SEMI-COMPLETE VECTOR FIELDS OF
SADDLE-NODE TYPE IN C*

HELENA REIS

ABSTRACT. We classify the foliations associated to semi-complete
vector fields at an isolated singularity of saddle-node type in C™,
i.e., associated to semi-complete vector fields in C", whose lin-
ear part is diagonalizable and with an isolated singularity, where
the n — 1 non-vanishing eigenvalues of its linear part are non-
resonant and in the Poincaré Domain. We will also analyse the
semi-completude of a vector field with a diagonal linear part asso-
ciated to a saddle-node foliation, whose set of singularities is the
holomorphic invariant hypersurface transverse to the weak direc-
tion.

1. INTRODUCTION

The definition of a semi-complete vector field relatively to a (rela-
tively compact) open set U is introduced in [8]. The importance of
that definition is that:

Proposition. [8] Let X be a complete holomorphic vector field on a
complex manifold M. The restriction of X to any connected, (relatively
compact) open set U (U C M ) is a semi-complete vector field relatively
to U.

Therefore, if a holomorphic vector field in an open set U is not semi-
complete it cannot be extended to a compact manifold containing U.

In [9] Rebelo classifies the semi-complete singularities of saddle-node
type in C?, such that (0,0) € C? is an isolated singularity. There, he
proves:

Theorem. (9] Let F be a saddle-node defined in a neighbouhood of
(0,0) € C? and w a differential 1-form, with an isolated singularity at
the origin, defining F. The foliation F is associated to a semi-complete
vector field iff w admits

(14 \y)dy — y*dx
as normal form, with \ € Z.

Here we classify the semi-complete vector fields of saddle-node type
in C", at an isolated singularity. By a saddle-node, with an isolated sin-
gularity at p, we mean a holomorphic vector field X such that X (p) = 0

and DX (p) is diagonalizable and has one and exactly one eigenvalue
1
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equal to zero, beeing the other eigenvalues non-resonant and in the
Poincaré Domain.

In both problems the vector fields are 1-resonant: we say that a
vector field is 1-resonant if dim{m € Z" : (m,\) = 0} = 1, where A is
the vector constitued by the eigenvalues of the linear part of the vector
field.

The result obtained here is similar to the one obtained by Rebelo.
We prove:

Theorem. Let F be a foliation of a saddle-node, in a neighbourhood
of the origin, with an isolated singularity at the origin. Then F 1is
associated to a semi-complete vector field iff it admits the normal form

— 2
=

y = SCQ()\Q + 042331)

2=z, A+ anty)
with (ag, ... ,a,) € 2",

At the end of the article we study the semi-completude of vector fields
with diagonal linear part associated to saddle-node foliations, whose set
of singularities coincides with the invariant manifold transverse to the
weak axis at the origin, whose existence is guaranteed in [1].

Let Yy () = (2, Xawy + 2102(2), . .., Ay + 2100 (7)), p € N, be
a holomorphic vector field of saddle-node type such that a;(0) = 0,
Vi=2,...,n. We obtain:

Proposition. Let X be a vector field of type fxl_kY;,, where f is a
holomorphic function such that f(0) # 0, k € Z and X defined in an
open neighbourhood U C C™ of the origin. Suppose that X is semi-
complete in a neighbourhood of the origin, then k € {p — 1,p,p+ 1}.

Consequently we conclude that:

Corollary. Let X be a holomorphic vector field of saddle-node type,
with an isolated singularity at the origin, and M the invariant hyper-
surface transverse to the weak direction of X. If F' is a holomorphic
function such that F(x) = 0 < x € M, then the holomorphic vector
field FX is not semi-complete in any neighbourhood of the origin.

I would like to thank my Ph. D. advisor, José Basto Gongalves, for
his support. 1 also wish to thank Jilio Rebelo, who sugested me the
problem, and J. C. Canille Martins for their valuable conversations on
the subject.

2. PREMILINARIES - DEFINITIONS AND BASIiC RESULTS

In this section we introduce the definitions and the basic and most
important results related and necessary to solve the problem.
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Let X : UCC"—=Crand Y : V C C" — C" be holomorphic vector
fields with a singularity at the origin. We say that X is analytically
(formally, C>, C*) conjugated to Y in a neighbourhood of the origin if
there exists a holomorphic (formal, C*, C*) diffeomorphism H : V; —
Uy, where 0 € Uy C U, 0 € V; CV, such that H(0) =0 and

Y = (DH) 'X o H.

We say that X and Y are analytically (formally, C>, C*) equivalent if
X is analytically (formally, C*°, C*) conjugated to a multiple of Y.

Let A = (A1,...,A,) be the vector of the eigenvalues of DX(0).
We say that the eigenvalues are resonant if, for some i, there exists
I'=(iy,...,i,) € Ny with 377 | i; > 2 and such that

ANi=1A=0+ ... +i\.

Finally, we say that A is in the Poincaré Domain if the origin is not
in the convex hull of the points {)\; : ¢ = 1,...,n} (in the complex
plane). Otherwise we say that they are in the Siegel Domain.

Definition 1. Let X be a holomorphic vector field defined in a com-
plex manifold M. We say that X is complete if there is a holomorphic
application

O:CxM-—-M

such that
a) ®(0,z) ==z Ve e M
b) O(T) + Ty, ) = O(T, ®(T1,2)) Vo € M, VT, T € C

) X() = Zolo=o®(T, )

The orbits of a complete vector field are topologically the complex
plane C, the cylinder C/Z or the torus C/A. The orbits of a non-
complete vector field also define a singular foliation of M, where each
leaf is also a Riemann surface, but its topology can be much more
complex.

Definition 2. Let X be a holomorphic vector field defined in an open
set U, U C M, where M is a complex manifold. We say that X is
semi-complete relatively to U if there exists a holomorphic application

dP:QCCxU—-U
where 2 is an open set containing {0} x U such that

) X(2) = Slr®(T,2)

b) ®(T1+715, x) = ®(T, ®(T1, z)), when the two members are defined
c) (T;,z) € Qand (T;,z) - 00 = &(T;,x2) — U

We call ® the semi-complete flow associated to the vector field X.
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In [8] and [9], Rebelo presents sufficient and necessary conditions for
a vector field to be semi-complete in an open set U. The regular orbits
of a vector field X (X # 0) are Riemann surfaces. To each one of its
orbits (leaves), L, we can associate a holomorphic differential 1-form,
dTy, such that d77,(X) = 1. In this way, we can define an application

D : L — C, where L is the universal covering of L, such that its
differential is the lift of d717, to L.

Proposition 1. [8] Let X be a semi-complete vector field relatively to
an open set U (U C M ). If L is a non-singular orbit of X in U, then
the integral of dT, over any one-to-one embedded curve in L is non
zero.

Proposition 2. [9] Let X be a holomorphic vector field defined in a
netghbourhood U of the origin of C". Suppose that for all reqular orbits
L of X and every c : [0,1] — L such that c(0) # c(1) the integral of
dTy, over c is non zero. Then the vector field X is semi-complete in U.

Those propositions are essential in the classification of the semi-
complete singularities of saddle-node type in C2, as it will also be im-
portant in our case.

We also have a very easy to prove result, which enables us to obtain
semi-complete vector fields from other semi-complete vector fields:

Proposition 3. [3] Let X be a semi-complete vector field relatively to
an open set U and h a first integral of X. Then, the vector field hX is
also semi-complete relatively to U. In particular, if X is semi-complete,
then cX is semi-complete for any constant c.

As we said in the introduction, in the C? case Rebelo shows:

Theorem 1. [9] Let F be a saddle-node defined in a neighbouhood of
(0,0) € C? and w a differential 1-form, with an isolated singularity at
the origin, defining F. The foliation F is associated to a semi-complete
vector field iff w admits

(14 \y)dy — y*dx
as normal form, with \ € 7Z.

In fact, by the Dulac’s Theorem, as w = 0 is a germ of a saddle-node
defined in a neighbourhood of (0,0) € C?, there exist p > 1, A € C and
a systems of coordinates where w = 0 is written, in a neighbourhood
of the origin, as

[2(1+ XyP) + yR(x, y)ldy — y* " dz = 0

where R has multiplicity greater or equal to p + 1 at (0,0).
Let

y . JE =L+ A7) FyR(z,y)
’ = yp+1
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be (one of) the vector field(s) whose foliation coincides with F.

Let Gy represents the group of formal diffeomorphisms of the form
H = (z+ 3%, hi(2)y",y), with h, holomorphic in a neighbourhood
of the origin.

Each element X is equivalent, by a unique element of Go, to its
formal normal form

y' — yp+1
where p and A are formal invariants.

In this context Theorem 1 means that there exists a holomorphic
function f, with f(0,0) # 0, such that fX is semi-complete if and only
if X is analytically conjugated to its formal normal form with A € Z
and p = 1.

Our main objective is to prove a similar result for saddle-nodes in
cm.

In [8] is proved that a 1-dimensional holomorphic vector field X :
i = f(x) such that f(0) = fM(0) = f@(0) = 0 is not semi-complete
in any neighbourhood of the origin. Here we also prove that if the
origin is a pole for X, and consequently an isolated singularity, then X
is not semi-complete in any neighbourhood of the origin.

{3’5 =x(1+ A\yP)

Proposition 4. Consider the 1-dimensional vector field given by X :
i = aFf(z), such that f is a holomorphic function verifying f(0) # 0
and k € Z. If k > 3 or k < —1 the vector field is interdict, i.e., is not
semi-complete relatively to any small neighbourhood of the origin.

Remark 1. If k < —1, the vector field considered is not holomorphic in
C, but is holomorphic in C\ {0}. In this case the origin is a singularity
in the sense that the vector field is not defined there.

The result of Rebelo is inclued in this proposition. To prove this
result we need the following lemma:

Lemma 1. Let f: U C C — C be a function of the form
fla) = az® + g(z,))

where g is a holomorphic function in U such that g(z,0) = 0, k € Z
and a € C\ {0} (A € C*, n > 1, is a parameter). Let W be a simply
connected open set of U such that 0 ¢ W and f is never zero in W,
VA A < eg. Consider the function

I)\SW—>(C

/ dx

p= k1 alr \)

cp ar” + g('ra A)

where ¢, C W is a curve joining a fired xo € W to p. Then, there exist

real and positive numbers 6 and \g such that
WAL Al < ho, B(0,6) C L(W)
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Remark 2. As 0 ¢ W and f is non zero in W the integral does not
depend on the choosen curve.

Proof of the Lemma. The proof of this lemma is based in the following
theorem:

Theorem 2. [6] Let f : C — C be analytic and not constant on a
region A. Let zo € A and wy = f(z0). Suppose that f(z) — wy has a
zero of order k > 1 at zyg. Then there is an n > 0 such that for any
7 €]0,n] there is a § > 0 such that, if |w — wo| < 0, then f(z) —w has
exactly k distinct roots in the disc |z — zp| < T.

We have I (x9) = 0, VA € C, in particular Iy(zg) = 0. As g(x,0) =0,
Iy(wo) = — # 0. Thus Iy has a zero of order 1 at zo. However, as I
x

is a continuous function of A, there exists 0 < Ay < g such that

1 1
xf 2|
In particular, I}{(z) # 0, VA : [|A]| < Ao, and so I as a zero of order 1
at xo, VA ||A]] < Ao.

Thus, by Theorem 2, for each A € B(0, A\g) C C" there exists 1, > 0
such that V7 €]0,7,] exists 0] > 0 such that if jw — 0| < d7, then
I(p) = w has exactily one solution in the disc |p — zo| < 7.

Consider the application

T, : D(0,)\) = R
A =y

(o) € B( ) VA AL < N

As 0 does not belong to the image of D(0, ) by T, and D(0, o) is
compact, its image has a minimum g. Then 0 < g <y, VA 1 [|A]] < Ao.
Consider now the application

T5: D(0, ) — R
A=

Denote by 6 the minimum of T5(D(0, Ag)) (6 > 0).
Remark that

lw—0| <é, = Dx(p) =w has exactily one solution in |p — x| < 7

In our case
lw—=0l<0 = |Jw—=0 < VA<
= D, (p) = w has exactily one solution in |p — x¢| < u
VA A < N
As p is the minimum of 7, we can conclude that

B(0,6) € DA(W), WA A < Ao



SEMI-COMPLETE VECTOR FIELDS OF SADDLE-NODE TYPE IN C" 7

Proof of the Proposition. Suppose that k > 3 or £ < —1 and that the
vector field X is semi-complete relatively to B(0,e) € C. We can
assume ¢ so small that the origin is the only singularity in B(0,¢) (this
is possible because f(0) # 0 and so is non zero in a small neighbourhood
of the origin).

Let f(0) = ap. Thus g(z) = 2 f(z) = apz® + a1z + a2 + .. ..

Fixed A € C\ {0} the vector field X is semi-complete relatively to
B(0,¢) iff Yy = A7 X (\x) is semi-complete relatively to B(0, i) This
is so, because X and Y, are analytically conjugated by the homothety
Hy(x) = A\x. If we take A\ = ¢ it is sufficient to analyse if Y is semi-
complete in B(0, 1).

We have that the 1-form dT such that d7%(X) = 1 is given by

dx
arx¥ — 4
ok f(x)
As the 1-form dT™ = H;(dT%) we have that
ddz) dx

AT =

(Ax)kf(Ax) — Ne—lzk f(\x)
As we are assuming k > 3ork < —1,thenk—1>2o0rk—1< -2,
i.e., |[k—1] >2. As A*1is a constant, Y is semi-complete in B(0, 1)
)
iff 7 = T
We only need to verify the existence of an one-to-one embedded curve
c:10,1] — B(0,1) \ {0} such that

to contradict the hypothesis.

Consider the curve c(t) = re2™/*+=1) t € [0,1] and 0 < r < 1. Since
|k — 1| > 2, this curve is an one-to-one embedded curve.

Let W C B(0,1) be a simply connected neighbourhood of ¢(1) con-
taining neither the origin nor ¢(0). We choose, for example, W =

B(c(1),8) € B(0,1), where 0 < § < w and 0 < § < |e(1)—c(0)].
Denote by

is semi-complete in the same ball.

[)\ W — C
/ dx
Y
P akR O

the apphcatlon that associates to every point p € W the integral of

the 1-form dTA’C T through a curve ¢, joining ¢(1) to p, inside W. It is
obvious that the value of the integral does not depend on the choosen
curve.

As 2" f(\x) = apz® + oy xF L + ap\2aF 2 + . we can write this
function as agx® + h(z,)\), where h(z,\) is holomorphic in W and
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satisfies h(x,0) = 0. By lemma 1 there exist real and positive numbers

0 and \g such that B(0,0) C I,(W), VA : [A] < .

As
/ dz _/ dx A—0 / dr 0
crRf(Ax) ) agr® + bz, ) . aprk

we can choose A so small (in particular, A smaller than \g) such that

with |a| < 6. Let p € W be such that

Obviously p # ¢(0), because ¢(0) ¢ W. We can always choose ¢, in
such a manner that ¢ does not intersect ¢, except when p = ¢(t) for
some t € [0,1]. In the first case the curve ¢ joining ¢(0) to p obtained
by concatenating c to ¢, is an one-to-one embedded curve such that

dx
/5xkf<xx> =0

If p = ¢(t), for some ¢ € [0,1] we consider ¢ as the subset of ¢ joining
c(0) to p.

Thus, the vector field X is not semi-complete relatively to any neigh-
bourhood of the origin.

O
Remark 3. The proof of the last proposition also implies that X is not

semi-complete in any sector with vertex at the origin and angle greater

2
th )
an %=1

3. A NECESSARY CONDITION FOR THE SEMI-COMPLETUDE OF A
SADDLE-NODE IN C"

Consider the set of vector fields of saddle-node type defined in a
neighbourhood of the origin and with an isolated singularity there. We
are considering only vector fields whose linear part is diagonalizable. So
the vector field is analytically conjugated, by a linear transformation,
to another one where the linear part is diagonal. So, let

X ={X:(C"0) — (C",0), holomorphic : DX (0) = diag(A1, ... , A\n),
A =0,0¢& H(Ag,...,\,),there are no resonance
relations between the non-vanishing eigenvalues}

Our objective is to classify the foliations associated to a semi-complete
vector field of saddle-node type in C". To do this classification we need
first to classify the foliations associated to semi-complete vector fields
in X. So, from now on we are going to consider vector fields in X.
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Proposition 5. [1] Let X € X. Then X is analytically conjugated to
a vector field of the form

iy = 22 (a + u(z))

Ty = Aoy + 7192(T)

(1)

where a € C\ {0} (a constant), x = (x1,... ,x,) and u, g, ... ,g, are
holomorphic functions such that u(0) = ¢g2(0) = ... = g,(0) = 0.

Dividing the analytical normal form (1) by 1 + a~!u(x) and substi-
tuting x; by bx; where b is such that b’a = 1, we obtain that X is
analytically equivalent to

3;;1 — xlll‘i‘l
Y, Ty = Ny + T102(7)
Ty = Ay, + 10, ()
where a; are holomorphic functions such that a;(0) =0, Vi =2,... n.

This is the Dulac’s normal form for a saddle-node in C", under the
conditions described before [1].

Remark 4. Given a vector field X and denoting by F its foliation,
the holomorphic vector fields whose foliation coincides with F in a
neighbourhood of the origin are written as fX, where f is a non-
vanishing holomorphic function in that neighbourhood.

In this way, any holomorphic vector field in X, with an isolated
singularity at the origin, can always be written in the form fY), for
some p and some holomorphic function f such that f(0) # 0.

In the C" case we have a result analogous to Theorem 1, which has
already been enunciated in the introduction:

Theorem 3. Let F be a foliation of a saddle-node, in a neighbourhood
of the origin, with an isolated singularity at the origin. Then F 1is
associated to a semi-complete vector field iff it admits the normal form

— 2
= x7

U = x2(Aa + asxy)

2 =x,( A\ + anzy)
with (ag, ... ,ap) € Z"7L,

Our objective is to prove Theorem 3. In this section we exibit a
necessary condition for a saddle-node to be semi-complete.
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Proposition 6. Let X be a semi-complete holomorphic vector field,
defined in a neighbourhood U of the origin, of the type fY, for some
holomorphic function f such that f(0) # 0. Then p=1.

Proof. Suppose that p > 2.

Let II; be the projection of U on the first axis (Il (z) = x;) and F
be the foliation associated to the vector field fY,. There is a neigh-
bourhood of the origin in which the fibres of II; are transverse to the
leaves of the foliation F, except to the invariant manifold {z; = 0}:

DILi(2).X (z) = f(x)a?™

because f(0) # 0, and, consequently, non zero in a sufficiently small
neighbourhood of the origin.

Fix a disc B(0,e) C C" centered at 0 € C" with radius ¢ > 0 in
which X is semi-complete.

Remark 5. If X is semi-complete relatively to an open set U, then X is
semi-complete relatively to any relatively compact open set contained
in U ([8]). So, there is always ¢ > 0 such that U is semi-complete
relatively to B(0,¢) (it is enough to take ¢ as small as we want). In
reality it is semi-complete relatively to any open subset of U.

The proof for f = k (k € C) is very simple: consider the curve
c(t) = (re*™/? 0,...,0) C B(0,¢), t € [0,1]. As p > 2, cis an one-to-
one embedded curve.

As Ty (e(t)) # 0, Vt € [0,1], for each (r,z9, ... ,2°%) sufficiently close
to 0 € C", we can lift the curve ¢ to a curve ¢y, contained in LN B(0, €)
through (r,29,...,29).

We are assuming f = k, so

d.??l
dl', = | ——= =0
/CL g /ck:xﬁ’ﬂ

where dT}, is the differential 1-form described before (i.e., such that
dT(X) = 1). As c is an one-to-one embedded curve, so is ¢g. This
contradicts the fact that X is semi-complete.

We are going to treat now the case f # const. In this case, we obtain
the differential 1-form

dl’l

dr¥ = ———
ab ()

with f(0) # 0.
Consider S C C, an angular sector with vertex at the origin and
angle greater than 2% and less than 27. As, in a neighbourhood of the

origin, II; is transverse to the leaves, except to those contained in the
invariant manifold {x; = 0}, for each leaf L in S\ {0} x (C"1,0), we
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can write

univocaly.
Let ¢z, be an one-to-one embedded curve in L. We have that

dxy dz,
A= | — = = P L L
cr cr, 11 f(flf) Hi(c) T f(xth (xl)v cee Iy (%1))

As ¢y, is an one-to-one embedded curve, so is I1;(¢y) (because we are in
a sector where z; is a function of x; for alli = 2,... /n). So we reduced
the study of the semi-completude of a vector field in S x (C"~*,0) to
the study of the semi-completude of a vector field in S.

Remark that if fY), is not semi-complete in any neighbourhood of
the origin of the type (S x (C"1,0)) N B(0,¢), then it canot be semi-
complete in any neighbourhood B(0,¢) of the origin (remark 5).

We know, by remark 3 and also from [8], that any holomorphic uni-
dimensional vector field of order k, k > 3, (i.e., a vector field & = f(z)
such that jif = 0, VO < [ < k and j*f # 0) is not semi-complete

relatively to any sector of amplitude greater than - 7r1‘
As f(0) # 0, the vector field
X oay =2 (g, 2k (x), ... al(xy))

has order equal to p 4+ 1. As the sector S has amplitude greater than

2T
—, X is not semi-complete relatively to any neighbourhood of the
p

origin of the type SN B(0,¢). Thus fY, is not semi-complete relatively
to any neighbourhood of the origin.
Ll

We are going to study now the case p = 1.
Suppose p = 1. To simplify the study of the semi-complete vector
fields in X we can observe that:

Proposition 7. A wvector field X of type Y1 is analytically equivalent
to the vector field

( .
ZL’1:£L‘%

Ty = Ty + 1 fo(x)

Y i { @3 = 323 + 21 f3(2)

\l:n = TnTn + zlfn(z)
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A ‘ .
where ~y; = b= 2,...,n and the coefficients of x x; on the i"
2
equation of X andY are equal.

Proof. Consider the vector field
1:1 = l‘%

SL;Q = )\QQIQ + Qur1T9 + I1h2($>

Ty = ATpn + 01T, + x1hy ()

Oh; .
|0:0,VZ:2,...,7’L.
X

Dividinlg by A2 we obtain

where

1.2

S 1
To = Lo + i—zl'll'g + )\—2513'1]12(%)

: A o 1
Tn = 52Tn + T1Tn + 3, T100(T)

Substituting \ox; for z; we have

- 1. 1 1.5 -
xr = )\—1'1 = PLE% = F)\%Z’lQ = 51712
2 2 2
So, we obtain
T = 2,°
Ly = Ty + @122 + T1ho(@1, Ta, ..., 2p)
:L:n = TnTn + Oénflxn + flhn(fla T2y 7xn)
oh;

8x;|0=0,vz'=2,... .

where it is obvious that

O

Remark 6. From now on, when we refer to an element of type Y; we
mean an element of type Y; such that the eigenvalues are 0, 1 and ~;
without resonances between the non-vanishing eigenvalues and in the
Poincaré domain. For example, in the C3 case we are speaking about
an element of type Y; such that the eigenvalues are 0, 1 and v € R, UN.
From the proof of the last proposition and proposition 3 we can easily
conclude that X is semi-complete iff its equivalent element of the last
proposition is semi-complete.
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Notation 1. We denote by Y1, a vector field of the type

.fl = Z‘%
.fg = .’IQ(l + 062$1) + xlhg(l')
Yia: 9.
:L:n - xn(/Yn + ()énlj) + xlhn(x)
where a = (aw, ... ,a,) and h; are holomorphic functions such that
oh; ,
aZL‘i|O = 0, Vi = 2, ,n.

In [1], it is proved that a formal change of coordinates of the form
(2) H(z) = (v1,22+ Y foe(@)2h, ..oz + > fur(@)ak)
k=1 k=1

with Z = (x9,... ,z,) and f; holomorphic in a neighbourhood of 0 €
C™! such that f;;(0) =0 for all ¢ € {2,... ,n}, conjugates Y7, with

.flz‘%%

Za : $'2 :$2<1+0421}1)

:E'n - xn(’%’b + anxl)

Let Go = {H(x) = (w1, 22337, for ()2, .. 20t 3007 far(T)2]) -
T = (x9,...,%,), fir are holomorphic in a neighbourhood of the origin,
fi1(0)=0,Vi € {2,... ,n}}

It is also implicit in the proof that «; is exactly the coefficient of xqx;
on the i equation of Y} ,.

The vector fields Y; , and Z, are not necessary analytically conju-
gated. However there are sectors U C C with radius r, of angle less
than 27 and with vertex at 0 € C, such that Y; , and Z, are analytically
conjugated in U x (C"~1 0). This is the Theorem of Malmquist.

Theorem of Malmquist. [4, 1] Let H be the unique formal tansfor-
mation of type (2) that conjugates Y1, and Z,. Then there exists a
holomorphic transformation H defined in U x (C"~1,0), U a sector as
described before, such that

a) dH(Y1a) = Zo(H), in U x (C"1,0)
b) HSH in U, as x; — 0

The vector fields are analytically conjugated if and only if H; = H;
in U; NUj, Vi # j. Each holomorphic transformation H; is called a
normalizing application.

Let f be a holomorphic function in U x T', where U C C is a sector
with vertex at the origin and T is a (compact) subset of C"!.
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Definition 3 ([2, 7]). We say that the function f is assymptotic to
f(z) =>72,a-(Z)z}, a,(Z) holomorphic in T, as x; — 0 and 2z, € U
if

(3) Ve T,meN,JA,,(2)>0: |f(z)— > a(z)x]| < Ap(T)2]

In this case we write f%f in U, as 1 — 0.

Remark 7. Equation 3 is equivalent to

f(z) = ZO a(Z)x] + alen(z) | ;clll% em(z) =0
r= 1€

On the other hand, given a sector U C C with vertex at the origin
and an open subset T C C* 1, if f(z) = 3.°°, a,(%)x} € C{z}[[x1]]
there exists a holomorphic function f in U x T such that f—= f in U,
as r1 — 0.

Before we describe the sectors U where the Theorem of Malmquist
is valid we are going to present some definitions and results that will
be necessary to describe those sectors.

4. STUDY OF THE SECTORIAL ISOTROPY OF THE FORMAL NORMAL
FORM

The solutions of the formal normal form
T = a?
7 To = xo(1 + asxy)
Tp = Tp(Yn + nxy)

out of {0} x (C"~!,0) are parametrized by

2o(21) = 1% %

Tn(21) = Cpalre s
with (cg,... ,c,) € C" L,
Our objective in this subsection is to relate the solutions of Z, with
the solutions of V) ,, by sectors.
Denote by ; the argument of the eigenvalue ~; (in particular 75 = 1
and so o = 0), fori =2,... ,n.
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0

The behaviour of x;(z1) along the curve z; = re® as r — 0, for a

fixed 6, is given by the term m cos(p; — 0):
r

To (T€i0> = Cor®? ei@agef%(cos(fQ)Jri sin(—0))

xn(rew) — CnT’a" eiﬁane— "‘T‘ (cos(pn—0)+isin(epn—6))

The sector such that (xe(z1),...,z,(x1)) — (0,...,0) as r — 0 is
called attractor. This sector corresponds exactly to the points such that
cos(p;—0) > 0,Vj =2,...,n. The sector where cos(¢; —6) <0, Vj =
2,...,n, is called saddle (in this case |z;(x1)| — 00, Vj =2,... ,n).

Contrary to the case of the saddle-node in C2, if ;’— Z R, ie, if
@i # @, for some 7 # j we have sectors that are neither atractors nor
saddles. They are called mixed. The mixed sectors are those where
cos(p; — 0) cos(p; —0) < 0, for some i # j.

The directions for which there exists j such that cos(yp; — ) = 0 are

called singular directions of the solution. Those are given by 6 = gpiig,

J =2,...,n. In particular, as in our case @, = 0, § = =7 are always
singular directions of the solution.

Remark 8. For simplicity in the notation we sometimes say that 6 € U
in the sense that x = re? ¢ U.

The study of the Sectorial Isotropy of the formal normal form, for
any dimension, is done in [1] and will be important to prove Theorem
3 (there, all the theory is presented for vector fields whose linear part
is diagonal; thats why we are going to consider only vector fields with
a diagonal linear part). We will present the most important ideas and
results.

4.1. The sectors where the Theorem of Malmquist is valid.
Let U be a sector as described before. Denote by Az, (U) the group of
holomorphic transformations H : U x (C*' 0) — U x (C*',0) such
that:

a) dH(Z,) = Z.(H)
b) H is assymptotic to the identity of {0} x C"" ! asx; — 0, 21 € U

Remark 9. Ay (U) is a presheaf. We denote by Az, the sheaf associ-
ated to the presheaf.

An element H of Ay (U) is of the form ([1])
H(x) = (21,72 + ag(z1)+ Z asg(21)79, . ..,
|QI>1

o+ ano(21) + Y ang(21)2%)
Q=1

(4)
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where Q = (g2, ... ,qn), Q| =g+ ... + ¢, and 9 = 28> .. 29"
From a) it follows that ([1])

- o) @M
(5) ajo(z1) = ajgu; @V

where v = (Y2, ... ,n)-

Condition b) says that H—=Id|gyxcn— for ;1 — 0, 2y € U. This
is equivalent to ajg(z1)=0, for 27 € U, xy — 0, Vj € {2,... ,n},
vVQ e Nj .

Denote by ¢;¢g the argument of the complex number (@, ) —;. The
behaviour of a;g(71) along z; = re®, asr — 0, is given by cos(p;o—0),
(5).

The directions 6 for which cos(p;g — ) = 0 for some j and @, are
called singular directions of the sheaf Ay . In our particular case the
singular directions of the sheaf are given by GfQ = pjex5,i=2,...,n.

We should remark that if oo = ... = ¢, then the number of singular
directions of the sheaf are finite. More specifically, they coincide with
the singular directions of the solutions.

Remark 10. The singular directions of the solution are always singular
directions of the sheaf. They correspond to @Q = 0 € C* L.

To study the behaviour of the arguments of (Q,v) —v;, @ € Ng_l,
we represent all these points in the complex plane (figure 1).

Although all results are true in C", Vn, in this section all figures
are represented for the C? case. In figure 1 we are assuming that
7(=73) € R. At the end of the section we analyse the case v € RT\N.

FIGURE 1. In the left the set {go + ¢37 : (¢2,q3) € Ny x
Np}. In the right the set {gs + ¢37 — 1 : (g2, q3) € Ny X
No} U{g +g37 — 7 (g2, 43) € No X No}.

As the singular directions of the sheaf are given by QjFQ = pjo £
5, we can easily observe that the singular directions of the sheaf are
dense in the mixed sectors, while they are discrete in the attractor and
saddle sectors. The singular directions of the solution are points of
accumulation (figures 1, 2).
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Mixed SeCFQK.—- ----- Attractor sector

Saddle sector

"""" “Mixed sector
FIGURE 2. Singular directions of the sheaf A . Singular
directions are dense in the mixed sectors

We can describe now the sectors U where the Theorem of Malmquist
is valid. Let us consider a direction g in the attractor sector that is not
a singular direction of the sheaf Ay : the sectors where the Theorem
of Malmquist is valid are the sectors obtained by extending the sectors
between the angles g and ¢y + 7 till reach a singular direction of the
sheaf Az, (figure 3). Remark that those sectors have amplitude greater
than 7.

Denote each one of this sectors by U; and U,. They are well defined
because, as we said before, the singular directions of the sheaf are
discret in the attractor and in the saddle sectors.

U,

F1GURE 3. How to construct sectors where the Theorem
of Malmquist is valid

By the definition of U; and U; we have that U; N Us is the union
of two open sets U, and U_, cointained in the attractor sector and in
the saddle sector, respectively (and so Uy NU_ = ) (figure 3). The
saddle sector and the attractor sector are antipodes (this means that
S=A+m={e"a:a€ A}, where S and A represent, respectively,
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the saddle and the attractor sectors of the solution) and so are U, and

U_.

4.2. The importance of the pre-sheaves Ay (U,) and Ay (U-).
As we have already said, there exists only one element H € C{Z}[[z1]]
of type (2) conjugating Y; , and Z,.

Proposition 8. [1] Let Uy and Uy be the sectors where the Theorem
of Malmquist is valid. Let Hy and Hs be the normalizing applications
defined in Uy and Us, respectively, i.e., H;, i = 1,2, are holomorphic
applications defined in U; x (C"71,0) and such that

a) de(X) = Za(Hl>

b) H,L;>H m Ul X (Cn—l,o)
Then, H; o H; ', i # j belongs to Ay, (Uy) and Ay, (U-).

Proof. We know that Uy N U = Uy UU_, where U, and U_ are open
sets contained in the attractor and saddle sectors, respectively.

The change of coordinates in U, and U_, given by H,; o H; ', i # j,
verifies

Hjo H[liu":[o H'=1d
and
d(Hj o Hi ') (Zo)(Hjo H )™
=dH; o dH; " (Zo)H; 0 H;'!
:de(X)Hj*l
=7,

Thus the result follows.
O

Remark 11. The holomorphic functions Hy o H; ' and H; o Hy ' define
the gluing of the leaves. As H, o H, ' is the inverse of Hy 0 H; ', it is
enought to analyse the behaviour of only one of them.

Let g, = Hyo H; '|y, and g_ = Hyo Hy '|y_. The functions g, and
g_ are both the identity iff Hy o H; ' is the identity in U, and in U_.
This means that H; = Hy in U; N U, and so, there is a holomorphic
function defined in U; U U, that coincide with Hy in U; and with Hy
in UQ.

S0, the vector field Y , is analytically conjugated to its formal nor-
mal form Z, iff g, and g_ are both the identity function.

We know that Hy o H; ' has the form (4).

H(z) = (21,2 + ag(z1)+ Z axg(11)79, ...,
lQI>1

o+ ano(21) + Y | ang(21)2%)
Q=1
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where
_ oy @)=y
ajq(x1) = ajqu, (@e)=as) =
As we said before, the behaviour of ajq(z;) along z; = re, as

r — 0, is given by cos(pjg — 6). So, if U and V' are two open sectors
contained in a sector not containing singular directions of the sheaf
then Az, (U) = Az, (V) because cos(¢;o — 6) has the same sign for all
j=2,....,n,QeZ |Q>2and d € UUV.

4.3. Gluing of the leaves. To know how the gluing of the leaves is
done, is important to know the behaviour of the applications (4) in
AZa(U—I—) and AZQ(U—)~

Proposition 9. If ajg # 0 in U then cos(pjo —0) <0, V0 : re? € U.

Proof. We must have a;q(z;)——0 as z; — 0. Studing z; = re', for 0
fixed and r — 0, the behaviour of a;g(x1) is given by the real part of
(@Q,7) =

x1
R€((Q77) B Vj) _ |(Q7’y) - /le COS(QOJ'Q N 6)
s} T
Suppose that a;g # 0. If
(Q,7) — il

30 € U : cos(pjo —0) >0 = cos(pjg — 0) = Lo

= a;q(z)7/—0
0

Proposition 10. [1] There exists duality between Az, (U) and Az (U+
), where U + 7 = {e™u : u € U}, in the following sense: if a;q # 0 in
U then ajg =0 in U + .

Remark 12. In particular there exists duality between Az, (U,) and
Az, (U-).

Proof. By proposition 9, if ajg # 0 in U then cos(p,o—0) <0, V0 € U.

cos(pjo —0) <0,V0 € U = cos(pjo — (0+m) >0,V €U
= cos(pjo—n) >0,VneU+7n1 (n=0+m)
(Q,7) —
r

= cos(pjo — 1) = +00
= ajo(e™r) >0 a;o=0 in U+n
Thus ajo =0in U + .
U

We only have to know the behaviour of the applications in Az, (Uy)
and Az (U-), because gy € Az (Uy) and g- € Az (U-). By the
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duality property we only need to know the constants that can be non
zero in Ay (Uy), i.e., we need to know for which (j,Q)

cos(pjo—0) <0 , Vo:re® cU, (reRY)
The next result expresses how the gluing of the leaves is done.

Proposition 11. [1] Take an element of the sheaf Az, .

H(x) = (z1, 22 + ago(w1)+ Z asg(11)79, . ..,
Q=1

o+ ano(21) + Y ang(21)Z%)
|QI>1

with ajg(x1) given by (5). Thus H transforms the solution, of the
diferential equation associated to the formal normal form, given by

1
xo(x1) = coxf?e =1

_In

Tn(x1) = cpaime =
into the solution, of the same equation, given by

1
xo(x1) = (c2 + ag + Z\Q|21 aggc?)xi e =

In
o, _dn
Tn(71) = (Cn 4 @no + 32 051 angc?)zime =

where ¢ = cf? ... cin.

Proof. Consider the solution

xo(r1) = czxime*é

zp(z1) = cnx?”e_l_?

Thus

H(x1,22(x1), ..., 20(21))

_1
= (131,621'?26 1 4 ago(Il) + Z CLQQ([El)C{_](Ztl)Q7 o,
|QI>1
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_Qn)
where 7(21)9 = zo(21)®2 ... 2, (7)™ = ch(lQ’a)e #. Thus substi-

tuting the expression of a;qg(x;) in the last expression we obtain

_1 _a
= (z1,c027%€ *1 4 agyxi?e 1 +

_ _ (@v)=v2 _ @) _n
E (50T (Qa)—az) ;= CngQ’a)e L eaal2e T+
Q=1
_n _ _ (@v)=n @)
anor§me T+ Y apquy (G Te T (@O
Q=1

= (21, (o + ag + Z GQQCQ)Z'?QG_%, ce
Q[>1
(Cn + ano + Z achQ)x‘f"e_%)
|QI>1

which represents the solution given by

_1
a(w1) = (€2 + a0 + 30 g5 G2qc?)7i%e

_In
Tp(r1) = (Cn + ano + Z\Q|21 angc?)aire =
[

In the sector Uy, each ¢ = (cy,... ,¢,) € (C"1 0) determines a leaf
of the foliation of the formal normal form in Z, |y, xcn-1,0), i-e., ¢ works
like a parametrization of the leaves of Z, |y, x(cr-1,0). So, as Uj is a
sector that does not contain singular directions of the sheaf we can
identify Az, (U;):

{1 (@1, 22+ ago(1) + Y | a2g(21)T9, o, T + ano(11) + D ng(1)79)}
|QI>1 |QI>1

with the set of the transformations, in the space of the leaves, given by

{c— (e + ag + Z aQQcQ, ey CpFane + Z achQ)}
Q=1 |QI>1

and also denoted by Az, (Us).

More specificaly, the presheaf Ay, (U,) expresses that the leaf of
Za|u, x(cn—1,0) parametrized by (ca, . .. , ¢, ) is taken into the leaf parame-
trized by (cg + ago + ZIQ\ZI as0C?, ... Cn + Qo + Z‘lel angc?). The
same happens to the presheaf Ay, (U-).

We should remark that the elements Az, (U-) are all tangent to the
identity, i.e, the terms a;y are equal to 0 in U_ for all 1 = 2,...  n.
This is so by the definition of the saddle sector: cos(p; —#) < 0 for all
6 € S; as pjo = arg(—y;) = arg(y;) + 7 = ¢; + 7 then cos(pjo—6) > 0
for all 0 € S and so a;o = 0 in S from proposition 9.
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4.4. Determination of Ay (U,) for a given sector U,. In this
subsection we are going to present how to determine Ay (U,) for a
given sector U,.

We will explain here only the C? case. In this case we can determine
explicitly Az, (U) for any sector U.

The C" case, with n > 4, will be explained only in the next section.

4.4.1. The v ¢ R case. We are going to explain the case 0 < arg(y) <
% (v = 73). The other cases are similar, as we will see later, geomet-
rically (there exist differences only in the inequalities and in the signs
of 7).

The first step is to choose the sectors U; and U, or, equivalently, the
sectors U_ and U, we are going to work on.

Here, there is a difference between the case v ¢ R and the case
v € RT\ N, as we will see later.

The attractor and saddle sectors increase as ¢3 (3 = argument of
i—;) decreases.

We represent again the complex numbers ¢ +¢3v—1 and ¢o+q3y—7y
in the complex plane (figure 4).

¢ 204
o (o) (o) (o) o
¢ 203
o o o (o) (o)
¢ o¢ 24§¢ 333,
¢ 201
o o o o o
¢ 200 ¢ 24(f¢ 331
¢ ao0|® 301 9 302 b 303 ¢ 304 ¢ 305
o o o o o o

FIGURE 4. Theset {j+ky—1:(j,k) € NoxNo}U{j+
ky —~: (j,k) € Ng x No}. The term ¢;j; denotes the
argument of the corresponding point j + kv — ¢, where
g=1ifi=2and ¢ =~ ifi=3.

Note that
T T ‘ ~ N
(6) P201 — ) = @310 + 5 or equivalently 65,, = 053,
because

o1 = arg(y —1) =arg(—(1 —=7)) =arg(l =) + 7 = @310+ 7
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We also have that

™ ™ T T N
arg(y) — 5 <P+ T 5 <W0j T 5 <P T 5 = 0201
(7)
+ 4 T m™m .
:9310290310+§ <903j0+§ <903(j+1)0+§ < 5 Vj>2
Figure 5 expresses these inequalities geometrically
------- 9;20 +
eSZI.O
e2_01:6;10
________ 9;_02
// 9203
""""""" — Biik

FIGURE 5. Singular directions of Ay,

The value of asg; can be non zero, in the attractor sector, for all 6

such that

™

™ _
arg(y) — 5 <0 < By0, = pao1 — 5

because cos(pa0 — 0) < 0, or equivalently, because |pz91 — 60| > F for
those values of 0. It is very easy to see this because 05y = 201 — 5
(figures 4, 5).

As 05, = a0k — 5, aook, for & > 2, is non zero, in the attractor
sector, only for # such that

™ _
arg(7y) — ) <0 <Oy

Denote by U, the sector, with vertex at the origin and radius r,
whose elements have arguments between 65, and 05,,. In U, as, = 0,
vk > 2.

By (6) and (7) it is easy to see that

cos(ipsjo—0) >0 , VO:re? €U,

SO, as;o = 0 in U+.

Consider now (7, k) with j # 0 and k # 0. For each (j, k) we need to
determine the points in U, whose argument 6 satisfy cos(¢;;, —0) < 0.
Geometrically it is easy to verify that

gk #0 = cos(pijr —6) >0
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I Attractor sector

FIGURE 6

i.e., a;jr = 01if j # 0 and k # 0 (figure 6).

Remark that K = {j +ky—1:jk #0yU{j+ ky—~: jk # 0}
is contained in the angular sector defined by the points 1 and v and
with vertex at 0. The arguments of the extrema of K are 0 and 3.
We are assuming 0 < @3 < 7, then the arguments of the extrema of
the attractor sector are w3 — % and 7. So [y, — 0] < T for all (4, k)
with jk # 0 and 0 € [p3 — 5, %] D Uy. Furthermore, |p;j; — 6] can

272
only assume the value § when 6 coincides with the singular directions
of the solution: ¢ — 7 and 7.
As

T
cos(pijr —0) >0 & oy —0] < 3

azjr and as;, are zero in any sector contained in the attractor sector,
for all (j, k) with jk # 0. In particular they are zero in U,. The same
argument is valid for the cases § < p3 < 7, —m < 3 < —7 and
7 <3 <0, as figure 9 ilustrates.

In this way we conclude that
AZa(U+) = {(a:, Y, Z) = (:v,y + ag00 + a2012, 2 + agoo}-

Contrary to the C? case, there is no sector U, contained in the at-
tractor sector , limited by singular directions of the sheaf and with no
singular direction of the sheaf in its interior, such that the elements of
Az, (U) are constitued only by the sum of the identity with a transla-
tion.

Defined U, we have that U_ = U, + 7 and so the sectors U; and Us
are well defined up to a change between them (figure 7).

We have already said that there is duality between Az (Uy) and
AZO‘(U,). So

Az (U-) ={(z,y,2) — (z,y + Z agny’ 2%, 2 + Z asry’ 27}
jH+E>1 J+k>1
(4,k)#(1,0) (4,k)#(0,1)
(4,k)#(0,1)
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Uy

FiGure 7. The sectors Uy, Uy, U_ and U,

The constructions made before are valid in the other cases: m™ <
T s

arg(y) < 5, =5 < arg(y) < 0 and —m < arg(y) < —7%, because

Y01 = @310 + 7 in all cases (figures 8 and 9).

4.4.2. The v € Rt \ N case. Suppose now that v € Rt \ N. Then
w9 = @3 = 0 and, consequently, the singular directions of the solution
are given by 6 = 7.

The argument of the complex numbers j + kv — 1 and 7 + kv —
are equal to zero or w. So, the singular directions of the sheaf coincide
with the singular directions of the solution: § = +7.

In this way the attractor sector is given by {x : |z| < r A R(z) > 0}
and the saddle sector is given by {z : |z| < r A R(z) < 0}. We can
choose

Uy =B(0,r)\ {z: R(z) =0A(x) >0}
and
Uy =B(0,r)\ {z: R(z) =0A3(x) <0}

Then, U, can be the attractor sector and U_ the saddle sector.

We represent the points j + kv — 1 and j + kv — v in figure 10. We
have to distinguish between the cases v > 1l and 0 <y < 1. If v > 1
let [ € N be such that [ <y <l+1,andif 0 <y < 1let p € N be such
that py <1 < (p+ 1)7.

The coeficients a;j; of Az, (UL) can be non zero if and only if ¢, is
equal to 7.

So, if ¥ > 1 we have

1
AZa(U+) = {(C; d) = (C + ag00, d + aszp + Z a3jOCj)}

=1
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o o o o o l o o o o o o
o o o o o o o o o o
¢ 007 =
o 242; 333o o¢ 222;¢ 31%
¢ 201
o o o o o o o o o o o
¢goo 92070531 020531
¢ 200
¢ 300 ¢ 301 ¢ 302 ¢ 303 ¢ 304 ¢ 305 ¢ 300 ¢ 301 ¢ 302 ¢ 303 ¢ 304 ¢ 305
o [} o [} o [} o o o o o o
0 <arg(y) < /2 /2 <arg(y) < T

$ 3009301 ¢ 302 9303 P304 P05 D300 D301 D302 Paos $ 304 D305
o o o o o (o} o o (o] o o o
¢200 ¢24o:¢331 ¢24o:¢ 331
—O—
04
o o o o o o o [} [} o o
41202 °¢ 2422‘1’3330 °¢ 222:4’3130
o (o] o o o o (o] o o (o]
o o o o o T o o (o} o (o} (o}

-Tt/2 <arg(y) < 0 -t <arg(y) < -1/2
FIGURE 8
and
Az, (U-) ={(c,d) — (c+ Z agrcd* d + Z aspd®)}
Jt+k=>1 J+k>1
(4,k)#(0,1)

(j?k)¢(170)7"' 7(l70)

If 0 < v < 1 the presheaves are given by

p
Az, (Us) = {(c,d) = (c+ axo + Y _ as;d’,d + aze)}

Jj=1

and

Az (UZ) = {(c,d) — (c+ > agpdd* d+ Y agppddh)}
j+k>1 Jjt+k>1
(k) (1,0)
()#(0,1),...,(0.0)
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0+11/2
e 3\ Attractor sector

Attractor sector

A3 ttractor sector
0-11/2
FIGURE 9
I —y| | +1-y
I R I
—IV v 2y sy 1 02 3 v-1 [+
py-1] (p+1)y-1
X
N R
-!I. y-1 2y-1 3y-1 _ly \Il 2y 3y L |<Y:IL (k+1)y

FiGure 10. The complex numbers j + kv — 1 and j +
kv —~, for (4,k) € Ng x Np.

5. SEMI-COMPLETE SADDLE-NODE FOLIATIONS IN C"

We return now to the study of the semi-complete saddle-node folia-
tions.

We are going to treat first the case f = k € C. By proposition 3 it
is sufficient to study the case f = 1.
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We can easily verify that the x;-axis (that corresponds to the mani-
fold {z; = 0,7 # i}) is an invariant manifold of the vector field for all
1 =2,...,n. We do not know if the z-axis is an invariant manifold,
nor if there is a holomorphic invariant manifold tangent to the x-axis.

However we have necessary and sufficient conditions for the existence
of that invariant manifold.

Proposition 12. A vector field belonging to the Go-orbit of Yia has
wmvariant central manifold if and only if the associated sheaf has no
translation, i.e, iff a;0.0 =0 foralli=2,... ,n.

Proof. Suppose that a;g o =0foralli =2 ... n.
Let L be the leaf containing H;*(U; \ {0} x {0,...,0}), where H;
is the normalizing application.

Consider the curve c(t) = (re*™® 0,...,0) where r is such that
Hl(c(())) = r € Uy and let ¢p be its lift to L. As Hy(L N (U; X
(C*1)0))) € {x; = 0,i = 2,... ,n}, the leaf L is parametrized by

0,...,0).

As TI IT,(c(3)) € U- and the application g_ is tangent to the identity
(0,...,0)1is taken into (0,...,0) by g_. The leaf L is also parametrized
by (0 .,0) in Us; this means that Hy(L N (Uy x (C"71,0))) C {x; =
0,i= 2,... ,n}.

On the other hand, II;(c(1)) = II;(c.(0)) belongs to U;. So g4
takes (0,...,0) into (asg..0,--- ,0n0.0)- As, by hypothesis, a;. o =0,
for all i = 2,... ,n, we have that Ay,  (U;) and Ay, ,(U-) restricted to
the leaf {x; = 0,i=2,... ,n} is given by

(,0,...,0) — (2,0,...,0)

i.e., is the identity.

Thus, as {x; =0,i = 2,... ,n} is a holomorphic central manifold for
the formal normal form, the leaf L is a holomorphic central manifold
for Y1 4.

Suppose now that Y; , has a holomorphic central invariant manifold.
Denote this leaf by L.

Consider the image of L by H;. The normalizing application H; is
defined in U; x (C"1,0).

However the intersection of U; with the saddle sector is not empty.
As in the formal normal form the only leaf in U; x (C"~!,0) such that
zi(z1) — 0as x; — 0, for all i € {2,... ,n}, is the invariant manifold
{z; =0,i=2,... ,n} we have that

Hl(Lﬂ (Ul X (Cn_l,()))) = Ul X {331 = O,Z = 2,. .. ,n}
In the same way we can deduce that
HQ(LQ <U2 X ((Cn_l,()))) =U; X {.TZ = O,Z = 2,. .. ,n}

and so we can conclude that (asg o, .. ,an0.0) = (0,...,0).
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The next lemma enable us to guarantee that semi-completude implies
the existence of a holomorphic invariant manifold tangent to the x-
axis.

Lemma 2. Let X be a field of type Y1, and suppose that X is semi-
complete in a neighbourhood of its isolated singularity. Then there is
no translation in the sheaf, i.e., a;y.0=0,Vi=2,... ,n.

Proof. We can write X as

l:1 = Jf%
.fg = 1‘2(1 + 042131) + IlRQ(l’)

(8)

Ty = Tn(Yn + 1) + 21 Ry ()

a.l’i
to (8).

We have that, in a neighbourhood of the origin, 1I; is transverse to
the leaves of F, except to those contained in the invariant manifold
{.2131 = 0}

Consider the curve c(t) = (re*™,0,... ,0),with ¢ € [0,1] and r such
that r € U,. Let L be the leaf containing H; *(U; \ {0} x {(0,...,0)}),
where H; is the normalizing application, and ¢z, be the lift of the curve
c to the leaf L.

Denoting by dT7, the 1-form such that d77,(X) = 1 we have that

d
/ T, = [ =L =0
cr, c T

As the vector field is semi-complete we conclude that the curve ¢, is
closed.

As H{Y (U \ {0} x {(0,...,0)}) C L, H(LN (U; x (C"1,0))) C
U; x (C*1,0) is given by

where lo=0foralli=2,... n. LetF be the foliation associated

xo(x1) =0
(9) :
xp(z1) =0

and so the leaf H;(L N (U; x (C"1,0))) is parametrized by (0, ... ,0)
9).

As I (c(0)) € Uy, and U- = Uy + 7, Ii(c(3)) € U—. The appli-
cation g_ is tangent to the identity so, (0,...,0) is transformed into
(0,...,0), by g_. This means that Ho(L N (Uy x (C*1,0))) C {x; =
0,i=2....n}

Then, by g4, (0,...,0) is taken into (ago._o,... ,Gno.0). As cp is
closed there is no translation, i.e, (azo..0,@no..0) = (0,...,0).

[
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In this result there is a great difference between the C? and C? cases.
In C?, g, is the identity plus a translation. So, the semi-completude of
X implies that g, is the identity. Here this is not possible. We do not
still know if the semi-completude of X implies that g, is the identity:
for the set U, choosen in the last section, lemma 2 allows only to say
that, if v € R, g, is of type

(y,2) = (y + az012, 2).

Lemma 3. Let X be a semi-complete vector field as in lemma 2. Then
the holonomy relative to the invariant manifold tangent to the xi-axis
15 the identity.

Proof. Consider the curve c(t) = (re*™* 0,...,0) such that r € U_,
r sufficiently close to 0, and let ¢y be the lift of ¢ to the invariant
manifold tangent to the xj-axis (whose existence is guaranteed in the
last lemma).

Let ¥ be the transversal section to the curve ¢y at ¢o(0) given by
{co(0) + (0,72,... ,7) : 0 < 30 5 |I|* < e} and ¢, be the lift of ¢ to
the leaf through the point ¢o(0) + (0, 72,... ,7,) € X. Then

As X is semi-complete we conclude that ¢y, is closed. But ¢y, is closed for
all (72,...,7,) with norm less then . This means that the holonomy
is the identity.

O

The next proposition is valid for C*, but is first represented for C?
because it is much easier.

Proposition 13. Let X be a vector field, in C3, of type Y1 o. Suppose
that X has a holomorphic invariant manifold tangent to the x1-axis and
the holonomy relative to that invariant manifold is the identity. Then
X s analytically conjugated to its formal normal form.

Proof. To prove that X is analytically conjugated to its formal normal
form we need to prove that g_ and g, are the identity or, equivalently,
that ag;, = asjr, = 0 for all (5, k) € Ny x Np.

Denote (x1, z9, x3) by (x,y, 2) and (ag, as) by (a, ).

By hypothesis, X has an invariant manifold tangent to the z-axis
and the holonomy relative to this invariant manifold is the identity.

We are going to translate this in terms of the presheaves Az, ,(U,)
and Az, ,(U-).

We treat first the case v(= 73) ¢ R. In this case, by proposition 12,
we have that

Az, ,(Uy) :{(y, 2) = (y + aam 2, 2)}
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and
Az, ,(U-) : {(y,2) — (y + Z asjuy’ 2", % + Z asry’ 2"}
jHk>1 J+k>1
(d,k)#(1,0) (4,k)#(0,1)
(4,k)7(0,1)

Consider the curve c(t) = (re*™ 0,0), t € [0,1], with r sufficiently
close to zero and such that r € U_.

Let L be the invariant manifold tangent to the z-axis and ¢y, the lift
of ¢ to L. For each (7,n) such that 0 < |7|* + |n|? < € let L., be the
leaf through c.(0) + (0,7,7n) and cr,, the lift of ¢ to L.

The image of the leaf L, by H, is given by

y(z) = ca®e s

2(z) = dafe =
in Uy x C? (where ¢ = ¢(7,n) and d = d(7,7)), and so has coordinates
(¢,d) € C2. By proposition 12, ¢(0,0) = 0 = d(0,0). As IT;(c(0)) € U_
then IT; (c(3)) € Uy. The change of the leaves in U is of the type

(C, d) — (C + (Igold, d)

(as the translation is zero). So the image of L., by H; corresponds to
the leaf of the formal normal form with coordinates (¢ + agg1d, d), i.e.,
whose solution is given by

in U1 X (Cz.
As Iy (¢(1)) = II;(c(0)) € U- and in U_ the change of the leaves is
given by

(C, d) — (C + Z agjkcjdk, d + Z agjkcjdk)

j+k>1 G4k>1
(3,k)#(1,0) (7,k)#(0,1)
(7,k)#(0,1)

the image by H, of the leaf L., through c;_, (1) is the leaf with coor-
dinates

(C + a201d + Z agjk(c + CLQOld)jdk, d+ Z Clgjk(c + a201d)jdk>

jH+E>1 J+k>1
(4,k)#(1,0) (4,k)#(0,1)
(4,k)#(0,1)

But the holonomy is the identity. This means that ¢ (0) = ¢, (1) and,
consequently,

c=c+ asynd—+ Z jHk>1 a2jk(C + azold)jdk
(4,k)#(1,0)
(4,k)#(0,1) ,
d=d+Y jir>1 asjr(c+ agnd)idF
(4,k)#(0,1)
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asnd + Y jrr>1 agip(c + agrd)d® =0
(4,%)#(1,0)
A (4,k)#(0,1)

> ket agjr(c+ asnd)idt =0
(4,k)#(0,1)

V(c,d) € B(0,e1), with e, sufficiently small (because ¢(0,0) = 0 =
d(0,0)).

A series is zero in a small ball centered at the origin iff the coeficients
of the powers of the variables are all zero. In the first equation, the
coefficient of the term d (d = c°d') is asg1, thus asy; = 0. In this way,
the system reduces to

Do k>l agpcld® =0
(4,k)#(1,0)
(4,k)#(0,1)

>0 k1 agircldt =0
(k) £(0,1)

Each equation of the system is a series in two variables. Those
series are independent, in the sense that coefficients of each series are
independent of the other. So, as the series are zero in a small ball
centered at the origin we conclude that asj; = 0 and as;, = 0, V(j, k) €
Ny x Ny. So, in this case, g, =0 and g_ = 0.

Suppose now that v € Rt \ N. We will only analize the case v > 1.
The case 0 < v < 1 is analogous.

If v > 1 we know that, by g4

(c;d) = (c;d+ ) agjoc’)

j=1

When we return back to ¢r(1), by g_

l l
(C7 d -+ Z CL3j()Cj) — (C + Z agjkcj(d + Z U,gpocp)k,

j=1 JH+k>1 p=1
l l
d+ Z agpon + Z (lgjkcj(d + Z agpocp)k)
p=1 Jj+k>1 p=1
(4,k)#(0,1)

(7:F)#(1,0),...,(1,0)

As the holonomy is the identity

Zj+k21 ankcj(d + 22:1 6L?)pocp)k =0

Yoot 00 + Y et agpc (d+ Y agoc)t =0
(4,k)#(0,1)
(j?k)¢(130)7"' 7(l70)
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In the second equation the coeficient of ¢(= c'd®) is equal to aso.
Thus az;p = 0 and the equation is reduced to

l l
Z (lgpocp + Z agjkcj (d + Z (lgpocp)k =0
p=2

jH+k>1 p=2

(7,k)#(0,1)
(7,k)#(1,0),...,(1,0)

In the same way, because of the restrictions imposed on the second
sum, the coefficient of ¢? is equal to ass. So azy = 0. Proceeding
successively in the same manner, we can deduce that as,y = 0, Vp =
1,...,l. Thus the system, is reduced to

j gk _
D k1 G2grc’d” =0

Yo k>l azjrd” =0
(4,k)7#(0,1)
(4,k)#(1,0),...,(1,0)

and, consequently, asjr = asjr = 0, V(j,k) € Ny x Ny, i.e., g+ =0 and
g_=0.
]

We are going to analyse now what happens in the C" case, for n > 4.

First of all I am going to explain, geometrically, how to determine
Az, (Uy) for a given U,

We represent the set of complex numbers {(Q,v) —v; :i=2,... ,n,
Q € NJ7'}. We can assume that 0 = arg(y;) < ... < arg(y,) < 7.

Denote by K the sector with vertex at the origin whose elements
have arguments between 0 = arg(y2) and arg(7y,).

Then we choose two straight lines, not contained in K, with argu-
ments equal to ¢;q, for some j = 2,... ,n and Q) € Ny ', and such
that the two sectors defined by those straight lines do not contain any
complex number of the type (Q,~) — v; (figure 11).

Fix one of those sectors: U. Then, if U + 7 is contained in the
attractor sector we take U, = U + 7, otherwise we take Uy = U — 7

The constants ajg that can be non zero in Ay, (Uy) are those such
that (Q),y) —~; is on the opposite side of U relativelly to the choosen
straight lines. If ¢, is over the boundary of U N (U + ) N { half plane
defined by the bisectrix of U not containing U, } then a;q can also be
non zero in U,. For example, if we look to figure 11, on the left case
Az, (Uy) is given by

{(y,2) = (y + ag0 + a2012, 2 + azoo) }
while on the right one Az (U, ) is given by

{(y,2) = (y + ag0 + az012 + A9022” + ag032°, 2 + as00) }-



34 HELENA REIS

40
o o o o (o] T o o [¢] [¢] [¢] o
0
o o o o o o o o o [¢] o
0 od) 24§¢ 333 ¢g ) od’ 22224’ 313 o
10 ¢ 21
o o o o ] o o o o o o
¢ 200 ¢ 24o:¢ 331 _¢(2:00 ¢ 24o=¢ 331
¢300 10 ¢320 ¢330 ¢340 ¢350 ¢ 0 ¢310 ¢320 ¢330 ¢340 ¢350
o o o o (o) (e} o o o o (o]
0 <arg(y) < 1/2 /2 <arg(y) <Tt
FIiGURE 11

In the general case we can write Az, (Uy) as
k

ko n
{c— (ca + Z 20,,¢%% ... cp + Z AnQ,, €}
Jj=1 J=1
where Q;;, for j = 1,... ,k; are all the (n — 1)-tuples in Nj~' such
that (Qij,7) — v € R where R is the sector { half plane defined by the
bisectrix of U not containing U, }.
This construction is valid for any dimension, except when 0 = arg(z)
= ... =arg(7,). In this case we proceed as in the subsubsection 4.4.2:
the constants a;g that can be non zero in Ay, (U4 ) are those such that

arg((@,7) — ) = .
We first demonstrate a property of the elements a;q.

Proposition 14. Suppose that (Q),v) —~; € R. Then (P,v)—~; € R,
VP :p; < ¢

Remark 13. As we are looking for complex numbers not in K, we
should remark that (Q),~) —v; € K implies that ¢; = 0.

Proof. We can easily prove this result geometrically. Suppose that
(Qa '7) —7 € R.

(Q,7) ==L+ (@Q—P),y)—7v=(Py)—v—(Q—P")
Thus
(Py) =7 =(Q,7) =7 — (@ — P,7)

But (Q,7) —v; € R, by hypothesis, and Q — P € Nj~' because
pi < q;- As to an element of R we are subtracting a linear positive
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combination of the eigenvalues (i.e., an element of K), we still remain
in R (figure 12).

\

FIGURE 12. The elements (P,7) — 7; belongs to the
lighter shaded region, VP : p; < q;, Vi =2,...n.

0 <arg(y) < /2 /2 <arg(y) < T

0J

Proposition 15. Let X be a vector field of type Y1 . Suppose that X
has a holomorphic invariant manifold tangent to the xy-axis and the
holonomy relative to that invariant manifold is the identity. Then X
1s analytically conjugated to its formal normal form.

Proof. The idea of the proof is to use induction over the degree of @,
i.e., over |Q).

More specifically by proposition 12 we know that a;jo = 0 for all
Jj=2,...,n, with @ = 0. We will prove that if VQ : |Q| < ¢ we
have a;g = 0, Vi : a;go € Az, (Uy), then VQ : |Q| = ¢ + 1 we also have
aig =0, Vi:ag €Az, (Us).

Abusing notation, we say that a;qg € Az, (Uy) if a;o can be non zero
n U+7 Le., (Qaﬁ)/) — 7% € R.

Consider the curve c(t) = (re?™,0,...,0), t € [0,1], with r suffi-
ciently close to zero and such that r € U_.

For each 7 = (7y, ... ,7,) sufficiently close to 0 € C"~1, let L, be the
leaf through ¢, (0) + (0, 7) where ¢, is the lift of ¢ to the invariant leaf
tangent to the zi-axis, L. Denote by ¢, the lift of ¢ to the leaf L..

The image of the leaf L, by Hj has coordinates ¢ = (ca,... ,¢,) €
C™ 1. In particular, by the proof of proposition 12, the leaf L = Ly is
parametrized by 0 € C* 1.

As II1(c-(0)) € U_ then IT;(c,(3)) € Uy. The change of the leaves in
U,, g+, is polynomial. The image of the same leaf by H; corresponds to
the leaf of the formal normal form with coordinates g, (c) in U; x C*~1.
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As IIi(e-(1)) =111 (e-(0)) € U- and in U_ the change of the leaves is
given by g_, the image of the leaf through ¢, (1) by Hj is the leaf with
coordinates g_(g4(c)).

But the holonomy is the identity. This means that ¢.(0) = ¢.(1)
and, consequently, g_(g4(c)) = id.

As X has a holomorphic invariant manifold tangent to the z;-axis,
by proposition 12, a;o = 0 in U,.. So the induction hypothesis is verified
for |Q = 0.

Suppose that VQ : |Q| < ¢ we have a;g = 0, Vi : a9 € Az, (Uy).
Then g, is of the type

ko kn
(627 s ,Cn) = (62 + Z a’2Q2jCQ2ju sy Ot Z ananCan)
=1 =1

where [Q;;| > q¢+1,Vi=2,... ,;nand 1 <j <k,
With this supposition, the composition g_ o g, is given by

k2 n k)z
cr (e + Z 42Q2; O + Z 42Q H<C" + Z aiQijcQU)qi’
i=2 j=1

Jj=1 QFe1
Q:(Qy)—72¢R
N Z UnQ,, @i 4 Z anQ 1_[(0Z + Z aiQ,; cWis)ai)
j=1 QFen—1 i=2 j=1
Q:(Qy)—méR
As it must be the identity we have:
(10)
Zjil A2Qy; 9+ Z QFe1 a2Q H?:Q(Ci + Zj:l @iQ;; CQ”)% =0
Q:(Q)—72¢R
kn ; k'i 3
j=1 AnQn; i 4 Y Q#ens  (nQ H?=2<Ci + Zj:l CL@'C»QijCQ”)qZ =0
Q:(Qv)—méR
Let Qo be such that |Qo] = ¢+ 1 and (Qo,7) — v € R for some
i=2,...,n. We look for the coefficient of ¢?° in the (i — 1) equation

of the system (10).

The term c?° appears in HZZQ(CP+Z§21 apQ,; 0P if (qo, ... qn) =
ei—1 0r (q2,...,qn) = Qo. However, as (Qo,v) — v € R, both (n — 1)-
tuples are forbidden to take in the second sum.

We can ask if there are other hypothesis to obtain a constant times
¢ in [0 y(c, + Z?il apQ,;¢97)%. As the terms of Z?”Zl apQ,,; 07
involves only monomials of order greater or equal to ¢ + 1, the only
chance is the existence of j # i such that (Qo,y) —7; € R: in this case
we should take @ = e;_.

Suppose that (Qo,7y) — v = 0 only for k =i and k = j.

If we look to the (j —1)"™ equation we can obtain ¢?° in III_,(c, +

Z?Zl apQ,; @i ) if we take Q = e;_;.
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However (e;_1,7) — v = v; — v and (e;_1,7) —vj = 7 — 7, 1.e., one
is symmetrical of the other. As the complement of U U (U + ) is the
union of two sectors of amplitude smaller than 7 and neither U nor
U + 7 contain singular directions, we have that one and exactly one of
the two numbers belongs to R.

Suppose that (ej_1,7) — v € R. Then () = e;_; is forbidden in the
second sum of the (i — 1) equation, and so the coefficient of ¢ is
a;Q,- Thus a;g, must be 0.

Suppose that (e;_1,7) —v; € R. By the argument described above,
the coefficient of ¢?0 in the (j — 1) equation is ajg, and consequently
a;q, is zero. In this way the term a;q,c?° does not appear in the second
sum of the (i — 1)™ equation. So a;q, is also zero.

Ast{(Q,v)—7i : (Q,7)— € R for some i = 2,... ,n} is finite, this
process stops in a finite number of steps. So we proved that g, = id.

To prove that g_ is also the identity function it is sufficient to see
that the last system reduces to

Oey  Q2CY ...cn =0
QR:Qyy)—2¢R

Qten .y AnQCy ...cln =0
Q:(Q)—méR
and consequently a;o =0, Vi = 2,... ,n and V@) € Ny.

We have supposed that £{i : (Qo,7) — v = 0} = 2, which is not
necessarily true, specialy for great dimensions. Let us see how to solve
the problem when #{i : (Qo,v) — 7 =0} > 2.

Let us consider the sector U, defined before, as close to the real axis
as possible.

Suppose that {i : (Qo,7) — v = 0} = {i1,42,... i} wWith i} < ip <
... < 1. We want to prove that a,g, = 0, Vi = i1,... , 1.

The coefficient of ¢?° on the (i; — 1) equation of the system (10) is
given by

ai;Qo T Z Qije;,—1QiQo
I#j
li(eg—1,7) =i €R
and is equal to zero. So we have a system of k equations in £ unknowns:
ai;Q0, j = 1,... k. Denote by B = (b;;) the matrix associated to this
new system.
We can assume that

S(7i) < S(7i) <0 <S8 ()

and that if 3(v;;) = S(vi,,,) then R(v;;) < R(v;,,,). If this is not true
we can reorder the variables and the lines of the system in order to
have the inequality given above.
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We have already seen that (e;;—1,7) =i, = vi; — Vir> (€4-1,7) —Vi; =
Vi, — 7i; and only one of them belongs to R. As Yi; — %, € R means
that e;,_1 does not belong to the second sum of the (i; — 1) equation
of system (10), if 7;, — 3, € R then b;; = 0.

By hypothesis

i >d; and () > S(y;) = Sy — ) >0
As we can choose U so close to the real axis as possible and #{i :
(Qo,7y) — v = 0} is finite, we can say that
>t = Yy~ ER
ie.,
wWw>i = Y,V E€R = b;=0

If S(vi,) = () for 4 > 4 then (v, — ;) = 0. However R(y;,) >
R(yi;). Thus R(y;, —vi,) > 0 and R(v;; — ;) < 0, which means that
")/ij — V4 € R. So blj =0.

We have just proved that the matrix B is of the form

1 aii8i2—1 ai1€i3—1 s aiQGik—l
O 1 aizeis_l Ce ai2€ik—1
B oy O 0 1 “ e a/z'geik71
0 0 0 . 1
and so we can conclude that a;,o, =0,V =1,... k.

The induction over |@Q| stops in a finite number of steps. So g, = id.
We prove that g_ is also the identity in the same way: we see that
system (10) reduces to

> Qfe a2y ...cr=0
Q:(Qm) 2R

Qen—1 achgz co.clh =0
Q:(Q,)—méR
and consequently a;,o =0, Vi = 2,... ,n and V@ € Ny.
O

Corollary 1. Let X be a vector field of type Y1 . Then X is semi-
complete iff X is analytically conjugated to its formal normal form.

Proof. Suppose that X, of type Y;, is semi-complete. By lemma 2
and proposition 12 there is an invariant manifold tangent to the x-
axis. Lemma 3 guarantees that the holonomy relative to that invariant
manifold is the identity. So the result follow, by proposition 15.

The other implication results by the fact that semi-completude is

preserved by analytical conjugacy.
O
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It remains to analyse which formal normal form are semi-complete.
This is a much simpler problem.

Proposition 16. Let X be a vector field of type

1;1 = l’%

To = To(1 + avx

.1 2( 2T1)

x.n - In(fyn + Oén$1)
Then X 1is semi-complete iff o; € Z, Vi =2,....,n
Proof. Consider the vector field X given above and suppose that X
is semi-complete. Remark that the x;-axis is an invariant manifold of
the differential equation associated to the vector field X. Then, as we

proved before, the holonomy relative to the x;-axis is the identity.
Consider the ordinary differential equation

@ ~ Tp(1 + agry)
dz, x?
(11)

de,  Tp(Yn + anxy)

2
dzy x3

equivalent to the differential equation associated to the vector field X.
Let X be the transversal section to the first axis, through the point
(r,0,...,0), given by X = {(r,my,... ,2,) : 0 < 30 |z < e <r}.
Taking x, = re*™ ¢ € [0, 1], and substituting in (11) we obtain
d dxo d .
'IQ — ﬂﬁ — 271-2(&2 + 6 271'@1‘,)1,2

dt dzy dt

dxn dxn dxq
dt  dxy dt

Integrating for ¢ between 0 and 1 we obtain

—271'1'75)

= 2mi(a, + 7n T

x;(1) = xi(O)efol 2mi(eityyie” M) dt xz’(0)6[2””’&_%%@72”&}5
— $i(0)627riozi
foralli=2,....,n
So the holonomy is given by
h(zy, ..., x,) = (22%™2, ... z,e*)
As the holonomy is the identity then o; € Z for alli =2,... /n
e27rioc2 =1
s (ag,...,a,) €2

627rian — 1
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The other implication is immediate. We can easily solve the differ-
encial equation associated to the vector field X:

dl’l 2 d[L‘l T (0)
2™ gl e (T) = —)
ar M x? (1) 1 —z,(0)T
0
Substituting 11(0) for x(T) in the other equations we obtain the

linear system

dafg xl(())

hated 2 1 _ MY
qr et o)
dxn B x1(0)
ar ~ oty ovp)

whose solution is given by

( T

x2(T) = 'IQ(O) (1 . ZL‘l(O)T>a2

(12)
T 0)— "
L, = Tn
[ = O o
As oy € Z, Yi = 2,...,n, (1 —21(0)T)% is well defined for all
1
TeC\{—=}.
Vo)

1
So, the application ® : Q@ = {(T,z1,... ,2,): T # —} CCxC" —
£y
C"™ given by

T T
1 e e
T ce T , e Ty———————
( y L1, T2, y & )'_)(1—.T1T xQ(l_xlT)QQ x (1—.1'1T)a”)
is obviously a semi-complete flow associated to X: for each (z1,... ,z,)
1
fixed, (T3, 21, ... ,x,) — 0Q iff T; — —. We have that
I

lim &7 = e&r #0 and lim (1 —2,7)% =0
T— L T—-L

1 r1

So, (T;,x1,... ,x,) — O implies that ||®(T}, xq,... ,z,)|| — oo,
ie., ®(T;,z1,...,2,) tends to the boundary of C".
In particular X is semi-complete relatively to C™.
]

Our objective is to prove theorem 3:
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A saddle-node foliation is associated to a semi-complete vector field
off it admits

x'lzx%

Ty = To(Ay + aay) ( ) gn-1
) o, ... ,0n

Ty = Tp( Ay + apzy)

as normal form.

If F is the foliation associated to Y;,, with a € 71 and Yia
is analytically conjugated to its formal normal form Z,, then F is
associated to a semi-complete vector field in a neighbourhood of the
origin, as we have just proved.

We are going to prove that there are no more foliations of saddle-node
type associated to semi-complete vector fields.

First we will prove the next result:

Proposition 17. Let f be a holomorphic function (f : C* — C) such
that f(0) # 0 and consider the vector field Y = fY1,. Suppose that
Y is semi-complete in B(0,¢e) with f non zero in this open set. Then
there is a holomorphic invariant manifold tangent to the x1-axis at the
origin, i.e., a holomorphic central manifold.

Proof. Suppose that Y does not have a holomorphic invariant manifold
tangent to the zj-axis at the origin. As Y and Y;, have exactly the
same foliation in B(0,¢) then Y;, does not also have a holomorphic
invariant manifold tangent to the x;-axis at the origin.

Consider the curve c(t) = (re*™ 0,...,0), for r sufficiently small
(in particular |r| < ¢).

We know that in a neighbourhood of the origin II; is transverse to
the leaves of Y7 , not contained in {z; = 0}. Let ¢ be the lift of ¢ to
the leaf, L, containing H; '(U; \ {0} x {(0,...,0)}). We have H,(L N
(Uy x (C"1,0))) C {x; =0,i=2,... ,n} and so L is parametrized by
0,...,0).

We choose r in such a manner that II;(c.(0)) € Uy. As U_ =
Uy +m, Ii(cr(2)) € U-. The application g_ is tangent to the identity
so, (0,...,0) is transformed into (0,...,0) by g_. This means that
Ho(L N (Uy x (C*10))) € {x; =0,i=2,...,n}. We also have that
I (cr(1)) € Uy, so

(0, e ,0) — (a20...0, cee 7an0...0)

As there is no holomorphic central manifold (asg._o,--. ,ano.0) #
(0,...,0), by proposition 12. This means that c;(0) # ¢ (1), i.e., the
curve cy, is not closed.

Consider the conjugacy

Y)\ = (DH/\)ily 0] H)\
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where H) : C* — C" is the homothety Hy(z) = Az. Thus Y, and Y
are analytically conjugated.
If Y is semi-complete in B(0, ), then Y} is semi-complete in B(

€
0, —).
A

In the particular case that A = ¢, Y} is semi-complete in B(0,1). We
will allways take A = ¢.

As f(0) # 0, II; is transverse to the leaves of Y except to the in-
variant mainifold {z; = 0}, in a neighbourhood of the origin. We have
that

dl’l
dr” =
@)z
S0
d(>\$1) dSL’l
dT™ = Hy(dT") = =
) = et ~ 0w
However, for a given curve ¢
dCL’l d[[‘l
M e ~0
/c)\f(M)l‘% /cf(m)l‘f
Consider the curve
A o
ANt) = (§e2m,0, 0,0, teo,1]

For each A consider (z3,...,}) sufficiently close to (0,...,0) €
C"~! in such a manner that (3,23, ..., ;) belongs to L and that the
lift of ¢ to L, denoted by ¢}, is contained in B(0, ).

Let

e = Hy'(cp)
Remark 14. We can choose (3, ..., ) in such a manner that
A= (x3,..., 1))

is a continuous function of A\. Consequently A — ¢} is also a continuous

function of A, and so is A — ¢, because H) is a holomorphic function
of \.

As ¢} C B(0,¢), then ¢y C B(0,1). But ¢y has another important
property: as ¢} is not closed and H) is a homothety, then c, is also not

closed.
On the other hand

() = M(H3 (ex) = By (a(e)) = Hy' (Ge) = 267

for all A\, because H, is a homothety. In this way

. / dl’l / dl‘l
lim = — =0
A—0 f (\z)a? Le2nit ]
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Remark 15. As A — ¢, is a continuous function of A and ¢y, C D(0,1),
which is a compact set, there exists limy_ocy. We only know that
limy_oI1;(cz) = 2e®™, which is the only property necessary to the

2
proof.

Let W C C,, be a simply connected neighbourhood of IT; (¢x(1)) = 1,
not containing the origin. In this neighbourhood we can write z; as
function of z; for all i = 2,... ,n (remember that II; is transverse to
all leaves except to those in the invariant manifold {z; = 0} and we
are excluding z; = 0 from W).

Define

Iy:
/ d$1
f (\z)x?

where ¢, C W is a curve joining 4 3 top.
The function f is non zero at the origin, so it can be written in the
form

flx)=k+g(x)

where ¢(0) = 0 and k = f(0), i.e., g(x) = z101(x) + ... + Tpgn(2).
In this way we can rewrite the application I in the following way:

MNP = e, (k4 g(Ax1, Avo(21), ..o Awy (1)) 2]

_/ dl’l
Je, ka4 Ab(X, z1)

Let m(xy, A\) = A(A, x1). As m is holomorphic in W and m(z,0) =
0, lemma 1 guarantees the existence of real and positive numbers Ay
and 6 such that

B(0,6) S L(W) . VA: A< A

i / dx;
im =
A—0 f (Ar)z?

there exists Ay such that |\;| < A¢ and
dl’l
e, [(AT)2?

with |a| < 0. However B(0,0) C I,,(W). Thus there exists p € W
such that

As

=

]>\1 (p) =~

If p & ey ([0,1]) let é be the curve joining ¢y, (0) to p obtained by
concatenating ¢y, to ¢,. If p € ¢y, ([0,1]), i.e., p = ¢y, (to) for some
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0 <ty <1,let ¢ = ¢y, Thus

d&?l .
s fOx)a?

But, in both cases, ¢ is an one-to-one embedded curve. This result
contradicts the semi-completude of the vector field Y,, and, conse-
quently, the semi-completude of the vector field Y.

So, if Y is semi-complete then there exists a holomorphic invariant
manifold tangent to the z-axis at the origin.

O

Next we will prove:

Proposition 18. Let f : C* — C be a holomorphic function such that
f(0) # 0 and consider the vector field Y = fYi,. Suppose that'Y is
semi-complete in B(0, e) where € is such thatl f is non zero in this open
set. Then the holonomy relative to the holomorphic invariant manifold
tangent to the xi-axis (whose existence is quaranteed in Proposition 17)
1s the identity.

Proof. Suppose that Y is semi-complete in a neighbourhood of the
origin. Then there is a holomorphic invariant manifold tangent to the
xry1-axis. By a holomorphic change of coordinates we can suppose that
this holomorphic invariant manifold is the xj-axis itself. Thus the
vector field can be written in the form

1y = aih(z)
Ty = X2 + @1 35 ¥ f2i()

Tn = Ann + 1355 T fnj ()

where h(0) # 0.

As the vector field is semi-complete in a neighbourhood of the origin,
its restriction to the zi-axis is also semi-complete in a neighbourhood
of the origin. But this restriction is the vector field

0
ox
which is equivalent to the 1-dimensional vector field

i = 2%h(z,0,...,0)

X = 2°h(x,0,...,0)

But we know that a 1-dimensional meromorphic semi-complete vec-
tor field in a neighbourhood of the origin (of C) is analytically con-

jugated to X(x) = (A\z + >82’ X(x) = x2§ or X is constant,
x T

[10]. Thus the vector field & = z?h(x,0,...,0) must be analytically
conjugated to @ = z2.
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Consider the curve c(t) = (re*™,0,...,0), ¢ € [0,1], for r sufficiently
close to 0 and let ¢ = (H(II;(¢)),0,...,0), where H is the diffeomor-

0 0
phism that conjugates the vector fields z?h(x,0, ... ,O)a— and a:za—.

x x
Then

dl’l
dT(z,—0,i=2,...n}y = — =0
/c { J c l’%

Suppose that the holonomy is not the identity: there exists a neigh-

bourhood of 0 € C"~! such that, for every zo = (29, ... ,20) sufficiently

rn

close to (0, ... ,0), the lift ¢z, of ¢ to the leaf L through (r,z9,... ,2%)
is not closed. Thus ¢,(0) # ¢ (1) although II;(c.(0)) = II;(cr(1)).

As h(0) # 0, there exists a neighbourhood B(0, ¢) of the origin such
that h(x) # 0, Vo € B(0,¢). In particular, we choose r and Zg, with
|Zo|| < €1, such that ¢, C B(0,¢).

As before, the projection II; is transverse to all leaves, except to
those contained in the invariant manifold {z; = 0} in a neighbourhood
of the origin. As IIj(c (1)) = r # 0 there is a simply connected
neighbourhood of r in C,, \ {0}, W, such that we can write z; as

function of xq foralli =2,... . n

Ty = To(21; Tp)
(13)

Ty = Tn(21; To)
in each leaf of Y|y wcn-1.

Substituting (13) in the first equation of the differential system as-
socited to Y, we obtain the differential equation

£y = w3 h(21, 22(21; Zo), - - ., n(21; Z0))

where Z is considered as a pararameter.
Consider the application
I;; W —=C
/ d.Tl
p= — —
ey T1h(w1, 2a(21; T0), - - -, 20 (21, T0))
where ¢, C W represents a curve joining r to p.

We have I;,(r) =0, VZo : ||Zo|| < e1. In particular Iy(r) = 0. On the
other hand, as I{(r) = m # 0 and I} is a continuous function
of Ty there exists 0 < g9 < €1 such that

1 1
r2h(r,0,...,0)" 2|r2h(r,0,...,0)|

By the same argument used in the proof of lemma 1, there exist real
and positive numbers 6 and ¢y such that

v.fo : Hi’o” < €0, B(0,0> - Ij(](W)

I (r) € B(

)7 Vi’o . ||f’0|| S €2



46 HELENA REIS

However
/ ar, =0 0
cr,

Thus, there exists zo with ||Zo|| < g such that

/ dTL =
cr

where |a| < 6. By lemma 1, there exists p € W such that
/ dl’l
cp x%h(l’b xg(l'l; i'())a s 7xn($17 {fo))

The curve ¢, can allways be choosen in such a manner that its lift to
L does not intersect ¢y, except when P = (p,x2(p), ... ,x,(p)) belongs
to Cr,.

If P ¢ cr(]0,1]) we denote by ¢ the curve obtained by the concate-
nation of ¢y, to the lift of ¢, to L. If P = ¢ (o) for some 0 < ¢y < 1,
we denote by ¢ the curve cg|[]-

In both cases
/ dl;, =0

and ¢ is an one-to-one embedded curve, contradicting the fact that Y
is semi-complete.
Thus the holonomy is the identity.

= —

O
Finally we are going to prove Theorem 3.

Proof of Theorem 3. Let F be a foliation associated o a vector field
in ¢ (with an isolated singularity at the origin). For each vector field
X, whose foliation coincides with F (in a small neighbourhood of the
origin), there exist p and a holomorphic function f : C" — C, verifying
f(0) # 0, such that X can be written in the form fY),.

We proved that if F is associated to a semi-complete vector field
then p = 1.

Consider now the vector field of the type Y = fY;,, with f(0) # 0,
and suppose that Y is semi-complete. Proposition 17 tells us that Y has
a holomorphic invariant manifold tangent to the zi-axis. Proposition
18 says that the holonomy relative to that invariant manifold is the
identity.

As Y and Y;, have the same foliation (in a neighbourhood of the
origin), then Y; , has a holomorphic invariant manifold tangent to the
r1-axis and the holonomy relative to that invariant manifold is the
identity.

By proposition 15, Y7 , is analytically conjugated to its formal nor-
mal form Z,.
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So, if Y7 4 is not analytically conjugated to its formal normal form,
fY1,4 is not semi-complete in any neighbourhood of the origin, for any
holomorphic function f such that f(0) # 0.

On the other hand, the holonomy of the vector field Z,

27'1:27%

Za : .Z:Q :ZE2<1+0621'1>

Q:'n = xn(f}/n + OénxQ)

is the identity iff @ € Z""!. So, even if Y, is analyticaly conjugated
to its formal normal form Z,, if « € Z" ! Y canot be semi-complete
in any neighbourhood of the origin, because the holonomy relative to
the x;-axis is not the identity.

It remains to analyse the foliations associated to vector fields X
whose linear part is not diagonal, but is diagonalizable. Suppose that
F is a foliation in that condition. We know that there exists a linear
change of coordinates, H, that linearizes its linear part.

Consider the vector field Y = (DH) *.X o H. Suppose that X
is semi-complete, then Y is also semi-complete and, consequently, of
the form fY;, for some function f such that f(0) # 0. Then Y;, is
anayticaly conjugated to Z, with o € Z"~ !, as we have just proved.

However, to prove that F addmits Z, as normal form it remains
to prove that F has a representant analytically conjugated to Z,, or
equivalently, to Y3, (as Z, and Y7, are analytically conjugated).

Consider the vector field ¥X . Then

(foH™)
1 1
(DH)*l.((W)X) oH = (DH)*l.?(X o H)
_ %(DH)l.X o H = %fym
- }/I,a
and ﬁ)( is also a representant of F.

Suppose now that F addmits Z,, with o € Z" ! as normal form.
So there exists a vector field X, analytically conjugated to Z,, whose
foliation is given by F. Thus X is a semi-complete vector field. So F
is associated to a semi-complete vector field.

So, F is associated to a semi-complete vector field in a neighbour-
hood of the origin iff 7 addmits Z, as normal form, with o € Z" .

O
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6. SADDLE-NODE WITH A NON ISOLATED SINGULARITY

In this section we are going to classify the semi-complete vector
fields with diagonal linear part associated to a saddle-node foliation,
but whose set of singularities coincides with the holomorphic invariant
manifold transverse to the z;-axis, whose existence is guaranteed in [1].

Proposition 19. [1] Consider a vector field X € X. The vector field
X has a holomorphic invariant manifold transverse to the xi-axis.

By proposition 5 we can assume that the holomorphic invariant man-
ifold transverse to the xj-axis is the hyperplane {z; = 0}. In this way
it is sufficient to study the vector fields of type fa1*Y,, where f(0) # 0
and k € Z\{0}. The case studied before (where the origin is an isolated
singularity) corresponds to k = 0.

We should remark that the foliation associated to Y, coincides with
the foliation associated to fr*Y, outside {#; = 0}. The foliation
restricted to {x; = 0} in the first case is of Poincaré type, while in the
second case is a set of singular points, if £ < 0, or does not exists, if
k > 0. In this last case {x; = 0} is a singular set in the sense that it
does not belong to the domain of the vector field.

As the foliation of fxl_kY;, coincides with the foliation of fY),, outside
the invariant hypersurface that is transformed to a set of singularities,
abusing notation we still call fasl_kYp of saddle-node type, but remark-
ing that it has no more an isolated singularity.

Proposition 20. Let X be a vector field of type fxl_kYp, where f 1is
a holomorphic function such that f(0) # 0, k € Z and X defined in
an open neighbourhood U C C™ of the origin. Suppose that X is semi-
complete in a neighbourhood of the origin, then k € {p —1,p,p+ 1}.

Proof. Consider the vector field

iy = f(z)a P

X = fsz}/b : Ty = f(x)xl_k(AQxQ + Zﬁlal(l‘))

Zn = f(2)27" Ay + 21b,(2))

We are going to prove that if & ¢ {p — 1,p,p + 1}, then X is not
semi-complete in any neighbourhood of the origin.

Suppose that k ¢ {p—1,p,p+1}. f k <p—2then —k+p+1>3
and if £ > p+2 then —k+p+1 < —1. Those values will be important
in the sequence (remember proposition 4).

The proof of this proposition is totally identical to the proof of the
proposition 6 which says that if fY) is semi-complete, with f(0) # 0,
then p = 1.
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We can easily verify that the fibres of II; are transverse to the leaves
of the foliation F associated to the vector field fxl_kYp in a neighbour-
hood of the origin, except to those contained in the manifold {z; = 0}:

DI, (z).X (z) = f(z)zy 7P

with f(0) # 0, and, consequently, non zero in a sufficiently small neigh-
bourhood of the origin.

Fix a disc B(0,¢) C C" of center at the origin of C" and radius € > 0
relatively to which X is semi-complete.

Suppose f = k € C. Consider the curve c(t) = (re?/(=k+p) o ... 0),
t € [0, 1], which is an one-to-one embedded curve, because |—k+p| > 2.

As Ty (e(t)) # 0, Vt € [0,1], for each (7, za, ... ,x,) sufficiently close
to (0,...,0), we can lift the curve ¢ to a curve ¢, contained in L N
B(0,¢), where L is the leaf (of the foliation F) through (r, za, ..., z,).
As we are assuming f = k we have

d[El
/C L T, = / e 0

As c is an one-to-one embedded curve, so is ¢;. This contradicts the
fact that X is semi-complete.

We are going to treat now the case f # k. In this case, we obtain
the differential 1-form

dl’l
P f ()

where = (z1,... ,x,) and f(0) # 0.
Consider S C C, an angular sector with vertex at the origin and angle

greater than \—i:m and less than 2w. As Il; is transverse to the leaves,

except to the the manifold {z; = 0}, for each leaf in S\ {0} x (C"~1,0),

we can write

dTy =

zy = x3(x)

univocaly.
Let ¢;, be an one-to-one embedded curve in L. We have that

/ dT / diL’l / dl’l
L — B T _
cr cp Ty k+p+1f(x) Mi(cr) Tq k+p+1f(x17 33%(331), . ax%<x1))

By transversality, as ¢z, is an one-to-one embedded curve, so is I1; (cp).
So we reduced the study of the semi-completude of a vector field in
S x U, where U is a neighbourhood of the origin of C"!, to the study
of the semi-completude of a vector field in S.

Remark that if fa:l_kY;, is not semi-complete in any neighbourhood of
the origin of the type (S x U)N B(0,¢), then it canot be semi-complete
in any neighbourhood of the origin B(0,¢) (remark 5).
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We have already proved that any unidimensional vector field of type
= a* f(x)

with f(0) # 0 and & > 3 or k < —1 is not semi-complete relatively

to any sector of amplitude greater than L In our case we are

|k =1

analysing the vector field

Vi b=t k), k()
with f(0) # 0 and =k +p+1 >3 or —k+p+1 < —1. As the
2

sector S has amplitude greater than Y is not semi-complete

—k+pl’
relatively to any neighbourhood of t|he origin| of the type S N B(0,¢).
Thus X is not semi-complete relatively to any neighbourhood of the
origin.

O

Immediatly, we can conclude:

Corollary 2. There are no holomorphic semi-complete vector fields of
saddle-node type with a diagonal linear part such that the invariant
hypersurface transverse to the weak direction is contained in its set of
singularities.

We can also say that:

Corollary 3. Let X be a holomorphic vector field of saddle-node type,
with an isolated singularity at the origin, and M the invariant hyper-
surface transverse to the weak direction of X. If F' is a holomorphic
function such that F(x) = 0 < x € M, then the holomorphic vector
field FX is not semi-complete in any neighbourhood of the origin.

Proof. 1t is sufficient to prove for vector fields X whose linear part is
diagonalizable, but not diagonal. The diagonal case is expressed in the
last corollary.

Let H be the linear transformation that linearizes the linear part of
DX (0). Consider the vector field:

Y =(DH) Y (FX)oH =(FoH)(DH)'XoH

Thus Y is of type (F o H)Y,, for some p > 1.

The hypersurface M is the invariant hypersurface transverse to the
weak direction of X. So, H~!(M) is the hypersurface transverse to the
weak direction of Y,. M is given by F = 0, so H '(M) is given by
FoH = 0. So, the set of singularities of Y is given by H~ (M), i.e., is
given by the hypersurface transverse to the weak direction of Y.

As Y, has a diagonal linear part, Y is a holomorphic vector field
of saddle-node type with a diagonal linear part whose hypersurface
transverse to the weak direction is contained in its set of singularities.
By Corollary 2, Y is not semi-complete.



SEMI-COMPLETE VECTOR FIELDS OF SADDLE-NODE TYPE IN C* 51

As X is analytically conjugated to Y, X is not semi-complete.
]
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