1 such that
∑N

k=1 ak (ξ/L) 6= L whenever ξ ∈ [0, ξ1]. Thus, if ξ ∈
[0, ξ1], then the determinant of the system

(
(zP + V) −Γ

1
κ1

D+ −L

)(
Ĉ+

δ

)
=

(
0
0

)

is a non-trivial Nth degree polynomial of z with roots z = qk, k = 1, N . This ends the proof.
2

Using the compactness of C and lemmas 9, 5, 6, 7, 8, and 10 we obtain the following
result.

Theorem 11 If the numbers N and 1/ξ are big enough then there exist at most N numbers
qk, k = 1, N1, N1 ≤ N and a constant T0 > 0 such that if κ2/κ1 6= qn and T > T0 the optimal
trajectory q (·) has the form

q (t) = c1 + c2t + φ (t) ,

where φ (t) ≤ 3χ (c1 + c2T )
(
eµ(t−T ) + e−µt

)
, t ∈ [0, T ], and µ = min

k=1,N

∣∣Reµ±k
∣∣ > 0.
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tielles. Gauthier-Villars, Paris, 1968.

[5] J.L. Lions. On the optimal control of distributed parameter systems. In: Balakrishnan
(ed). Techniques of optimization. Academic Press, New York. 1972, pp 137-158.

[6] O. Penrose and P.C. Fife. Thermodynamical Consistent Models of Phase-Field Type for
the Kinetics of Phase Transitions. Physica D, 43:44–62, 1990.

[7] R. Temam. Infinite-dimensional dynamical systems in mechanics and physics. Springer,
New York, 1988.

18


