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Abstract

A phase separation process model formed by the Cahn-Hilliard equation and the heat
equation is considered. The mobility coefficient in the Cahn-Hilliard equation is assumed to
be an increasing function of the temperature. This property is of importance at the latest
stage of the cooling process. The existence and uniqueness of a weak solution is proved, and
a uniform cooling problem is studied. Obtained results can be used to control the cooling
process and to create alloys with a uniform structure.



1 Introduction
In 1958 Cahn and Hilliard introduced the equation

U = (—K Upy —u + u3)m : (1)
describing the dynamics of phase separation in binary systems like alloys, glasses, and poly-
mer mixtures [2]. Here u(t,z) is a perturbation of the concentration of one of the phases.
The Cahn-Hilliard equation was largely studied, see [3], for example. In [6] Penrose and
Fife derived a thermodynamically consistent model of phase separation process. Later Alt
and Pawlow, see [1], proposed another mathematical model for the non isothermal phase
separation. These models describe the beginning of phase separation. In this paper we
consider a model formed by the Cahn-Hilliard equation with the mobility coefficient x be-
ing an increasing function of temperature, and a heat equation. Although the model may
not be thermodynamically consistent it has the most relevant properties of other models.
Moreover the mobility coefficient in this model decrease when the temperature drops. This
phenomenon is observed at the latest stage of the cooling process. The model under consid-
eration can be used to control the cooling process and to create alloys with a given structure.

The necessity of a controlled cooling process is obvious from the following numerical
simulation. A typical behavior of the concentration perturbation u, when the temperature
governed by a heat equation drops at the very beginning of the process is presented in Fig.
1-3. At an early stage of cooling all concentration fluctuations are amplified (Fig. 2). This
phenomenon is known as granulation process. During the process development some of the
concentration peaks disappear. This effect is known as aggregation of grains. Its speed
depends on the temperature. Since the temperature inside the alloy is higher than at the
neighborhood of the boundary, the speed of aggregation inside is higher than the speed near
the boundary (Fig. 3). Controlling the temperature at the boundary of the alloy we can
control the cooling process and create materials with desired concentration distribution, for
example, a uniform one. How should we control the temperature in order to get a uniform
concentration distribution? This is the main problem addressed in the paper.

The paper is organized as follows. In the next section we consider the Cahn-Hilliard
equation

= (= (kuy), + Fu(w),,, (t.2) € Qr =J0,T[x]0, L], (2)

zx’

where x = & (¢, z) is a sufficiently smooth function and F' (u) = 2u* —u? +1/8. The solution
satisfies the following initial and boundary conditions

U(O,$):U0(w)> xG[O,L], (

up =0, ze{0,L},
(kuy),, =0, z€{0,L}.

~—~
Ot =~ W
~— ~— ~—

To prove a mathematical correctness of the model under consideration we establish the
existence and uniqueness of a weak solution to this problem.
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Figure 1: Concentration distribution at ¢t = 0.
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Figure 2: Granulation.
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Figure 3: Aggregation of grains

In the last section we consider a uniform cooling problem. The aim is to drive the
temperature 6 (¢, x) satisfying 0(0,x) = O and governed by the heat equation, to a given
value ©r < Oy and to guarantee a uniform cooling, that is, to ensure the condition

1 L
(9(t,.1‘) ~ Z/ 9<t7y) dy, (t,l’) € Qr.
0
The temperature satisfies non-homogeneous Robin boundary conditions of the form

593: (tu 0) = 9 (t, O) —q (t> )
_geaz (ta L) =0 (t’ L) —q (t) ’

where the function ¢ () is a control we have in our disposal. The problem is formalized as an
optimal control problem. In order to get an analytical result we consider a finite dimensional
approximation to the heat equation [5] and show that the control law ensuring a uniform
cooling has the form

q(t) = c1 + cat.

From the practical point of view this means that the uniform cooling problem can be reduced
to a simple two-dimensional minimization problem.



2 Existence and uniqueness

We say that w € £2(0,T; H? ([0, L])) is a weak solution to problem (2)-(5)if for any v €
H' ([0, L]) the relation

d
E (u7 U) = ((’{uw)m ) Uw) - (umFuu (u) 7Ua:) . (6)
holds. The main result of this section is

Theorem 1 Assume that F (u) = 2u* —u? + 1/8, k € C3(Qr), and there exist positive
constants C{, Cy, C1, Cy, and C3 such that

CO S R S C’(I)a |K$| S Cl, |kxx| S 02' (7)
Then for every ug € H? ([0, L]) problem (2)-(5) has a unique weak solution.

To prove the theorem we need the following a priopi estimates. Let u be a solution to

(2)-(5) -

Lemma 2 The inequalities

L L
/ udr < (const)/ uzdz (8)
0 0

L
/ / u? drdt < ( const)/ ugdzx (9)
0

Proof. Multiplying (2) by u and integrating with respect to  we obtain

1d - " ’
Qda; = —/ KU Uy AT — / Kug,dr — / Fuu (u) zda.
0 0 0

and

hold.

2dt

Since

we have



From (7) we get
1 d 2d < /L 2 dr + ( t) /L 2d
r < — [ ku;,dr+ (cons uzd.

Since (4) is satisfied, by Young’s inequality we have

L L 1 [E
/ uidr = —/ Ulgpdr < —/ u? dr + — 522 udzr, > 0.
0 0

Setting € = /C}{, we get

L d — / LAz + ( t)/L 2d
th U X COI]S OUI.

Applying the Gronwall inequality we obtain (8) and (9). O

Set
L R

Tt = [ esmnlommenneli (524 p ) da,
0

Lemma 3 The inequality
J (u) (t) < T (u) (0), te[0,T].
holds

Proof. Indeed, we have:

d 1 [F R
Ej (u) (t) = —/ e o min{0,—maxyc(o 1) (ke/x) fdr [mm {O — max (Fét/li)} K+ mt} uZdx
0

2 z€[0,L]

L R,
+/ eo mln{O,—maxme[o,L](Ht/fi)}dT min {O — max (/ﬁ?t//ﬁ?)} F (U) dr
0

z€[0,L]
L R, .
+/ eo min{0,— maxgeo, 1) (/) 7 (Kugugzy + Fy (u) ug) de.
0
Since F' (u) > 0, we obtain
d L
&‘7 (u) (t) < (const)/ (Kuguqge + Fy (u) ug) de.
0

Integrating by parts we have

/OL (Kuglgs + Fy (u) ue) do = /OL (— (k) + F, () wyda.

(10)



Using (2) and integrating by parts we get

%j (u) () < —(const) /0 [(— (kuy), + F, (w),]* d < 0.
Thus we have dJ /dt (u) (t) < 0. This implies (10). O

From Lemma 3 we have

blr oy 4 2 1
/ (—ux +2u® —u” + —) dx < (const).
0o \2 8

Combining this with Lemma 2 we obtain

L L
/ uidx +/ udr < (const). (11)
0 0

Therefore we have

sup |u(t,z)| < (const) (12)
z€[0,L]

whenever ¢ € [0, T].
Lemma 4 The inequality
T L
/ / u?, drdt < (const) (13)
o Jo
holds.
Proof. Multiplying (2) by u,, and integrating with respect to x we obtain

1d [F L L
S—— uida: = —/ Uz (KU ) ) ez d +/ (Fu(u))zptippde.

From this we get

1d [*

L L
—— uldr = —/ Ugzz (KUg ) gz dX +/ (Fu(u))ptpprde

L L L
= —/ Kzuimdx — / (2KkUpy + Kpzlly ) Ugpedr + / (Fu(u))zptggpde.
0 0 0

Applying the Young inequality and using (7) we have

1d [F

L 2 L L
—— [ wldr < —C’O/ u?, dr + 6—/ u?, dr + (const)/ (uZ, +u?)dz

2 L L
+§/ u?, dr + (const)/ F2 (u)udw
0 0

6



Taking € = \/Cy/2 and invoking (12) we obtain
1d [* Co [* L
St ), utdr < —70/0 uZ, dv + (Const)/O (u2, +u2)dx
From this and estimates (9) and (11) we get (13). O

Proof of Theorem 1. Using the Galerkin method and the a priori estimates from Lemmas
2-4 and following the proof of Theorem 4.2 from [7, Chapter III] we obtain the result. O

3 Uniform Cooling

In this section we study the problem of uniform cooling for the heat equation

0 =00, (t,7)€Qr, (14)
with non-homogeneous Robin boundary conditions
€0, (0,t) = 6(t,0)—q(t),
€ [0,77,

where ¢ (t) is a control we have in our disposal. At the initial moment of time ¢ = 0 the

temperature is constant, 6 (0,z) = Oy, x € [0, L]. Our aim is to drive the temperature to a
given value O < O (at least approximately) and to guarantee a uniform cooling, that is,

to ensure the condition 0 (t,r) ~ + fo (t,z)dz, (t,x) € Qr.
The problem can be formahzed in the following way: one has to minimize the functional

Iﬁ/o 0(T,z) — Or) da:—l—@/ / )) dxdt+fi3/0T(Q(t))2dt,

where 0 (t) = L1 fo (t,y)dy and r; > 0, j = 1,2,3. The last term in the functional is
needed to ensure the ex1stence and uniqueness of the optimal control, see [4]. Set n =0 — ¢
and a = ¢. Then we have the following optimization problem:

m/OL(e(T,x)—@T)demg/oT/oL (0 (t, ) — 8 () dedt
r /0 ()2 dt — inf,

e (t,2) = 01 (L) — a(t),
&ne (0,2) =1 (¢,0),

& (8, L) = —n(t, L),

G(t) =alt), t€[0,T],

mo (z) =0,

q(0) = Oy.



Here « (t) is a control. The solution to the initial boundary value problem can be written in

the form -
) = Zﬁk (t) v,
k=1
where vy, (z) = f cos (fBrx) + sin (Byx), By are positive solutions of the equation

268
1 — €2ﬁ2

and the functions 7, (-) are solutions to the equations

—tan (LF) =

e (t) = =i (1) — her (1), B =1,2,...,

with .
vpdx
)\k; — (U/Bk)2, hk; — Vi . = fO -
[[vg]] [

Here ||vg|| stands for the Lo-norm of the function v. Thus, the optimization problem can
be written in the form

Y (T,n (T / ¢ (t,n(t),a(t))dt — inf,

e (t) = =X (1) — hpa (8), k=1,2,...,
q(t)=al(t)

i (0) =0,
q (0) = 09
where -
(T, (T),q(T)) = k1L (¢(T) = Or)* + k1 Y _ [loell* n (T)
+2k1 (¢ (T) = O1) > i (T),
k=1
and

¢ (i (), (1)) = o <Z ol (1) — % (Z Vkk (0)) +ry (a (1)
k=1 k=1

Consider a finite dimensional approximation to this problem

VN (T,n (T /¢Nt77 a(t)) dt — min,



’f]k (t) = _)\knk (t) — hkOé (t) s k= 1,N,

q(t) = aft),
e (0) =0, k=1N,
( )_607

N (Tn(T),q(T)) = mL(q(T) = Or) + kY llowll* nj (T)

+2k1 (¢ (T) — O7) Z’W?k (T)

=2 (Z Jowl o 1) - 7 (Zw <t>) ) + s (o (1))
k=1 k=1

The optimal control & (t) obviously exists. Applying the Pontriagin Maximum Principle
we see that there exist functions py (¢), k = 1, N, and p, (t) satisfying the following conditions:

. 2
Pr () = APy () + K2 (2 lowll? o (£) — 2% Z%% ) ;

pr. (T) = —r1 (2 onl* e (T) + 2 (¢ (T) = O1)) . k=1N,

Py (T) = —r1 <2L (¢(T)—Or) + QZ%W (T)> :

k=1

?@%(( thpk +p, ( ))Oc—qﬁ(nk(t),a(t))):

—thpk +p, () — 236 (t) .

From the maximum condition we find

Q>

2/{3 ( thpk + g ( ))



Therefore to solve the optimal control problem it suffices to solve the boundary value problem

) Iy
t = —_— — —
ik (1) A (1) s

N

N
h
pq(t)+2—ézhjpj (1), k=1,N,
=1

q(t) = 2%3 (pq (t) = > hyp; (0) ,

j=1

Z%m ) ,

i, () = Ay (1) + o | 2 [Jvgl|* me (¢
p, () =0,
e (0) =0, k=1,N,
q(0) = O,
pr. (T) = —rr (2[|vell* me (T) + 2 (¢ (T) = ©1)) , k=T,N,
N
P, (T) = —K1 <2L (¢(T)—©6r)+ QZ’YJ'TU (T)) )
j=1
Consider the matrix of system (15)-(18)
—A 0 LHH —-H
0 0 —Lm L
M = 2K 2K
ok (V= LTT%) 0 A o |
0 0 0 0

(15)

where A is N x N diagonal matrix with the elements Ay, k = 1, N, V is N x N diagonal

matrix with the elements ||ug||?,

I' is a column matrix with the elements v, k = 1, N, and

H is a column vector with the elements hy, K = 1, N. To find the matrix M eigenvalues and

eigenvectors consider the system

1 1
n=-An+-—HHp— —H
pn nt g P— 5 P

1 1
- Og*
e =5 —H'p+5 -

1
Up = 2ks (V — ZFF*) n+ Ap,

f1pg = 0.

We are looking for nontrivial solutions to (23)-(26).

Lemma 5 If system (23)-(26) with i # 0 has a nontrivial solution, then p satisfies

10



K _ _
Fen () = 1—2—2H*(N[N—A) "WVuly A H

+RH* (uly — A) ' IT* (uly +A) " H = 0. (27)
3

Proof. If y1 # 0 then from (26), we have p, = 0, and system (23)-(25) takes the form

1
pn = —An + o —HHp, (28)
K3
1
- 29
Hg =~ —Hp. (29)
1
Up = 2kKs (V - EFF*) n + Ap. (30)
Invoking (29) and (28) we get
n=—pq(ply+A)" H. (31)
From (30) and (31) we obtain
_ 1 _
p = —2kapq (uly — A)~ (V - EFF*) (uly + M) H. (32)

If ¢ =0, then n =0, p=0, and p, = 0. Therefore, ¢ # 0. Now from (32) and (29) we have
(27). O

Lemma 6 If¢ =0 and N = oo, then

- kol 2m\/% (sinhm,/% +sinm/%)
Fooo (iw) =1+
, /130'471'6 w3 (COShT{\/%-F COST('\/g)

4ky L coshm /¥ —cosm /¥
_ /{30’47'['6 W3 (COSth'\/% + cos 7'['\/%)

>1, w>0.

Proof. After simple calculations we get
Yih d  h
2 klue 1 Kk
Fen (1) (;M 22 LZ: Z#"‘)\k

Set v =¢&/L, 6,(v) = Br(v)L, and

(v sin 0, (v) — cos 6x(v) + 1)
(V202 (v) +2v + 1)

re(v) =

11



Since tan dy, (v) = 2vdy, (v) /(V?67 (v) — 1), we have

2 (§Bgsin (BL) — cos (BxL) + 1) 2L
L B (267 +2¢/L+1) 51%(”)

It is easy to see that &, (0) = km and r,(0) = (1 — (=1)¥)2. Thus we have

Vil = (V).

. k2 =\ 2L° 1 (0)
Foo ) =1-"0 (; 52(0) L'u? — 0*5:(0)
2L3 71, (0) = 2L° 7 (0)
I Z — 5262(0) ; 520) T2 + 025,3(0)) | (33)

Set y = u(L/(om))?. Then we have

8%2[/5 > 1
Fowo (1) =1 -
U <Z (2= 17 (2k = 1) =)

o0

1 - 1
— (2k — 1)* ((2k — 1)* — ) ; (2k — 1) ((2k — 1)* + y)) '

The series can be easily evaluated using residues. We have

= 1 > 1
;2/@—1 (2k;—1 Z 1 1

1 k14

= —— Zresz = Lf (2) cot (m2)],

where f(2) = (4 (k — 1/2)* (16 (k — 1/2)* — y2))7 and the residues are calculated at singu-
larities of f. From this we get

1 2 V2 sinm —% 4 sinhy/—%
5 SN =y

7 = 27 — : :
(2k =1 (2k = 1" —32)  8(iy ™= cosmy/—% + coshmy/— %

00
k::l

Analogously we obtain

> 1 2 T 7T\/§
Z 2 2 28——43/2tan 5
2k — 1) ((2k — 1)* +y) y 4y

and
o0 1 2
> =y
—~ (2k—1)°(2k—1)°—y) 8y 4y 2

12



After simple calculations we have

' ke L? 270/ (sinh7\/§ +sinmy/5)
Fooo (iw) =1+
’ k3otmb 3 (cosh ﬂ\/g + cos W\/g)
4kyL®  coshm\/¥ —cosm\/¥
r30 4T W3 (coshmy /¥ + cosm\ /%)
Show that Fy o (iw) > 1, w > 0. Set z = my/w/2. It suffices to prove the inequality

g (x) =2z (sinhx + sinz) — 4 (coshx — cosz) > 0, = > 0.

Obviously ¢ (0) = 0, ¢ (0) = 0, and ¢" (z) = 2z (sinhz —sinz) > 0 whenever z > 0.

Therefore we have g (z) = [ [ 9" (2) dzdy > 0, z > 0. Since

Ko L5

/130'46!

f‘o,oo (0) =1+ > 1,

we obtain Fj o (iw) > 1 whenever w > 0. O

Obviously Fo o (iw) = Foeo (—iw). Therefore Fp o (iw) > 1 for all real w. It is easy to
see that there exists a positive integer Ny such that Fy ny (iw) > Fooo (iw) — 1/2, w > 0,
whenever N > N.

Lemma 7 Let N > Ny. Then there exists § such that Fen (iw) > 0 whenever £ € [0, &)
and w 18 real.

Proof. Since lime_o |Fen (iw) — Fon (iw)| = 0, there exists & such that F¢n (iw) >
Fon (iw) —1/2 > Fy o (iw) — 1 > 0 whenever £ € [0,&]. O

Let u # 0 be an eigenvalue of M. Using (31) and (32) we obtain the corresponding
eigenvector

) —p (pIy + A H
q(p) _ 1 (34)
) —2purg (uIy — A~ (V = 1TT) (uly + NTH |

Py (12) 0

The degree of the polynomial P (1) = F (i) [I1-, (4*> — A2) equals 2N. Obviously the
equalities P (u) = 0 and F (u) = 0 are equivalent and the polynomial P has exactly 2N
roots. From Lemma 7 we see that the roots do not belong to the imaginary axis. Thus we
have proved the following result.

Lemma 8 If the numbers N and 1/& are big enough then matriz M has 2N non-zero ei-
genvalues. These eigenvalues are solutions to the equation Fe y () = 0. The corresponding
eigenvectors are given by (34).

13



From this lemma we see that p = 0 is an eigenvalue of M and its multiplicity is equal to
two. Simple calculations show that the corresponding eigenvector and the principal vector
are given by

0 n° —A'H

1 q° 0

o | ™| | T 2koA~! (V = LTT*) A'H

0 Py 2 (kg + ko H*A™H (V — $IT*) A1 H)

Thus we have the following result.

Lemma 9 If the numbers N and 1/£ are big enough then the solution to system (15)-(18)
has the form

U N (1) N 0 (1)
o [0= et | S || o0y
Py Py (1) Py (111

0 0 n°

+e (1) to |t (1) + lq)(;

0 0 o

where ¢ are ¢, complex constants, ¢; and cy are real constants, the numbers ,u,f are the
non-zero eigenvalues of matriz M satisfying Re pf > 0 and Re y;; <0, fork=1,N.

Let At be N x N matrix with the columns e#iTp (1), k = I,N, ap = 0, A~
be N x N matrix with the columns n (,u,:), k=1,N, ay = /T, Bt be N x N ma-
trix with the columns p (,uz) + 2K (Vn (ug) +I'q (uz)), k =1,N, B- be N x N ma-
trix with the columns e’ (p (/J,Z) + 2K1 (Vn (,u,;) +I'q (u;))), k = 1,N, D* be a row
with the elements p, (1) + 2k <<F,77 (1)) > + Lgq (,u,'f)), and D~ be a row with the el-
ements ™ (p, (1ic) + 251 ((To (1) )+ La (7)) Set do = 2L, fy = 2L, By =

(P + 261V 1° + 26y (T + ¢°) ) /T, and &y = (261 L (T 4 ¢°) + p))/T. Boundary conditions
(19), (21), and (22) can be written in the matrix form

C+
At A: Qyg 7 C- 1 0
BJr B ﬁ() 61 C :E 2/{)1@TF y (35)
Dt D~ & & cl 2k, LO7
2

where X = 31| (‘cke“?ﬁ) + |cp D +|e1]4+|eoT|, CT and C™ are vectors with the components
C! =¢emT/X and Cp = ¢;, /X, respectively, C; = ¢;/X, and Cy = ¢,T/X.

14



The solution Ci7, k = 1, N, Cy, and C; to (35) depends on 7. Denote by C the set of all
limits lim; o, (C*,C~, Cy, Cy) (Tj), where lim;_,o, T; = co. Obviously

> (ICH +1Ck]) +1Ci +[Cal = 1

N
k=1

for all (C*,C~,C4,Cs) €C.
Lemma 10 If the numbers N and 1/£ are big enough, then there exist at most N numbers

e, k=1,Ny, Ny < N, and a constant x such that

N
(ICi + 1Sk ]) < x(IC1] +Ca))
k=

for all (C+, C,Cy, Cg) € C, whenever ko/k1 # qi, k =1, Ny.

[y

Proof. Suppose that for any y > 0 there exists a vector
(C+, C_, Cl, CQ) € C,

such that SN (|CF| + |Cx ) > x (ICi] + |Cs|). Since the set C is compact, dividing the
inequality by x and passing to the limit as x goes to infinity, we see that there exists a
vector (C*, C’, 0, 0) € C. To prove the lemma it suffices to show that there exist at most

N numbers ¢, k =1, N7, N; < N, such that C* = 0 whenever Ko/K1 # qr, k = 1, N1. Let
T; — oo be a sequence such that

lim (C*,C™,C;,Gy) (1)) = (€*,€7,0,0)

j—o0
Passing to the limit in (35) as j goes to infinity, we have
0 A~ CJF 0
Bt 0 < o > = | 2k0T |, (36)
D+ 0 2/‘%15[;

where 4 is a constant. From this we obtain A-C~ = 0. Applying the well known Cauchy
determinant formula, we get

1 1
w0 B+

det A~ = (const) : . :
1 LIS 1
1 +An Bh+AN

H1§j<i§N (1 — Nj) ) H1§j<i§N (A — )‘j)
Hg;:l (s +25)

15

£0.

= (const)



Therefore C~ = 0. Set z = ky/k;. The second line of system (36) can be written in the form

(2P +V)C* = T,

where P is a square matrix with the columns

i (i —A)"

1 _
<V—EFF ) (i I+A)""H,

and V is a square matrix with the columns —p; V' (i I + A)_1 H +T'. The third line of (36)
can be written as POC+ = 0L, where F, is a vector with the coordinates

~(Topf (W T+ 8) " HY+ L.

If 2 =0, then we have the system

pilo*h ~ phlvi P
#1++)\1 1 /L$+/\1
piloiPhy 5 s lun | *ha
MT-F/\N N N;"!‘)\N

P1 PN

-Nn

— N

where pj, = ,uk“<1“, (i 1+ A)_1 H> — L. Obviously we have

pilviPh ~

#-1'—-"-)\1 1
det :

pilvilPhy ~
u1++>\1v
P1

i Pha
ni 4+
= det .
ui o1 hy
i +An
p1+ L

1
#f—-‘r)\l

= (const) det 1
wi AN
N khg
k=1 pf 4,

16

git C; 0
/\.+ - . 9
YN C(SN :
I 0
+ 2
prlvil“he
I-’»x‘i‘)\l 71 '71
+ 2
pylon"hy
N;\L]+)\N rYN /VN
PN L
phlon Ph ~
H?\—Hr)q 1
ullonPhy
N N
pN + L L
1 71
ph+X [v1 2Ry
1 'ygf
Bh AN lun|"hn
ZN Vi L
k=1 i+



1 1 1

ey ph 4+ [v1 |y
= (const) det 1 . 1 1y
ui AN Bh AN [on["hn )
N Vi
T U 2 DA e

From this we see that the determinant is equal to zero if and only if

N N 927,
Loy by

1 ’Uk| —1 i

_ iv: 2L (vsindy (v) — cos &y (v) + 1)°
)
1

2(v) V202 (v) +2v+1
Since
ol
£ (2k—1)2 8
we have

N N

2L 8L 1
Y (0) =5 < L
“~ 53(0) w2~ (2k —1)°

Therefore there exists & such that Sy, ax (/L) # L whenever ¢ € [0,&]. Thus, if £ €
0,&1], then the determinant of the system

(zP+V) -T Ct\ [0
I}ID* —L ) -\ 0
is a non-trivial Nth degree polynomial of z with roots z = qx, k = 1, N. This ends the proof.
O

Using the compactness of C and lemmas 9, 5, 6, 7, 8, and 10 we obtain the following
result.

Theorem 11 If the numbers N and 1/§ are big enough then there exist at most N numbers
qe, Kk =1,N1, N; < N and a constant Ty > 0 such that if Ko/K1 # qn and T > Tqy the optimal
tragectory q (+) has the form

q(t)=cr+et+o(t),

where ¢ (t) < 3x (c1 + eoT) (e +e7#) | t € [0,T], and = min }Re,uk | > 0.
k_
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