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Abstract

Bifurcation problems with one parameter are studied here. We
develop a method for computing a topological invariant, the number
of fold points in a stable one-parameter unfolding for any given bifur-
cation of finite codimension.

We introduce another topological invariant, the algebraic number
of folds. The invariant gives the number of complex solutions to the
equations of fold points in a stabilization, an upper bound for the num-
ber of fold points in any unfolding. It can be computed by algebraic
methods, we show that it is finite for germs of finite codimension. An
open question is whether this value is always attained as the maximum
number of fold points in a stable unfolding.

We compute these two invariants for simple bifurcations in one di-
mension, answering the question above in the affirmative. We discuss
other invariants in the literature and verify that the algebraic number
of folds and the Milnor number form a complete set of invariants for
simple bifurcations in one dimension.

1 Introduction

In this paper we study germs of smooth bifurcation problems f(x, λ), with
n variables x ∈ Rn and one parameter λ ∈ R. We consider invariants that
arise in the classification of such problems. Our main goal is to bring into
the classification of bifurcation problems an approach used in the study of
map-germs for the definition of invariants associated to real singularities.

Any invariant associated to a map-germ f : Rn+1, (0, 0)−→Rn, 0 is also
an invariant of the bifurcation problem f(x, λ). For instance, although the
expressions x2+λ and x+λ2 represent completely different bifurcations, they
will have the same invariants as maps f : R2−→R. Thus, in the study of
bifurcation problems some invariants have to be introduced, in order to take
into account the special role of the parameter λ.

A similar procedure is followed in [18], where a method for counting the
number of branches in a bifurcation diagram is obtained using the formula
of Eisenbud and Levine [7] for the degree of an isolated singularity. The
number of branches for positive (resp. negative) λ provides an invariant for
bifurcations. These invariants are discussed in section 3.

An important issue in bifurcation theory is to understand the geometry
of stabilizations of a given bifurcation problem. The important information
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is the number of folds of (x, λ) �→ F (x, λ, t) for fixed t �= 0, small. This
number usually depends on the choice of stabilization and on the sign of t:
the transition set generally divides the unfolding parameter space into more
than one connected component. This is in strong contrast to the complex
theory, where the complement of the transition set is connected.

We use the results in [7, 18] to develop in section 3 a method for counting
the number of folds appearing in a stable one-parameter perturbation of f .
The maximum value (over all possible stabilizations) of this number is the
geometric number of folds associated to the bifurcation problem.

We introduce in section 4 a new topological invariant of a bifurcation
problem f , the algebraic number of folds, that we denote by β(f). The
invariant β(f) is the codimension of an ideal associated to the bifurcation
f and it counts the number of complex solutions to the equations for fold
points. We show that f has finite codimension if and only if β(f) < ∞.

One open question is whether the geometric and algebraic number of
folds coincide for bifurcation problems in one variable, i.e. if there is a stable
perturbation with exactly β(f) folds. We have computed the invariants for
all the simple bifurcations in one variable (section 5) and found the answer
to be yes, in the case of simple germs, but it remains open in general.

The question of whether the number of complex solutions for stabiliza-
tions can be realized for the real case has arisen in several situations and
can be quite difficult. In the context of multiplicity of stable map germs
of discrete algebra type, this was shown to be true by Damon and Galligo
[5]. For plane curves the existence of a maximal deformation was shown by
A’Campo [1] and by Gusein-Zade [13]. Arnol’d [2] and Entov [8] have shown
the existence of maximal morsifications for singularities of type Ak and Dk.

The failure to realize in the real case the number occurring for the com-
plex case can happen for situations such as multiplicity of stable map germs
studied by Iarrobino [14]; for vanishing cycles for images of the stabilization
of A-finite germs from C2, 0 to C3, 0, studied by Marar and Mond [17]; and
for vanishing cycles of bifurcation sets studied by Damon [4].

A similar question is raised in [19] for map-germs from Rn to Rp, n ≥ p
under A-equivalence.
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2 Preliminary results and definitions

For basic results we refer the reader to Golubitsky and Schaeffer [11] and to
Keyfitz [15], whose notation we use. We recall some definitions and notation
used in the study germs of smooth bifurcation problems f(x, λ), f : Rn ×
R, (0, 0)−→Rn, 0. The set of all such germs forms a free module,

−→
Exλ, of rank

n over the ring Exλ of germs of smooth functions g : Rn×R, (0, 0)−→R. The
ring Exλ has a unique maximal ideal M and a subring Eλ of germs of functions
depending only on λ.

To each bifurcation germ f(x, λ) we associate its bifurcation diagram, the
germ of the set {(λ, x) : f(x, λ) = 0}, the set of equilibria of the differential
equation ẋ = f(x, λ).

Two bifurcation germs f(x, λ) and g(x, λ) are bifurcation equivalent (called
here b-equivalent) if and only if there are germs of maps S(x, λ), X(x, λ) and
Λ(λ) such that

f(x, λ) = S(x, λ)g (X(x, λ), Λ(λ))

where S(x, λ) is linear for each (x, λ) and det S(0, 0) > 0 and where dxX(0, 0)
is invertible with Λ′(0) > 0.

The usual concepts of strong and unipotent equivalence can be extended
to this context as well as those of codimension and unfolding. For definitions
and calculation methods, see [10], [11] and references therein.

Recall that the tangent space at f to the b-strong-equivalence class of f ,

called the restricted tangent space of f , is the Exλ submodule of
−→
Exλ given by

RT(f) =

〈
fiej, xi

∂fk

∂xj

, λ
∂fk

∂xj

i, j, k = 1, . . . n

〉
Exλ

⊂
−→
Exλ

where ej denotes the elements of the standard basis of Rn. A bifurcation
problem f has finite codimension if and only if RT(f) has finite codimension

in
−→
Exλ.
For n = 1, all bifurcation problems of codimension seven or less have been

classified by Keyfitz [15]. The only non trivial bifurcations of codimension
zero, called stable bifurcations, are the folds f(x, λ) = ±x2 ± λ and their
suspensions in Rn, (x2

1 + λ, x2, . . . , xn), also called folds in this paper.
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2.1 The fold ideal

Let B(f) ⊂ Exλ be the ideal B(f) = 〈f1(x, λ), . . . , fn(x, λ), Jxf(x, λ)〉, where
Jxf denotes the determinant of dxf . We call B(f) the fold ideal of f .

Theorem 1 A bifurcation problem f : Rn × R, 0−→Rn, 0 has finite codi-
mension if and only if B(f) has finite codimension.

Proof: Assume f has finite codimension and therefore RT(f) ⊃ Mk
−→
Exλ

for some k. Following the argument of Gaffney in [9], Lemma 2.12, we will
show that B(f) contains Mkn. In fact, let u ∈ Mkn, say u =

∏n
i=1 ui where

ui ∈ Mk. Since RT(f) contains the germs uiei, then the matrix equation

dxf · A =


u1 0 . . . 0
0 u2 . . . 0
...

...
...

0 0 . . . un


has a solution A with entries in Exλ, modulo 〈fiej〉i,j=1,...,n. Taking the deter-
minant of each side it follows that u ∈ 〈Jxf〉 (mod 〈f1, . . . , fn〉), and thus
the condition is necessary.

To see the sufficiency, assume B(f) ⊃ Mk for some k. It is enough to

prove that dxf(
−→
M) ⊃ 〈Jxfei i = 1, . . . , n〉Exλ

. The proof is again just a
parametrized version of Gaffney’s argument.

Let A(i, j) be the cofactor of the element
∂fi

∂xj

in the matrix dxf . Then

we can write the vector whose only nonzero entry is Jxf in the l-th position
as:



0
...

Jxf
...
0

 =



∂f1

∂x1

. . .
∂f1

∂xn
...

...
∂fl

∂x1

. . .
∂fl

∂xn
...

...
∂fn

∂x1

. . .
∂fn

∂xn


·



A(l, 1)
...

A(l, l)
...

A(l, n)



proving the result.
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3 Branches and Folds

Given a finite codimension bifurcation problem f , consider a representative
of a one-parameter unfolding F (x, λ, t) of f defined in a neighbourhood U ⊂
Rn ×R×R of the origin. The representative F : U−→Rn, is a stabilization
of f if it has the property that for t �= 0 the only singularities of Ft(x, y) =
F (x, λ, t) in Ut = U ∩ Rn × R × {t} are folds.

In this section, given a stabilization F (x, λ, t) of a bifurcation problem
f(x, λ), we obtain a formula for the number, b+(F ), of fold points of F (x, λ, t)
for small fixed t > 0. This number usually depends on the choice of one-
parameter unfolding and also on the sign of t. The theory for real bifurcation
problems is in strong contrast to the complex case: all stabilizations of a
complex bifurcation correspond to equivalent problems.

The formula for b+(F ) is obtained by applying to the germ of g(y, t) =
((F (y, t), JxF (y, t)), where y = (x, λ), the results of Nishimura, Fukuda and
Aoki [18] on the number of branches of a bifurcation problem. The folds in
the stabilization F are branches in the higher dimensional problem g(y, t).

Given a map germ g : Rn+1, 0−→Rn, 0, let r(g) denote the number of
half-branches in the bifurcation diagram of g, i.e. the number of connected
components of g−1(0) − {0}. Denote by r+(g) and r−(g), the number of
half branches with λ > 0 (resp. λ < 0) in the bifurcation diagram of g
and r±(g) = r+(g) − r−(g). The numbers r+(g) and r−(g) are invariants for
b-equivalence.

Nishimura, Fukuda and Aoki [18], have shown that r(g) is twice the
topological degree of the germ Φ1 : Rn+1, 0−→Rn+1, 0, given by Φ1(y, λ) =
(g(y, λ), λJyg(y, λ)), where Jyg(y, λ) is the Jacobian of g. Similarly, r(g) is
twice the topological degree of the germ Φ2 : Rn+1, 0−→Rn+1, 0, given by
Φ2(y, λ) = (g(y, λ), Jyg(y, λ)). Therefore, r(g), r+(g) and r−(g) are topo-
logical invariants and the degrees of Φ1 and Φ2 can be computed using the
important result of Eisenbud and Levine [7] that we shall describe briefly.

Let 〈Φ〉 be the ideal in Ey generated by the components of a map Φ(y), Φ :
Rm, 0−→Rm, 0. If 〈Φ〉 has finite codimension, consider the algebra Q(Φ) =
Ey/〈Φ〉 and let I be an ideal of Q(Φ) that is maximal with respect to the
property I2 = 0. Then Eisenbud and Levine [7] show that if Q(Φ) is finite-
dimensional then |degree(Φ)| = dimRQ(Φ) − 2dimRI.

The algebra Q(Φ) has a minimal ideal, called the socle, generated by the
class J0 of JyΦ. Another way to obtain the degree, from [7], is to consider any
linear functional l in Q(Φ) such that l(J0) > 0. Then the degree of Φ is the
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signature of the bilinear form L : Q(Φ)×Q(Φ)−→R given by L(p, q) = l(pq).

Given a stabilization F (x, λ, t) of a finite codimension bifurcation problem
f(x, λ), consider the algebras

Q1(F ) = Exλt/〈F, JxF, tJxλ(F, JxF )〉

and
Q2(F ) = Exλt/〈F, JxF, Jxλ(F, JxF )〉 .

Lemma 1 If f has finite codimension and F is a stabilization of f then the
algebras Q1(F ) and Q2(F ) have finite dimension as real vector spaces.

Proof: Without loss of generality we may assume F is analytic, since f has
finite codimension. Let FC : Cn+1 ×C, 0−→Cn, 0 be the complexification of
F , that we will denote by F in the remainder of this proof. If we show that
the varieties of the ideals 〈F, JxF, tJxλ(F, JxF )〉 and 〈F, JxF, Jxλ(F, JxF )〉
reduce to 0 then the result follows from Hilbert Nullstellensatz.

We start by the second ideal. The equations F = 0 , JxF = 0 are
defining conditions for folds in the unfolding F . Folds satisfying the last
equation Jxλ(F, JxF ) = 0 are degenerate: at these points either the gradient
∇x(JxF ) is equal to zero or the gradient is orthogonal to the kernel of DxF .
Both possibilities characterize points that are more degenerate than folds
and therefore this implies t = 0, since F is stable for t �= 0. For t = 0, the
first two equations reduce to f(x, λ) = 0, Jxf(x, λ) = 0 and have a unique
solution (x, λ) = (0, 0) since we have already shown that the fold ideal has
finite codimension when cod(f) < ∞ and thus the claim holds.

For the first ideal, there are two possibilities, t = 0 and t �= 0, both cov-
ered by the arguments above.

Each one of the algebras Q1(F ) and Q2(F ) has a socle generated, respec-
tively, by the residue classes of

s1 = Jxλt (F, JxF, tJxλ(F, JxF )) and s2 = Jxλt (F, JxF, Jxλ(F, JxF )) .

In each algebra Qi(F ), let li be a linear functional satisfying li(si) > 0 and
let Li be the bilinear form Li(p, q) = li(pq), as in the Eisenbud and Levine
[7] result.
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Theorem 2 If F is a stabilization of a bifurcation problem f of finite codi-
mension, then the number b+(F ) of folds in F for t > 0 is b+(F ) =
signature(L1) + signature(L2).

Proof: Consider the map germs Φ1 and Φ2 : Rn+2, 0−→Rn+2, 0 given by

Φ1 = (F, JxF, tJxλ(F, JxF )) and Φ2 = (F, JxF, Jxλ(F, JxF )) .

Their algebras, Q1(F ) and Q2(F ), are finite dimensional by Lemma1. There-
fore, by the results of [7] the degree of each Φi is the signature of Li.

On the other hand, the fold points of F are precisely the nondegenerate
zeros of

g(x, λ, t) = (F (x, λ, t), JxF (x, λ, t))

i.e., the branches of the bifurcation problem g(y, t) with y = (x, λ), and bi-
furcation parameter t. Therefore, the total number of fold points of F for
t > 0 and t < 0 equals the total number, r(g), of half-branches of g and the
difference between the number of folds with t > 0 and t < 0 is r±(g). From
[18] it follows that r(g) = 2 degree(Φ1) and r±(g) = 2 degree(Φ2).

From the computation of r± in the proof above, it follows:

Corollary 1 If F is a stabilization of a bifurcation problem f of finite codi-
mension, then the number of folds for t > 0 is congruent modulo 2 to the
number of folds for t < 0.

Another formulation of Theorem 2, less easy to compute, can be obtained
using the results of [7]:

Theorem 3 If F is a stabilization of a bifurcation problem f of finite codi-
mension, then the number b+(F ) of folds in F for t > 0 is b+(F ) =
dim(Q1(F ))−dim(Q2(F ))−2 dimR(I1)+2 dimR(I2), where each Ii ⊂ Qi(F )
is an ideal that is maximal with respect to the property I2

i = 0.

The singular set Σ in the unfolding of a bifurcation problem of finite
codimension was defined in section 4 in the proof of Theorem 1. It is shown
in [11] that generic points in Σ are hysteresis, bifurcation or double limit
points. Crossing a double limit point only changes the relative position of
folds in a bifurcation diagram. Crossing a hysteresis or a bifurcation point
creates (or destroys) a pair of folds. Thus it follows:
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Corollary 2 If F is a stable germ in a versal unfolding of a bifurcation
problem f of finite codimension, then the number of folds is constant modulo
2.

3.1 Weighted homogeneous bifurcations

We say that g : Rm−→Rp is weighted homogeneous if we may assign weights
w(xi) > 0, i = 1, . . . , m so that each of the coordinate functions gi, i =
1, . . . , p is weighted homogeneous, of weight w(gi).

If the germ f has a weighted homogeneous representative, the calculation
of b+(F ) is easier (see [20] and [3] for details). In particular, we get:

Corollary 3 Let f : Rn×R−→Rn be a polynomial bifurcation problem that
is weighted homogeneous and such that the germ of f at the origin has finite
codimension. If F (x, λ, t) is a weighted homogeneous stabilization of f , where
t has odd weight, then b+(F ) = b−(F ).

Proof: We show that the bilinear form L2 of Theorem 2 has signature
zero. The map Φ2 = (F, JxF, Jxλ(F, JxF )) is weighted homogeneous and this
induces a filtration of Q2(F ) where the maximum weight M is that of the
socle, s2 = JyΦ2(y) with y = (x, λ, t). Except in the trivial case Q2(F ) = {0},
the maximum weight M is given by

M = w(s2) = 4w(JxF ) − 2w(λ) − w(t) .

Consider the subspaces Q1/2, Q< and Q> of Q2(F ) of elements of weight
= M/2, < M/2 and > M/2, respectively. Since the multiplication is addi-
tive on weigths, the signature of the bilinear form L2 is determined by the
signature of its restriction to Q1/2: the multiplication dually pairs Q< with
Q>, so these subspaces give no contribution to the signature. Since M is odd
then Q1/2 is empty and the signature is zero.

A similar construction for the map Φ1 = (F, JxF, tJxλ(F, JxF )) shows
that in this case we only have to compute the signature of the bilinear form
L1 in the subspace of Q1(F ) of elements of weight

M

2
=

1

2
w(s1) = 2w(JxF ) − w(λ) .
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The hypothesis of Corollary 3 on the stabilization F is not very restric-
tive: let f be weighted homogeneous with finite codimension and denote by
T (f) the tangent space at f to the b-orbit of f . Suppose there is a com-
plementary subspace to T (f) consisting of germs of weighted homogeneous
maps of the form p(x, λ) = (p1(x, λ), . . . , pn(x, λ)), such that w(pi) < w(fi).
Then for every stable germ g(x, λ) in an unfolding of f there is a weighted
homogeneous stabilization F (x, λ, t) of f , with w(t) = 1, such that for some
t �= 0 the germs g(x, λ) and Ft(x, λ) are b-equivalent and Corollary 3 can be
applied.

4 Algebraic Folds

An upper bound for the number of folds appearing in any stabilization of a
given bifurcation problem is the number of folds appearing in a complexi-
fication of the problem. We define the algebraic number of folds β(f) of a
bifurcation f as the codimension of B(f). It is an invariant for b-equivalence
that counts the number of simple solutions (x, λ) ∈ Cn+1 of F (x, λ, α) = 0,
JxF (x, λ, α) = 0 for generic fixed α on an unfolding F of f , as we show
below, i.e. it counts the number of points where Fα is equivalent to a fold.

Theorem 4 For a bifurcation problem f : Rn ×R, 0−→Rn, 0 of finite codi-
mension, β(f) is an invariant for b-equivalence giving the number of folds
appearing in a stable deformation of the complexification of f .

Proof: Recall that, by Theorem 1, B(f) has finite codimension. Let F̃ :
Cn × C × Cu, 0−→Cn, 0 be a versal unfolding of the complexification of f ,
and F : W−→Cn a representative of F̃ defined in a neighbourhood W of the
origin in Cn×C×Cu. We can take W = U ×T, where U is a neighbourhood
of 0 in Cn × C and T a neighbourhood of 0 in Cu.

Let Σ be the set of u ∈ T for which there exists a point (x, λ) ∈ U, which
is a singular point of Fu = F (., ., u), more degenerate than a fold. By this
we mean that either the kernel of dxF has dimension more than one, or the
curve Fu = 0 has a contact with the kernel of dxF more degenerate than a
quadratic.

The transition set Σ is a proper analytic set of Cu, and therefore its
complement in T is connected. Then for any u and ũ in the complement of
Σ we have that Fu and Fũ are b-equivalent. Thus, for f complex, the number
of folds does not depend on the choice of stabilization.
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Let Fα be a representative of a stabilization of the complexification of f
defined in a neighbourhood of the origin. Then for each α �= 0

β(Fα) =
∑

(xi,λi)

dimC

Exλ (xi, λi)〈
JxFα (xi, λi)

, Fα (xi, λi)

〉
where the summation is taken over all the (xi, λi) that are fold points and

(xi, λi)
stands for germs at (xi, λi).

Each fold point contributes 1 to the summation, since

dim

(
Exλ

B(x2
1 ± λ, x2, . . . , xn)

)
= 1

and thus β(Fα) is the number of folds for Fα. Since B(Fα) defines a family of
complete intersection with isolated singularity, it follows [16] that the multi-
plicity β(Fα) is constant and therefore β(Fα) = β(f)

The invariant β(f) counts the number of complex solutions of Fα = 0,
JxFα = 0, with multiplicity, for an unfolding F of f . In the real case, for a
stabilization Ft(x, λ) of f , the number of real solutions of Ft = 0, JxFt = 0
depends on the choice of stabilization Ft.

The stabilization can be viewed as a path in a versal unfolding of f . In
the real case the space of unfolding parameters may be separated by the tran-
sition set Σ. Then b(Ft) is constant in each component of the complement of
Σ, but may vary from one component to another. Its maximum bmax(f) over
all stabilizations of a given germ f is clearly an invariant of b-equivalence.

A natural question is whether bmax(f) = β(f) . In other words, we want
to know if the geometric and algebraic number of folds coincide. This is the
case for all simple bifurcations in one spatial dimension studied in [15] (see
section 5).

If in the definition of b-equivalence we drop the requirement that the
change of parameter Λ does not depend on x we obtain the usual defini-
tion of contact equivalence (K-equivalence) of maps. Every invariant of K-

equivalence of germs in
−→
Exλ is also invariant under b-equivalence, the second

being a specialization of the first. An analogous result holds [5] for K-versal
unfoldings of germs of maps in R2 K-codimension and if G(y, α) is a K-versal
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unfolding of g = (g1, g2) then there is a germ of an open, path connected set
A of parameters α with the origin in the closure of A, such that for each
α ∈ A the map y �→ G(y, α) has exactly m zeros where m is the codimension
of 〈g1, g2〉Ey .

Conjecture 1 Let f : R × R, (0, 0)−→R, 0 be a finite codimension bifurca-
tion problem and F (x, λ, α) a b-versal unfolding of f . Then there is a germ of
an open, path connected set A of parameters α, with the origin in the closure
of A, such that for each α ∈ A the bifurcation diagram of x �→ F (x, λ, α)
contains exactly β(f) fold points.

A natural way to prove Conjecture 1 would be to reduce it to the K-
equivalence case by considering the germ g(x, λ) = (f(x, λ), fx(x, λ)) and a
K-versal unfolding of the form G(x, λ, α) = (F (x, λ, α), Fx(x, λ, α)). Then
for suitable α, the germ G would have precisely β(f) zeros and F would
factor through any b-versal unfolding of f . Unfortunately it is often not pos-
sible to find a K-versal unfolding of the form (F, Fx). For instance, consider
the simple bifurcation problem f(x, λ) = x3 − xλ. An unfolding G(x, λ, α)
of g(x, λ) = (x3 − xλ, 3x2 − λ) is K-versal if and only if 〈 ∂G

∂αi
〉R forms a

complement for TKg in the Exλ-module of germs of maps from the plane to
the plane, where TKg = {(u, v)u, v ∈ M2 + 〈λ〉} + 〈(x, 1)〉Exλ

. Clearly, the
constant germ (0, 1) cannot be written as (h, hx)+η with h ∈ Exλ, η ∈ TKg.

5 Examples

In this section we compute invariants for some examples of bifurcation prob-
lems. Invariants for b-equivalence are the algebraic number of folds, β(f)
(section 4) and the number, r+(f) (resp. r−(f)), of half branches with λ > 0
(resp. λ < 0) in the bifurcation diagram of f as well as r±(f) = r+(f)−r−(f)
(section 3). We show that Conjecture 1 holds for simple bifurcations in one
spatial dimension, as well as for two modal families (cm and qm, see below).

We also compute invariants of K-equivalence since they are also invariant
under b-equivalence, and a b-versal unfolding of a bifurcation f(x, λ) is also a
K-versal unfolding of the germ f . One K-invariant treated here is the number,
r(f), of half-branches in the bifurcation diagram of f , i.e. the number of
connected components of f−1(0) − {0} (section 3). Another K-invariant is
the Milnor number µ(f) of a bifurcation f . If f has finite codimension
with respect to K-equivalence, there is no loss of generality in assuming



Invariants — August 3, 2004 13

that f is real analytic. Let fC be its complexification. Then, the complex
hypersurface f−1

C (0) defines a complete intersection with isolated singularity,
and µ(f) = µ(fC) is defined as the rank of the middle dimensional homology
of the Milnor fiber of fC (see [16]).

For n = 1, µ(f) is the codimension of the ideal Iµ(f) ⊂ Exλ given by

Iµ(f) = 〈fx(x, λ), fλ(x, λ)〉.

It gives an upper bound for the number of Morse critical points appearing
in any germ in the unfolding of f . Note that these critical points do not
have to be zeros of f and thus the Milnor number cannot be “read” from the
bifurcation diagram.

We start with simple bifurcations in one spatial dimension (see [15]):

Table 1 – invariants for simple bifurcations, n = 1

normal form f k cod(f) β(f) bmax(f) µ(f) r(f) r±(f)
±x3 ± λ2 3 4 4 2 2 0
±xk ± λ k even k − 2 k − 1 k − 1 0 2 ±2

k ≥ 2 k odd 2 0
±x2 ± λk k even k − 1 k k k − 1 4 0

k ≥ 2 k odd 2 ±2
±xk ± xλ k even k − 1 k k 1 4 0

k ≥ 3 k odd 4 ±2

For these simple bifurcations it is easy to find a suitable unfolding explic-
itly and to check that Conjecture 1 holds, i.e., bmax(f) = β(f). This is also
the case of some modal bifurcations as can be seen in Table 2:

Table 2 – invariants for some modal bifurcations

normal form cod(f) β(f) bmax(f) µ(f)
cm(x, λ) = ±(x3 − 3mxλ2 ± 2λ3) 5 6 6 4

m �= 0, 1
qm(x, λ) = ±x4 + 2mx2λ ± λ2 5 6 6 3

m �= 0,±1
±xk ± λ2 2k − 3 2k − 2 2k − 2 k − 1

k ≥ 4

No two simple bifurcation problems have the same invariants β(f) and
µ(f). Modal bifurcations in one dimension, however, are not classified by the
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Milnor number and the algebraic number of folds, as can be seen in Tables
2 and 3:

Table 3 – invariants for some modal bifurcations

normal form cod(f) β(f) µ(f)
±xk ± xλ2 k ≥ 4 2k − 1 2k k + 1
±xk ± xλ2 ± λ3 k ≥ 4 2k − 2 2k k + 1
±xk+1 ± xk−1λ2 ± λ3 k ≥ 3 3k − 2 2k k + 1
±xk ± xk−2λ ± λ2 k ≥ 5 2k − 4 2k − 2 k − 1

For most cases studied here, if two bifurcation problems have the same
codimension and the same values of β and of µ, then they are b-equivalent.
The exceptions are, naturally, the germs inside the modal family cm, as well
as germs in the family qm(x, λ) (together with the germ of ±x4 ± λ2 = q0).
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