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Abstract. We consider the quadratic family of maps given by fa(x) = 1 − ax2 on I =
[−1, 1], for a positive Lebesgue measure set of parameters close to a = 2- the Benedicks-
Carleson parameters, on which there is exponential growth of the derivative of the critical
point and an absolutely continuous SRB invariant measure. We show that the volume of
the set of points of I that at a given time fail to present an exponential growth of the
derivative decays exponentially as time passes. We also show that the set of points of I

that are not slowly recurrent to the critical set decays sub-exponentially. As a consequence
we obtain continuous variation of the SRB measures and associated metric entropies with
the parameter on the referred set.

1. Introduction

Our object of study is the logistic family. Concerning the asymptotic behavior of orbits
of points x ∈ I = [−1, 1] we know that:

(1) The set of parameters H for which fa has an attracting periodic orbit, is open and
dense in [0, 2].

(2) There is a positive Lebesgue measure set of parameters, close to the parameter value
2, for which fa has no attracting periodic orbit and exhibits a chaotic behavior, in
the sense of existence of an ergodic, fa-invariant measure absolutely continuous
with respect to the Lebesgue measure on I = [−1, 1].

The first result was a conjecture with long history that was finally established by
Graczyk, Swiatek [GS97] and Lyubich [Ly97, Ly00]. The last one was studied on Jakob-
son’s pioneer work [Ja81] and latter by Benedicks and Carleson on their celebrated papers
[BC85, BC91].

A remarkable fact is the crucial role played by the orbit of the unique critical point
ξ0 = 0 on the determination of the dynamical behavior of fa. It is well known that if fa

has an attracting periodic orbit then ξ0 = 0 belongs to its basin of attraction, which is the
set of points x ∈ I whose ω-limit set is the attracting periodic orbit. Also, the basin of
attraction of the periodic orbit is an open and dense full Lebesgue measure subset of I.
See [MS93], for instance.
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Benedicks and Carleson [BC85, BC91] show the existence of a positive Lebesgue measure
set of parameters Ω∞ for which there is exponential growth of the derivative of the orbit of
the critical point ξ0. This implies the non-existence of attracting periodic orbits and leads
to a new proof of Jakobson’s theorem.

In this work, we study the regularity on the variation of invariant measures and their
metric entropy for small perturbations on the parameters. We are interested on investi-
gating statistical stability of the system, that is, the persistence of its statistical properties
for small modifications of the parameters. Alves and Viana [AV02] formalized this concept
statistical stability in terms of continuous variation of physical measures as a function of
the governing law of the dynamical system.

By physical measure or Sinai-Ruelle-Bowen (SRB) measure we mean a Borel probability
measure µ on I for which there is a positive Lebesgue measure set of points x ∈ I such
that

lim
n→∞

1

n

n−1∑

j=0

ϕ
(
f j

a(x)
)

=

∫
ϕ dµ,

for any continuous function ϕ : I → R. The set of points x ∈ I with this property is
called the basin of µ. One should regard SRB measures as Borel probability measures that
provide a fairly description of the statistical behavior of orbits, at least for a large set of
points that constitute the basin of the SRB measure.

It is not hard to conclude that if a ∈ H, and {p, fa(p), . . . , f k−1
a (p)} is the attracting

periodic orbit then

ηa =
1

k

k−1∑

i=0

δf i
a(p),

where δx is the Dirac probability measure at x ∈ I, is a SRB measure whose basin coin-
cides with the basin of attraction of the periodic orbit. Moreover, the quadratic family is
statistically stable for a ∈ H, i.e., the SRB measure ηa varies continuously with a ∈ H, in
a weak sense (convergence of measures in the weak* topology).

Benedicks and Young [BY92] proved that for each Benedicks-Carleson parameter a ∈
Ω∞, there is an unique, ergodic, fa-invariant, absolutely continuous measure (with respect
to Lebesgue measure on I) µa. These measures qualify as SRB measures by Birkhoff’s
ergodic theorem and their basin is the whole interval I.

In the subsequent sections we will prove that the quadratic family is statistically stable,
in strong sense, for a ∈ Ω∞. To be more precise, we will show that the densities of the SRB
measures vary continuously, in L1-norm, with the parameters a ∈ Ω∞. This result extends
the one by Rychlik and Sorets [RS92] who showed the same for Misiurevicz parameters,
which form a subset of zero Lebesgue measure.

Concerning the stability of the statistical behavior of the system in a broader perspective,
we are also specially interested in the variation of entropy. Entropy is related to the
unpredictability of the system. Topological entropy measures the complexity of a dynamical
system in terms of the exponential growth rate of the number of orbits distinguishable over
long time intervals, within a fixed small precision. Metric entropy with respect to an SRB
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measure, quantifies the average level of uncertainty every time we iterate, in terms of
exponential growth rate of the number of statistically significant paths an orbit can follow.

It is known that topological entropy varies continuously with a ∈ [0, 2] (see [MS93]).
This is not the case in what respects to metric entropy of SRB measures. We note that
the metric entropy associated to ηa, with a ∈ H, is zero. H is an open and dense set
which means we can find a sequence of parameters (an)n∈N, such that an ∈ H and thus
with zero metric entropy with respect to the SRB measure ηan

, accumulating on a ∈ Ω∞
whose metric entropy associated to the absolutely continuous SRB measure, µa, is strictly
positive.

However, we will show that the metric entropy of the absolutely continuous SRB measure
µa varies continuously on the Benedicks and Carleson parameters, a ∈ Ω∞. We would like
to stress that the continuous variation of the metric entropy is not a direct consequence of
the continuous variation of the SRB measures and the entropy formula, because log(f ′

a) is
not continuous on the interval I.

1.1. Motivation and main strategy. The work developed by Alves and Viana on [AV02]
lead Alves [Al03] to obtain sufficient conditions for the strong statistical stability of certain
classes of non-uniformly expanding maps with slow recurrence to the critical set. By non-
uniformly expanding, we mean that for Lebesgue almost all points we have exponential
growth of the derivative along their orbits. Slow recurrence to the critical set means,
roughly speaking, that almost all points cannot have their orbits spending long periods of
time in a very small vicinity of the critical set.

Alves, Oliveira and Tahzibi [AOT03] determined abstract conditions for continuous vari-
ation of metric entropy with respect to SRB measures. They also obtained conditions for
non-uniformly expanding maps with slow recurrence to the critical set to satisfy their initial
abstract conditions.

In both cases, the conditions obtained for continuous variation of SRB measures and
their metric entropy are tied with the volume decay of the tail set, which is the set of
points that resist to satisfy either the non-uniformly expanding or the slow recurrence to
the critical set conditions, up to a given time.

Consequently, our main objective is to show that on the Benedicks-Carleson set of pa-
rameter values, where we have exponential growth of the derivative along the orbit of the
critical point ξ0 = 0, the maps fa are non-uniformly expanding, have slow recurrence to
the critical set, and the volume of the tail set decays sufficiently fast. In fact, we will show
that the volume of the points whose derivative has not reached a satisfactory exponential
rate, up to a given time n ∈ N, decays exponentially fast with n. While the points that
up to a fixed time n ∈ N, could not be sufficiently kept away from a vicinity of the critical
point, decays sub-exponentially with n.

Finally we apply the results on [Al03, AOT03] to obtain the continuous variation of the
SRB measures and their metric entropy inside the set of Benedicks and Carleson parameters
Ω∞.
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We also refer to the recent work [ACP04] from which we conclude, by the non-uniformly
expanding character of these maps, that for almost every x ∈ I and any y on a pre-orbit
of x, one has an exponential growth of the derivative of y.

1.2. Statement of results. In the sequel we will only consider parameter values a ∈ Ω∞
which are Benedicks-Carleson parameters, in the sense that for those a ∈ Ω∞ we have
exponential growth of the derivative of fa (ξ0),∣∣∣

(
f j

a

)′
(fa(ξ0))

∣∣∣ ≥ ecj, ∀j ∈ N, (EG)

where c ∈
[

2
3
, log 2

)
is fixed, and the basic assumption is valid

∣∣f j
a (ξ0)

∣∣ ≥ e−αj, ∀j ∈ N, (BA)

where α is a small constant. Note that Ω∞ is a set of parameter values of positive Lebesgue
measure, very close to a = 2. (See Theorem 1 of [BC91] or [Mo92] for a detailed version of
its proof).

We say that fa is non-uniformly expanding if there is a d > 0 such that for Lebesgue
almost every point in I = [−1, 1]

lim inf
n→∞

1

n

n−1∑

i=0

log
∣∣f ′

a

(
f i

a(x)
)∣∣ > d, (1.1)

while having slow recurrence to the critical set means that for every ε > 0, there exists
γ > 0 such that for Lebesgue almost every x ∈ I

lim sup
n→∞

1

n

n−1∑

j=0

− log distγ

(
f j

a(x), 0
)

< ε, (1.2)

where

distγ(x, y) =

{
|x − y| if |x − y| ≤ γ
0 if |x − y| > γ

.

Observe that by (EG) it is obvious that ξ0 satisfies (1.1) for all a ∈ Ω∞. However, in what
refers to condition (1.2) the matter is far more complicated and one has that ξ0 satisfies
it for Lebesgue almost all parameters a ∈ Ω∞. We provide an heuristic argumentation for
the validity of the last statement on remark 8.2.

It is well known that the validity of (1.1) Lebesgue almost everywhere derives from the
existence of an ergodic absolutely continuous invariant measure. Nevertheless we are also
interested on knowing how fast does the volume of the points that resist to satisfy (1.1)
up to n, decays to 0 as n goes to ∞. With this in mind, we define the expansion time
function, first introduced on [ALP02]

E(x) = min

{
N ≥ 1 :

1

n

n−1∑

i=0

log
∣∣f ′

a

(
f i

a(x)
)∣∣ > d, ∀n ≥ N

}
, (1.3)

which is defined and finite almost everywhere on I if (1.1) holds.
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Similarly, we define the recurrence time function, also introduced on [ALP02]

R(x) = min

{
N ≥ 1 :

1

n

n−1∑

j=0

− log distγ

(
f j

a(x), 0
)

< ε, ∀n ≥ N

}
, (1.4)

which is defined and finite almost everywhere in I, as long (1.2) holds.
We are now able to define the tail set, at time n ∈ N,

Γfa

n = {x ∈ I : E(x) > n or R(x) > n} , (1.5)

which can be seen as the set of points that at time n have not reached a satisfactory
exponential growth of the derivative or could not be sufficiently kept away from ξ0 = 0.

First we study the volume contribution to the tail set, Γfa
n , of the points where fa fails to

present non-uniformly expanding behavior.We claim that in fact, (1.1) holds to be true and
the volume of the set of points whose derivative has not achieved a satisfactory exponential
growth at time n, decays exponentially as n goes to ∞.

Theorem A. Assume that a ∈ Ω∞. Then fa is non-uniformly expanding, which is to say
that (1.1) holds for Lebesgue almost all points x ∈ I. Moreover, there are positive real
numbers C1 and τ1 such that for all n ∈ N:

λ {x ∈ I : E(x) > n} ≤ C1e
−τ1n.

Secondly, we study the volume contribution to Γfa
n , of the points that fail to be slowly

recurrent to ξ0. We claim that (1.2) also holds to be true and the volume of the set of points
that at time n, have been too close to the critical point, in mean, decays sub-exponentially
with n.

Theorem B. Assume that a ∈ Ω∞. Then fa has slow recurrence to the critical set, or in
other words, (1.2) holds for Lebesgue almost all points x ∈ I. Moreover, there are positive
real numbers C2 and τ2 such that for all n ∈ N:

λ {x ∈ I : R(x) > n} ≤ C2e
−τ2

√
n.

Remark 1.1. The constants d in (1.1), ε, γ in (1.2) c, α from (EG) and (BA) can be chosen
uniformly on Ω∞. Moreover, the constants C1, τ1 given by theorem A and the constants
C2, τ2 given by theorem B depend on the previous ones but are independent of the param-
eter a ∈ Ω∞. Thus we may say that {fa}a∈Ω∞ is a uniform family in the sense considered
in [Al03]. For a further discussion on this subject see section 9.

Remark 1.2. Both theorems easily imply that the volume of the tail set decays to 0 at least
sub-exponentially as n goes to ∞, ie, for all n ∈ N, λ

(
Γfa

n

)
≤ const e−τ

√
n, for some τ > 0

and const > 0.

Remark 1.3. One may wonder if the sub-exponential decay rate on theorem B could be
improved. As far as we know the answer is negative, at least with the same type of statis-
tical argument used. In fact, the same kind of large deviation argument, also lead Viana
to a sub-exponential decay of a resemblant tail set in [Vi97]. For better understanding of
how the large deviation argument prevents a faster tail volume decay we refer to remark
8.1.
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The sub-exponential volume decay of the tail set puts us in condition of applying theorem
A from [Al03] to obtain, in a strong sense, continuous variation of the ergodic invariant
measures under small perturbations on the set of parameters. By strong sense we mean
convergence of the densities of the ergodic invariant measures in the L1 norm.

Corollary C. Let µa be the SRB measure invariant for fa. Then Ω∞ 3 a 7→ dµa

dλ
is

continuous.

Theorems A and B also make it possible the application of corollary C figuring on
[AOT03] to get continuous variation of metric entropy with the parameter.

Corollary D. The entropy of the SRB measure invariant of fa varies continuously with
a ∈ Ω∞.

Theorem A alone, also allows us to apply corollary 1.2 from [ACP04] to obtain backward
volume contraction.

Corollary E. For Lebesgue almost every x ∈ I, there exists Cx > 0 and b > 0 such that∣∣(fn
a )′ (y)

∣∣ > Cxe
bn, for every y ∈ f−n(x).

2. Setting of Notation and Vocabulary

In order to be precise about the meaning of “close to the critical set” and “distant from
the critical set”, we introduce the following neighborhoods of ξ0 = 0:

Um =
(
−e−m, e−m

)
, U+

m =
(
−e−m+1, e−m+1

)
, for |m| ≥ ∆;

and consider also

Im =
[
e−(m+1), e−m

)
, I+

m =
[
e−(m+1), e−(m−1)

)
, for m ≥ ∆,

Im =
(
−e−m,−e−(m+1)

]
, I+

m =
(
−e−(m−1),−e−(m+1)

]
, for m ≤ −∆,

where ∆ is a large positive integer.
We define δ = e−∆ that will indicate when closeness to the critical region is relevant. In

fact, here and henceforth, we consider γ = δ in (1.2)
We will use λ to refer to Lebesgue measure on R, although, sometimes we will write |ω|

as an abbreviation of λ(ω), for ω ⊂ R.
We introduce the following notation for the orbit of the critical point, ξn = fn

a (0), for
all n ∈ N0.

Consider a point x ∈ I and n ∈ N. We define

Tn(x) =
1

n

n−1∑

j=0

− log distδ

(
f j

a(x), 0
)
. (2.1)

In order to explain the main ideas we also introduce a vocabulary suitable for making
ourselves clear. We have a return of the orbit of a point to the neighborhood of ξ0 = 0 if
for some j ∈ N, f j

a(x) ∈ U∆ = (−δ, δ). We say that the return had a depth of µ ∈ N if
µ = [− log distδ (f j

a(x), 0)], which is equivalent to say that f j
a(x) ∈ I±µ.
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We may have three types of returns: essential, inessential and bound. The essential
returns are the ones that will play a prominent role in the reasoning. Let the sequence
t1, t2, . . . denote the instants corresponding to essential returns of the orbit of x. When
n ∈ N is given, we can define sn to be the number of essential returns of the orbit of x,
occurring up to n. Let ηi denote the depth of the i-th essential return. Each ti might
be followed by bounded returns ui,j, j = 1, . . . , u and these can be followed by inessential
returns vi,j, j = 1, . . . , v. We will write ηi,j to denote the depth of the inessential return
correspondent to vi,j. Note that each vi,j has a bound evolution where new bound returns
may occur and although we refer to these returns later, it is not necessary to introduce
here a notation for them. There is also no need to introduce a notation for the depths of
the bound returns. Sometimes, for the sake of simplicity, it is convenient not to distinguish
between essential and inessential returns, so we introduce the notation z1 < z2 < . . . for
the instants of occurrence of essential or inessential returns of the orbit of x.

We call the attention for the fact that ti, for example, depends of the point x ∈ I
considered- ti(x) corresponds to the i-th instant of essential return of the orbit of x. So,
ti, sn, ηi, ui,j, vi,j, ηi,j and zi, should be regarded as functions of the point x ∈ I.

We will build a sequence of partitions Pn of the set I, such that all x ∈ ω ∈ Pn have
the same return times and return depths up to n. In fact, if, for example, ti(x) ≤ n for
some x ∈ ω ∈ Pn, then ti and ηi are constant on ω. The same applies to the other above
mentioned functions of x. The construction of the partition will also guarantee that fa has
bounded distortion on each component which will reveal to be of extreme importance.

3. Insight of the reasoning

In order to achieve our goals we will follow [BC85, BC91] and proceed for each point
x ∈ I as they proceeded for ξ0, by splitting the orbit of x into free periods, returns, bound
periods, which occur in this order.

The free periods correspond to the times on which the orbit stays away from the vicinity
U∆ = (−δ, δ) of ξ0. During these periods the orbit of x experiences an exponential growth
of its derivative |(fn

a )′(x)|, provided we are close enough to the parameter value 2. In fact,
the following lemma gives a first approach to the set Ω∞ by stating that we may have
an exponential growth rate 0 < c0 < log 2 of the derivative of the orbit of x during free
periods, for all a ∈ [a0, 2], where a0 is chosen sufficiently close to 2.

Lemma 3.1. For every 0 < c0 < log 2 and ∆ sufficiently large there exists 1 < a0(c0, ∆) <
2 such that for every x ∈ I and a ∈ [a0, 2] one has:

(1) If x, fa(x), . . . , f k−1
a (x) /∈ U∆+1 then

∣∣(f k
a )′(x)

∣∣ ≥ e−(∆+1)ec0k;

(2) If x, fa(x), . . . , f k−1
a (x) /∈ U∆+1 and f k

a (x) ∈ U+
∆ , then

∣∣(f k
a )′(x)

∣∣ ≥ ec0k;

(3) If x, fa(x), . . . , f k−1
a (x) /∈ U∆+1 and f k

a (x) ∈ U1, then
∣∣(f k

a )′(x)
∣∣ ≥ 4

5
ec0k.

The proof relies on the fact that f2(x) = 1− 2x2 is conjugate to 1− 2|x|. So it is only a
question of choosing a sufficiently close to 2 for fa to inherit the expansive behavior of f2.
See [BC85] or [Al92, Mo92] for detailed versions.
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However, for almost every point x ∈ I, it is impossible to keep its orbit away from U∆.
Since

|(fn
a )′(x)| =

n∏

j=1

∣∣2af j
a(x)

∣∣ ,

the returns introduce some small factors on the derivative of the orbit of x. Also note that
the only points of the orbit of x that contribute to the sum in (2.1) are those considered
to be returns. After a free period we can only have either essential or inessential returns,
and the first are the ones that will require more attention. To compensate the loss on the
expansion of the derivative, we will show that a property very similar to (BA) holds for
the orbit of x ∈ I which can be seen as: we allow the orbit of x to get close to ξ0 but we
put some restraints on the velocity of possible accumulation on ξ0. This will be the basis
of the proof of theorem A. As for the proof of theorem B the strategy will be of different
kind, it will be based on a statistical analysis of the depth of the returns, specially of the
essential returns, which, fortunately, are very unlikely to reach large depths.

We are lead to the notion of bound period that follows a return during which the orbit of
x is bounded to the orbit of ξ0, or in other words: the orbit of x shadows the early iterates
of ξ0.

Let β > 0 be a small number such that β > α, take, for example, 10−2 > β = 2α.

Definition 3.1. Suppose x ∈ U+
m. Let p(m, x) be the largest p such that the following

binding condition holds:
∣∣f j

a(x) − ξj(a)
∣∣ ≤ e−βj, for all i = 1, . . . , p − 1 (BC)

The time interval 1, . . . , p(m, x) − 1 is called the bound period for x.
If p(m) is the largest p such that (BC) holds for all x ∈ I+

m, which is the same to define

p(m) = min
x∈I+

m

p(m, x),

then the time interval 1, . . . , p(m) − 1 is called the bound period for I+
m.

One expects that the deeper is the return, the longer is its associated bound period.
Next lemma confirms this, in particular.

Lemma 3.2. If ∆ is sufficiently large, then for each |m| ≥ ∆, p(m) has the following
properties:

(1) There is a constant B1 = B1(β − α) such that ∀y ∈ fa

(
U|m|−1

)

1

B1

≤
∣∣∣∣
(f j

a)′(y)

(f j
a)′(ξ1)

∣∣∣∣ ≤ B1, for j = 0, 1 . . . , p(m) − 1;

(2) p(m) < 3|m|;
(3)

∣∣(f p
a )′ (x)

∣∣ ≥ e(1−4β)|m|, for x ∈ I+
m and p = p(m).

The proof of this lemma depends heavily on the conditions (EG) and (BA). It can
be found on [Al92, Mo92]. (Look up [BC85] for a similar version of the lemma but with
sub-exponential estimates).
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We call the attention for the fact that after the bound period not only we have recovered
from the loss on the growth of the derivative caused by the return that originated the bound
period, but we even have some exponential gain.

We are now in condition of making a sketch of the proofs of theorems A and B. The
following two basic ideas are determinant for both the proofs.

(I) The depth of the inessential and bound returns is smaller than the depth of the
essential return preceding them, as we will show on lemmas 5.1 and 5.2.

(II) The chances of occurring a very deep essential return are very small, in fact, they
are less than e−τρ, where τ > 0 is constant and ρ is the depth in question. See
proposition 6.1 and corollary 6.2.

The first one derives from (BA) and (EG), while the main ingredient of the proof of the
second is the bounded distortion on each element of the partition.

In order to prove theorem A, we define the following sets for a sufficiently large n.

E1(n) =
{
x ∈ I : ∃i ∈ {1, . . . , n}, |f i

a(x)| < e−αn
}

. (3.1)

Next, we will see that if x ∈ I − E1(n) then
∣∣(fn

a )′ (x)
∣∣ > edn, for some d = d(α, β).

Let us fix a large n. Assume that zi, i = 1, . . . , γ are the instants of return of the orbit of
x, either essential or inessential. Let pi denote the length of the bound period associated to
the return zi. We set z0 = 0, wether x ∈ U∆ or not; p0 = 0 if x /∈ U∆ and as usual if not. We

define qi = zi+1−(zi+pi), for i = 0, 1, . . . , γ−1 and qγ =

{
0 if n < zγ + pγ

n − (zγ + pγ if n ≥ zγ + pγ
.

Finally, let

d = min

{
c,

1 − 4β

3

}
− 2α =

1 − 4β

3
− 2α. (3.2)

If n ≥ zγ + pγ then

|(fn
a )′(x)| =

γ∏

i=0

∣∣(f qi
a )′(f zi+pi

a (x))
∣∣ |(f pi

a )′(f zi
a (x))| .

Using lemmas 3.1 and 3.2, we have

|(fn
a )′(x)| = e−∆+1ec

Pγ
i=0 qie

1−4β
3

Pγ
i=0 pi ≥ e−∆+1edne2αn ≥ edn, (3.3)

for n large enough.
If n < zγ + pγ then

|(fn
a )′(x)| = |f ′

a(f
zγ

a (x))|
∣∣(fn−(zγ+1)

a )′(f zγ+1
a (x))

∣∣
γ−1∏

i=0

∣∣(f qi
a )′(f zi+pi

a (x))
∣∣ |(f pi

a )′(f zi
a (x))| .
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Now, by lemmas 3.1 and 3.2 together with the assumption that x ∈ I −E1(n), for n large
enough we have

|(fn
a )′(x)| ≥ |f ′

a(f
zγ

a (x))| 1
B1

∣∣(fn−(zγ+1)
a )′(1)

∣∣ ec
Pγ−1

i=0 qie
1−4β

3

Pγ−1
i=0 pi

≥ e−αn 1
B1

ec(n−(zγ+1))ec
Pγ−1

i=0 qie
1−4β

3

Pγ−1
i=0 pi

≥ e−αn−log B1e(d+2α)(n−1)

≥ e−2αnedne2αn

≥ edn.

(3.4)

Using(I) and (II) we will show that

λ (E1(n)) ≤ e−τ1n, (3.5)

for a constant τ1(α, β) > 0 and for all n ≥ N ∗
1 (∆, τ1). We consider N1(∆, α, B1, d, N∗

1 ) such
that for all n ≥ N1 estimates (3.3), (3.4) and (3.5) hold. Hence for every n ≥ N1 we have
that |(fn

a )′(x)| ≥ edn, except for a set E1(n) of points of x ∈ I satisfying (3.5).
We take E1 =

⋂
k≥N1

⋃
n≥k E1(n). Since ∀k ≥ N1

∑

n≥k

λ (E1(n)) ≤ const e−τ1k,

we have by the Borel Cantelli lemma that λ(E1) = 0. Thus on the full Lebesgue measure
set I − E1 we have that (1.1) holds. We note that {x ∈ I : E(x) > k} ⊂ ⋃

n≥k E1(n), so
for k ≥ N1

λ ({x ∈ I : E(x) > k}) ≤ const e−τ1k.

At this point we just have to compute an adequate C1 = C1(N1) > 0 such that

λ ({x ∈ I : E(x) > n}) ≤ C1e
−τ1n, (3.6)

for all n ∈ N .
For the proof of theorem B, we define for n ∈ N the sets:

E2(n) = {x ∈ I : Tn(x) > ε} . (3.7)

Again, using (BA) and (EG), we will show in lemma 5.3 that the elapsed time between
two consecutive essential returns is smaller than 5ηi, ie, ti+1 − ti ≤ 5ηi. This fact and basic
idea (I) make it possible to bound Tn in the following way:

Tn(x) ≤ 1

n

sn∑

i=1

5η2
i =

5

n
Bn(x), (3.8)

where sn denotes the number of essential returns occurring up to n and ηi the depth of
i-th essential return. Hence we have

λ(E2(n)) ≤ λ
{
x : Bn(x) >

εn

5

}
.
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Fact (II) and a large deviation argument allow us to obtain

λ
{
x : Bn(x) >

εn

5

}
≤ const e−τ2

√
n

where τ2 = τ2(β, ε) > 0 is constant, which implies
∑

n≥k

λ (E2(n)) ≤ const e−τ2
√

k.

Consequently, applying Borel Cantelli’s lemma, we get λ(E2) = 0, where
E2 =

⋂
k≥1

⋃
n≥k E2(n) and finally conclude that (1.2) holds on the full Lebesgue mea-

sure set I − E2. Observe that {x ∈ I : R(x) > k} ⊂ ⋃n≥k E2(n), and thus, for all n ∈ N,

λ ({x ∈ I : R(x) > n}) ≤ C2e
−τ2

√
n,

where C2 = C2(τ2) > 0 is constant.
At this point we would like to bring the reader’s attention for the fact that most proofs

and lemmas that follow are standard, in the sense that they are very resemblant to the
ones on [Al92, BC85, BC91, BY92, Mo92] (just to cite a few), that deal with the same
subject. Nevertheless, we could not find the right version for our needs, either because in
some cases they refer to sub-exponential estimates when we want exponential estimates or
because the partition is built on the space of parameters instead of the set I, as we wish.
Hence, we decided for the sake of completeness to include them in this work.

4. Construction of the partition and bounded distortion

We are going to build inductively a sequence of partitions P0,P1, . . . of I (modulus a
zero Lebesgue measure set) into intervals. We begin by breaking each Im, |m| ≥ ∆, into
m2 pieces of the same length in order to obtain bounded distortion on each member of the
partition. For each m ≥ ∆ − 1 and k = 1, . . . , m2, we introduce the following notation

Im,k =

[
e−m − k

λ(Im)

m2
, e−m − (k − 1)

λ(Im)

m2

)

I−m,k = −Im,k , I+
m,k = Im1,k1 ∪ Im,k ∪ Im2,k2,

where Im1,k1 and Im2,k2 are the adjacent intervals of Im,k.
We will also define inductively the sets Rn(ω) =

{
z1, . . . , zγ(n)

}
which is the set of the

return times of ω ∈ Pn up to n and a set Qn(ω) =
{
(m1, k1), . . . , (mγ(n), kγ(n))

}
, which

records the indices of the intervals such that f zi
a (ω) ⊂ Imi,ki

, i = 1, . . . , zγ(n).
Among with the construction of the partition we will show, inductively that for all

n ∈ N0

∀ω ∈ Pn fn+1
a |ω is a diffeomorphism, (4.1)

which is vital for the construction itself.
For n = 0 we define

P0 = {[−1,−δ], [δ, 1]} ∪
{
Im,k : |m| ≥ ∆, 1 ≤ k ≤ m2

}
.
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It is obvious that P0 satisfies (4.1). We set R0 ([−1,−δ]) = R0 ([δ, 1]) = ∅ and R0(Im,k) =
{0}.

Assume that Pn−1 is defined, satisfies (4.1) and Rn−1, Qn−1 are also defined on each
element of Pn−1. We fix an interval ω ∈ Pn−1. We have three possible situations:

(1) If Rn−1(ω) 6= ∅ and n < zγ(n−1) + p(mγ(n−1)) then we say that n is a bound time for
ω, put ω ∈ Pn and set Rn(ω) = Rn−1(ω), Qn(ω) = Qn−1(ω).

(2) If Rn−1(ω) = ∅ or n ≥ zγ(n−1) + p(mγ(n−1)), and fn
a (ω) ∩ U∆ ⊂ I∆,1 ∪ I−∆,1,

then we say that n is a free time for ω, put ω ∈ Pn and set Rn(ω) = Rn−1(ω),
Qn(ω) = Qn−1(ω).

(3) If the above two conditions do not hold we say that ω has a return situation at
time n. We have to consider two cases:
(a) fn

a (ω) does not cover completely an interval Im,k, with |m| ≥ ∆ and k =
1, . . . , m2. Because fn

a is continuous and ω is an interval, fn
a (ω) is also an

interval and thus is contained in some I+
m,k, for a certain |m| ≥ ∆ and k =

1, . . . , m2, which is called the host interval of the return. We say that n is
an inessential return time for ω and set Rn(ω) = Rn−1(ω) ∪ {n}, Qn(ω) =
Qn−1(ω) ∪ {(m, k)}.

(b) fn
a (ω) contains at least an interval Im,k, with |m| ≥ ∆ and k = 1, . . . , m2, in

which case we say that ω has an essential return situation at time n. Then we
consider the sets

ω′
m,k = f−n

a (Im,k) ∩ ω for |m| ≥ ∆

ω′
∆−1,(∆−1)2 = f−n

a ([δ, 1]) ∩ ω

ω′
1−∆,(∆−1)2 = f−n

a ([−1,−δ]) ∩ ω

and if we denote by A the set of indices (m, k) such that ω′
m,k 6= ∅ we have

ω − f−n
a (0) =

⋃

(m,k)∈A
ω′

m,k. (4.2)

By the induction hypothesis fn
a |ω is a diffeomorphism and then each ω′

m,k is
an interval. Moreover fn

a (ω′
m,k) covers the whole Im,k except eventually for the

two end intervals. When fn
a (ω′

m,k) does not cover entirely Im,k, we join it with
its adjacent interval in (4.2) and get a new decomposition of ω − f−n

a (0) into
intervals ωm,k such that

Im,k ⊂ fn
a (ωm,k) ⊂ I+

m,k,

when |m| ≥ ∆.
We define Pn, by putting ωm,k ∈ Pn for all indices (m, k) such that ωm,k 6= ∅,
with |m| ≥ ∆, which results on a refinement of Pn−1 at ω. We set Rn(ωm,k) =
Rn−1(ω)∪ {n} and n is called an essential return time for ωm,k. The intervals
I+
m,k is called once more the host interval of ωm,k and Qn(ωm,k) = Qn(ω) ∪
{(m, k)}.
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On the eventuality of the set ω∆−1,(∆−1)2 being not empty we say that n is a
free time for ω∆−1,(∆−1)2 and Rn(ω∆−1,(∆−1)2) = Rn−1(ω), Qn(ω∆−1,(∆−1)2) =
Qn−1(ω). We proceed likewise for ω1−∆,(∆−1)2 .

To end the construction we need to verify that (4.1) holds for Pn. Since for any interval
J ⊂ I

fn
a |J is a diffeomorphism

0 /∈ fn
a (J)

}
⇒ fn+1

a |J is a diffeomorphism,

all we are left to prove is that 0 /∈ fn
a (ω) for all ω ∈ Pn. So take ω ∈ Pn. If n is a free time

for ω then we have nothing to prove. If n is a return for ω, either essential or inessential,
we have by construction that fn

a (ω) ⊂ I+
m,k for some |m| ≥ ∆, k = 1, . . . , m2 and thus

0 /∈ fn
a (ω). If n is a bound time for ω then by definition of bound period and (BA) we

have for all x ∈ ω

|fn
a (x)| ≥

∣∣∣fn−zγ(n−1)
a (0)

∣∣∣−
∣∣∣fn

a (x) − f
n−zγ(n−1)
a (0)

∣∣∣

≥ e−α(n−zγ(n−1)) − e−β(n−zγ(n−1))

≥ e−α(n−zγ(n−1))
(
1 − e−(β−α)(n−zγ(n−1))

)

> 0 since β − α > 0.

Now we will obtain estimates of the length of |fn
a (ω)|.

Lemma 4.1. Suppose that z is a return time for ω ∈ Pn−1, with host interval I+
m,k. Let

p = p(m) denote the length of its bound period. Then

(1) Assuming that z∗ ≤ n − 1 is the next return time for ω (either essential or
inessential) and defining q = z∗ − (z + p) we have, for a sufficiently large ∆,∣∣f z∗

a (ω)
∣∣ ≥ ecqe(1−4β)|m| |f z

a (ω)| ≥ 2 |f z
a (ω)|.

(2) If z is the last return time of ω up to n − 1 and n is either a free time for ω or a
return situation for ω, then putting q = n− (z + p) we have, for a sufficiently large
∆,
(a) |fn

a (ω)| ≥ ecq−(∆+1)e(1−4β)|m| |f z
a (ω)|

(b) |fn
a (ω)| ≥ ecq−(∆+1)e−5β|m| if z is an essential return.

(3) If z is the last return time of ω up to n − 1, n is a return situation for ω and
fn

a (ω) ⊂ U1, then putting q = n − (z + p) we have, for a sufficiently large ∆,
(a)

∣∣f z∗
a (ω)

∣∣ ≥ ecqe(1−5β)|m| |f z
a (ω)| ≥ 2 |f z

a (ω)|;
(b) |fn

a (ω)| ≥ ecqe−5β|m| if z is an essential return.

Proof. By the mean value theorem, for some ζ ∈ ω,

|fn
a (ω)| ≥

∣∣∣
(
fn−z

a

)′
(f z

a (ζ))
∣∣∣ |f z

a (ω)| .
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Using lemma 3.1 part 2 and lemma 3.2 part 3 we get

|fn
a (ω)| ≥

∣∣(f q
a )′
(
f z+p

a (ζ)
)∣∣ ∣∣(f p

a )′ (f z
a (ζ))

∣∣ |f z
a (ω)|

≥ 4
5
ecqe(1−4β)|m| |f z

a (ω)|
≥ 4

5
eβ|m|ecqe(1−5β)|m| |f z

a (ω)|
≥ 2ecqe(1−5β)|m| |f z

a (ω)| ,

if ∆ is sufficiently large in order to have 4
5
eβ|m| ≥ 2.

Note that part 3a is proved. To demonstrate part 1 one only needs to use lemma 3.1
part 2 instead of 3. For obtaining 3b observe that because z is an essential return time

Im,k ⊂ f z
a (ω) which implies λ(f z

a (ω)) ≥ e−|m|

2m2 and so

|fn
a (ω)| ≥ 4

5
eβ|m|ecqe(1−5β)|m| |f z

a (ω)|
≥ ecqe(1−5β)|m|e−|m| 2eβ|m|

5m2

≥ ecqe−5β|m|,

if ∆ is large enough.
To obtain part 2 it is just a matter of repeating the proof using lemma 3.1 part 1 instead

of 3. Note that when n is a return situation for ω and not a return time for ω we cannot
guarantee that f

ti+1
a (ω) ⊂ U1, and thus the point given by the mean value theorem to

obtain the above inequality is not certain to belong to U1, which justifies the usage of part
1 of lemma 3.1, also in this case. �

Lemma 4.2 (Bounded Distortion). For some n ∈ N let ω ∈ Pn−1 be such that fn
a (ω) ⊂ U1.

Then there is a constant C(β − α) such that for every x, y ∈ ω
∣∣(fn

a )′ (x)
∣∣

∣∣(fn
a )′ (y)

∣∣ ≤ C

Proof. Let Rn−1(ω) = {z1, . . . , zγ} and Qn−1(ω) = {(m1, k1), . . . , (mγ, kγ)}, be, respec-
tively, the sets of return times and host indices of ω, defined on the construction of the
partition. Note that for i = 1, . . . , γ, f zi

a (ω) ⊂ I+
mi,ki

. Let σi = f zi
a (ω), pi = p(mi),

xi = f i
a(x) and yi = f i

a(y).
Observe that

∣∣∣∣
(fn

a )′(x)

(fn
a )′(y)

∣∣∣∣ =
n−1∏

j=0

∣∣∣∣
f ′

a(xj)

f ′
a(yj)

∣∣∣∣ =

n−1∏

j=0

∣∣∣∣
xj

yj

∣∣∣∣ ≤
n−1∏

j=0

(
1 +

∣∣∣∣
xj − yj

yj

∣∣∣∣
)

Hence the result is proved if we manage to bound uniformly

S =

n−1∑

j=0

∣∣∣∣
xj − yj

yj

∣∣∣∣ .

For the moment assume that n ≤ zγ + pγ − 1.
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We first estimate the contribution of the free period between zq−1 and zq for the sum S

Fq =

zq−1∑

j=zq−1+pk−1

∣∣∣∣
xj − yj

yj

∣∣∣∣ ≤
zq−1∑

j=zq−1+pk−1

∣∣∣∣
xj − yj

δ

∣∣∣∣

For j = zq−1 + pk−1, · · · , zq − 1 we have

λ(σq) ≥ |f zq−j
a (xj) − f zq−j

a (yj)|
=

∣∣(f zq−j
a )′(ζ)

∣∣ · |xj − yj|, for some ζ between xj and yj

≥ ec(zq−j)|xj − yj|, by Lemma 3.1

and so

Fq ≤
zq−1∑

j=zq−1+pk−1

e−c(zq−j) · λ(σq)

δ

≤
∞∑

j=1

e−cj · λ(Imq
)

δ
· λ(σq)

λ(Imq
)

≤ a1 ·
λ(σq)

λ(Imq
)

for some constant a1 = a1(c).

The contribution of the return zq is

∣∣∣∣
xzq

− yzq

yzq

∣∣∣∣ ≤
λ(σq)

e−|mq |−2
≤ a2 ·

λ(σq)

λ(Imq
)

where a2 is a constant.

Finally, let us compute the contribution of bound periods

Bq =

pq−1∑

j=1

∣∣∣∣
xzq+j − yzq+j

yzq+j

∣∣∣∣

We have that

|xzq+j − yzq+j| = |(f j
a)

′(ζ)| · |xzq
− yzq

|, for some ζ between xzq
and yzq

=
∣∣(f j−1

a )′ (fa(ζ))
∣∣ · |f ′

a(ζ)| · |xzq
− yzq

|
=

∣∣(f j−1
a )′ (fa(ζ))

∣∣ · 2a|ζ| · |xzq
− yzq

|
≤ B1|(f j−1

a )′(ξ1)| · 2ae−|mq |+1 · λ(σq).

On the other hand, we have

|yzq+j − ξj| = |(f j−1
a )′(θ)| · |yzq+1 − ξ1|
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for some θ ∈ [yzq+1, ξ1]. Noting that [yzq+1, ξ1] ⊂ fa

(
U+
|mq |

)
, we apply Lemma 3.2 and get

|yzq+j − ξj| ≥ 1

B1

|(f j−1
a )′(ξ1)| · |yzq+1 − ξ1|

=
1

B1
|(f j−1

a )′(ξ1)| · 2ay2
zq

≥ 1

B1
|(f j−1

a )′(ξ1)| · 2ae−2|mq |−4.

Combining what we know about |xzq+j − yzq+j| and |yzq+j − ξj| we obtain

|xzq+j − yzq+j|
|yzq+j|

=
|xzq+j − yzq+j|
|yzq+j − ξj|

· |yzq+j − ξj|
|yzq+j|

≤ B2
1

e5

e−|mq | · λ(σq) ·
|yzq+j − ξj|

|yzq+j|

≤ B2
1 · e5 · λ(σq)

λ(Imq
)
· e−βj

e−αj − e−βj

since
|yzq+j| ≥ |ξj| − |yzq+j − ξj| ≥ e−αj − e−βj.

Clearly,
∞∑

j=1

e−βj

e−αj − e−βj
< ∞

and so

Bq ≤ a3 ·
λ(σq)

λ(Imq
)

for some constant a3 = a3(α − β).
From the estimates obtained above, we get

S ≤ a4 ·
γ∑

q=0

λ(σq)

λ(Imq
)
, where a4 = a1 + a2 + a3.

Defining q(m) = max{q : mq = m} and using the fact that λ(σq+1) ≥ 2λ(σq) (lemma
4.1 part 1), we can easily see that

∑

{q:mq=m}
λ(σq) ≤ 2λ(σq(m)),

and so
γ∑

q=0

λ(σq)

λ(Imq
)
≤
∑

m≥∆

1

λ(Im)

∑

{q:mq=m}
λ(σq) ≤

∑

m≥∆

2λ(σq(m))

λ(Im)
.

Since
λ(σq(m))

λ(Im)
≤ 10

m2
,
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it follows that ∑

m≥∆

2λ(σq(m))

λ(Im)
≤ 20

∑

m≥∆

1

m2
,

which proves that S is uniformly bounded .
Now, if n ≥ zγ + pγ we are left with a last piece of free period to study:

Fγ+1 =

n∑

j=zγ+pγ

∣∣∣∣
xj − yj

yj

∣∣∣∣

We consider two cases. On the first one we suppose that |f n
a (ω)| ≤ e−2∆. Proceeding as

before we have for j = zγ + pγ , . . . , n − 1,

λ(σn) ≥ |fn−j
a (xj) − fn−j

a (yj)|
=
∣∣(fn−j)′(ζ)

∣∣ · |xj − yj|, for some ζ between xj and yj

≥ e−(∆+1)ec(n−j)|xj − yj|, by Lemma 3.1 part 1.

So,

Fγ+1 ≤
n∑

j=zγ+pγ

e∆+1e−c(n−j)λ(σn)

δ

≤
n∑

j=zγ+pγ

e2∆+1e−c(n−j)e−2∆

≤ e

∞∑

j=1

e−cj ≤ a5,

where a5 is constant.
On the second case we assume that |fn

a (ω)| > e−2∆. Let q1 be the first integer such that
q1 ≥ zγ + pγ, |f q1

a (ω)| > e−2∆, and for i = zγ + pγ , . . . , q1 − 1,|f i
a(ω)| ≤ e−2∆. From the

previous argumentation we have that∣∣∣∣
(f q1

a )′(x)

(f q1
a )′(y)

∣∣∣∣ ≤ C.

At this point we consider the interval [q1, q2 − 1] (eventually empty) whose times i verify
yi /∈ U1. Then, using lemma 3.1 part 3 (here we use for the first time the hypothesis
fn

a (ω) ⊂ U1),

q2−1∑

i=q1

|xi − yi|
|yi|

≤ e

q2−1∑

i=q1

|xi − yi| ≤ 3

q2−1∑

i=q1

5
4
e−c(n−1)|fn

a (ω)|

≤ 15
2

∞∑

i=1

e−ci ≤ a6,

where a6 is a constant.
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If q2 = n the lemma is proved. Otherwise writing:
∣∣∣∣
(fn

a )′(x)

(fn
a )′(y)

∣∣∣∣ =

∣∣∣∣
(fn−q2

a )′(xq2)

(fn−q2
a )′(yq2)

∣∣∣∣
∣∣∣∣
(f q2

a )′(x)

(f q2
a )′(y)

∣∣∣∣ ,

we observe that in order to obtain the result we need only to bound the first factor. We
do this considering again two cases:

1. xq2 ≥ 1
2
. Then since |yq2| ≤ e−1 (by definition of q2), we have |xq2 − yq2| ≥ 1

10
.

Therefore by lemma 3.1 part 3

4
5
ec(n−q2) 1

10
≤ |fn

a (ω)| ≤ 1,

which implies that n − q2 ≤ 3
2
log
(

25
2

)
(remember that by hypothesis c ≥ 2

3
).

Attending to the facts: |(fn−q2
a )′(xq2)| ≤ 4n−q2 and |(fn−q2

a )′(yq2)| ≥ 4
5
ec(n−q2), we have

∣∣∣∣
(fn−q2

a )′(xq2)

(fn−q2
a )′(yq2)

∣∣∣∣ ≤ a7,

for some constant a7.
2. xq2 < 1

2
. We can write (see Lemma 2.2 of [Al92] or Lemma 3.3 of [Mo92] for details)

∣∣∣∣
(fn−q2

a )′(xq2)

(fn−q2
a )′(yq2)

∣∣∣∣ = L

∣∣∣∣
(gn−q2

a )′(h−1(xq2))

(fn−q2
a )′(h−1(yq2))

∣∣∣∣ ,

where

L =

√
1 − (fn−q2

a (xq2))
2

1 − x2
q2

√
1 − y2

q2

1 − (fn−q2
a (yq2))

2
≤
√

1

1 − 1
4

√
1

1 − e−2
≤ 3

4
,

h : [−1, 1] → [−1, 1] is the homeomorphism that conjugates f2(x) to the tent map 1− 2|x|
and ga = h−1 ◦ fa ◦ h.

For the second factor, we have (see Lemma 3.1 of [Mo92] for details)

∣∣∣∣
(gn−q2

a )′(h−1(xq2))

(fn−q2
a )′(h−1(yq2))

∣∣∣∣ ≤
(

2 + 3π
δ3 (2 − a)

2 − 3π
δ3 (2 − a)

)n−q2

.

Note that |f q1
a (ω)| > e−2∆ and 4

5
ec(n−q1)|f q1

a (ω)| ≤ |fn
a (ω)| ≤ 1, from which we conclude

that n − q2 ≤ n − q1 ≤ 4∆. So if a is sufficiently close to 2 in order to have

(
2 + 3π

δ3 (2 − a)

2 − 3π
δ3 (2 − a)

)4∆

≤ 2, (4.3)

then ∣∣∣∣
(fn−q2

a )′(xq2)

(fn−q2
a )′(yq2)

∣∣∣∣ ≤
8

3
.

�
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5. Return depths and time between consecutive returns

On this section we justify the preponderance of the depths of essential returns over the
depths of bound and inessential returns, stated on basic idea (I). We also get an upper
bound for the elapsed time between two consecutive essential returns.

As we have already mentioned, there are three types of returns: essential, bounded and
inessential, which we denote by t, u and v respectively. Remember, that up to n, the
essential return that occurs at time ti has depth ηi, for i = 1, . . . , sn; each ti might be
followed by bounded returns ui,j, j = 1, . . . , u and these can be followed by inessential
returns vi,j, j = 1, . . . , v.

The following lemma states that the depth of an inessential return is not greater than
the depth of the essential return that precedes it.

Lemma 5.1. Suppose that ti is an essential return for ω ∈ Pti , with Iηi,ki
⊂ f ti

a (ω) ⊂ I+
ηi,ki

.
Then the depth of each inessential return occurring on vi,j, j = 1, . . . , v is not grater than
ηi.

Proof. By lemma 4.1 part 1 we have

λ {f vi,j
a (ω)} ≥ 2jλ

{
f ti

a (ω)
}
≥ 2jλ (Iηi,ki

)

Thus,

λ {f vi,j
a (ω)} ≥ λ {Iηi,ki

} =
e−ηi (1 − e−1)

η2
i

.

But, since vi,j is an inessential return time we must have f
vi,j
a (ω) ⊂ Im,k for some

m ≥ ∆, then out of necessity: m ≤ ηi, because f
vi,j
a (ω) is too large to fit on some Im,k with

m > ηi. �

On the next lemma, we prove a similar result for bounded returns.

Lemma 5.2. Let t be a return time (either essential or inessential) for ω ∈ Pt, with
f t

a(ω) ⊂ I+
η,k. Let p = p(η) be the bound period length associated to this return. Then, for

all x ∈ ω, if the orbit of x returns to U∆ between t and t + p, then the depth of this bound
return will not be grater than η, if ∆ is sufficiently large.

Proof. Consider a point x ∈ ω. We will show that if ∆ is large enough then |f t+j
a (x)| ≥ e−η,

∀j ∈ {1, . . . , p − 1}.

∣∣f j
a(1)

∣∣−
∣∣f t+j

a (x)
∣∣ ≤

∣∣f t+j
a (x) − f j

a(1)
∣∣ ≤ e−βj
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which implies that

∣∣f t+j
a (x)

∣∣ ≥
∣∣f j

a(1)
∣∣− e−βj

(BA)

≥ e−αj − e−βj ≥ e−αj
(
1 − e(α−β)j

)

≥ e−αj
(
1 − e(α−β)

)
, since α − β < 0

≥ e−αp
(
1 − e(α−β)

)
, since j < p

≥ e−3αη
(
1 − e(α−β)

)
, since p ≤ 3η by lemma 3.2

≥ e−4αη , if we choose a large ∆ so that 1 − eα−β ≥ e−αη

≥ e−η, since α <
1

4

�

The next lemma gives an upper bound for the time we have to wait between two essential
return situations.

Lemma 5.3. Suppose ti is an essential return for ω ∈ Pti , with Iηi,ki
⊂ f ti

a (ω) ⊂ I+
ηi,ki

.
Then the next essential return situation ti+1 satisfies:

ti+1 − ti < 5 |ηi| .

Proof. Let vi,1 < . . . < vi,v denote the inessential returns between ti and ti+1, with host
intervals Iηi,1,ki,1

, . . . , Iηi,v ,ki,v
, respectively. We also consider vi,0 = ti; vi,v+1 = ti+1; for

j = 0, . . . , v + 1, σj = f
vi,j
a (ω); and for j = 0, . . . , v, qj = vi,j+1 − (vi,j + pj), where pj is the

length of the bound period associated to the return vi,j.
We consider two different cases: v = 0 and v > 0.

(1) v = 0

In this situation ti+1 − ti = p0 + q0. Applying lemma 4.1 part 2b we get that

|σ1| ≥ e−5β|ηi|ec0q0−(∆+1).

Attending to the fact that |σ1| ≤ 2 we have

c0q0 ≤ 1 + 5β|ηi| + ∆ + 1

q0 ≤ 8β|ηi| +
3

2
∆ + 3, since c0 ≥

2

3

q0 ≤ 9β|ηi| +
3

2
∆, for ∆ large enough so that β|ηi| > 3.
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Therefore,

ti+1 − ti = p0 + q0

≤ 3|ηi| + 9β|ηi| +
3

2
∆

≤ 4|ηi| + ∆, since 9β <
1

2
≤ 5|ηi|.

(2) v > 0

In this case, ti+1− ti =
∑v

j=0(pj + qj). We separate this sum into three parts and control
each separately:

ti+1 − ti = p0 +

(
v−1∑

j=1

pj +

v−1∑

j=0

qj

)
+ (pv + qv)

(i) For p0 we have by lemma 3.2 that p0 ≤ 3|ηi|.
(ii) By lemma 4.1 we get

|σ1| ≥ ec0q0e−5β|ηi| and
|σj+1|
|σj|

≥ ec0qje(1−5β)|ηi,j |,

for j = 1, . . . , v − 1. Now, we observe that pj ≤ 3|ηi,j| ≤ 4(1 − 5β)|ηi,j| and qj ≤ 4c0qj, for
all j = 0, . . . , v. This means that controlling the second parcel resumes to bound

v−1∑

j=1

(1 − 5β)|ηi,j| +
v−1∑

j=0

c0qj. (5.1)

We achieve our goal by noting that (5.1) corresponds to the growth rate of the size of the
σj’s, which cannot be very large since every σj, j = 1, . . . , v is contained in some Im,k ⊂ U∆.
Writing

|σv| = |σ1|
v−1∏

j=1

|σj+1|
|σj|

,

and taking into account that σv ∈ Iηi,v ,ki,v
, with |ηi,v| ≥ ∆ and thus |σv| ≤ e−(∆+1), it

follows that

exp

{
−5β|ηi| +

v−1∑

j=0

c0qj +
v−1∑

j=1

(1 − 5β)|ηi,j|
}

≤ exp{−(∆ + 1)}

and consequently
v−1∑

j=1

(1 − 5β)|ηi,j| +
v−1∑

j=0

c0qj ≤ 5β|ηi| − (∆ + 1)
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(iii) For the last term pv + qv we proceed in a very similar manner to what we did in the
case v = 0. By lemma 4.1we have

|σv+1|
|σv|

≥ ec0qv−(∆+1)e(1−5β)|ηi,v |.

From part 1 of the referred lemma 4.1 we have |σv| ≥ 2v−1|σ1| ≥ |σ1|, from which we get

2 ≥ |σv+1| ≥ |σ1|
|σv+1|
|σv|

and consequently

exp {−5β|ηi| + c0qv − (∆ + 1) + (1 − 5β)|ηi,v|} ≤ elog 2

implying

c0qv + (1 − 5β)|ηi,v| ≤ ∆ + 2 + 5β|ηi|.
Joining the three parts we get

ti+1 − ti = p0 +

(
v−1∑

j=1

pj +
v−1∑

j=0

qj

)
+ (pv + qv)

≤ p0 + 4

{
v−1∑

j=1

(1 − 5β)|ηi,j| +
v−1∑

j=0

c0qj + c0qv + (1 − 5β)|ηi,v|
}

≤ 3|ηi| + 4 {5β|ηi| − (∆ + 1) + (∆ + 1) + 1 + 5β|ηi|}
≤ 3|ηi| + 40β|ηi| + 4

≤ 4|ηi|.
�

6. Probability of an essential return reaching a certain depth

Now, that we know that only the essential returns matter, we prove that the chances of
occurring very deep essential returns, are very small. In fact, the probability of an essential
return hitting the depth of ρ will be shown to be less than e−τρ, with τ > 0.

We must make our statements more precise and we begin by defining a probability
space. We define the probability measure λ∗ on I by renormalizing the Lebesgue measure
so that λ∗(I) = 1. We may now speak of expectations E(·), events and their probability
of occurrence.

For each x ∈ I, let sn(x) denote the number of essential returns of the orbit of x between
1 and n, let 1 ≤ t1 ≤ . . . ≤ tsn

≤ n be the instants of occurrence of the essential returns
and let η1, . . . , ηsn

be the corresponding depths. Given an integer s ≤ n and s integers
ρ1, . . . , ρs, each larger than ∆, we define the event:

As
ρ1,...,ρs

(n) =
{
x ∈ I : sn(x) = s and

∣∣f ti
a (x)

∣∣ ∈ Iρi
, ∀i ∈ {1, . . . , s}

}
.
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Proposition 6.1. If ∆ is large enough, then

λ∗ (As
ρ1,...,ρs

(n)
)
≤ e−

1−5β

2

Ps
i=1 ρi

Proof. Fix n ∈ N and take ω0 ∈ P0. We denote by ωi = ω(η1,k1)...(ηi,ki) the subset of ω0

belonging to Pti that satisfies

f tj
a (ωi) ⊂ I+

ηj ,kj
, ∀j ∈ {1, . . . , i − 1} and Iηi,ki

⊂ f ti
a (ωi) ⊂ I+

ηi,ki

Our next step is to estimate
|ωs|
|ω0|

.

|ωs|
|ω0|

=

s∏

i=1

|ωi|
|ωi−1|

≤
s∏

i=1

|ωi|
|ω̂i−1|

, where ω̂i−1 = ωi−1 ∩ f−ti
a (U1)

≤
s∏

i=1

C
|f ti

a (ωi)|∣∣f ti
a (ω̂i−1)

∣∣ , by the mean value theorem and lemma 4.2

≤
s∏

i=1

C

5
η2

i

e−|ηi|

e−5β|ηi−1|
, by lemma 4.1 part 3b and definition of ωi

≤
(

s∏

i=1

5C

η2
i

)
e5β|η0|e−(1−5β)

Ps
i=1 |ηi|

Observe that if ω̂i−1 6= ωi−1 then, because we are assuming that ωi 6= ∅, λ (f ti
a (ω̂i−1)) ≥

e−1 − e−∆ ≥ e−5β|ηi−1|, for large ∆. When ω0 = Im,k for some |m| ≥ ∆ and 1 ≤ k ≤ m2,
we consider η0 = m. On the other hand, if ω0 = [−1,−δ) or ω0 = (δ, 1], then t1 = 1 and
|f t1

a (ω0)| = a(1 − δ2) ≥ 1, for large ∆, so we can take η0 = 0 on these cases.
Now, the number of components in Pts of the form ω(η1,k1)...(ηs,ks) for which |η1| =

ρ1, . . . , |ηs| = ρs is at most 2sρ2
1 · · ·ρ2

s.
Having these in mind, we are able to write:

λ∗ (As
ρ1,...,ρs

(n)
)
≤
(

s∏

i=1

2ρ2
i

)(
s∏

i=1

5C

ρ2
i

)
e−(1−5β)

Ps
i=1 ρi

∑

ωo∈P0

e5β|η0 ||ω0|

≤ (10C)se−(1−5β)
Ps

i=1 ρi


2(1 − δ) +

∑

|η0|≥∆

e5βη0e−|η0|




≤ 3(10C)se−(1−5β)
Ps

i=1 ρi , for ∆ large enough

≤ e−
1−5β

2

Ps
i=1 ρi ,

where the last inequality results from the fact that s∆ ≤∑s
i=1 ρi and the freedom to choose

a sufficiently large ∆. �
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Fix n ∈ N, an integer s ≤ n and another integer j ≤ s. Given an integer ρ ≥ ∆, consider
also the event

Aj,s
ρ (n) =

{
x ∈ I : sn(x) = s and

∣∣f tj
a (x)

∣∣ ∈ Iρ

}

Corollary 6.2. If ∆ is large enough, then

λ∗ (Aj,s
ρ (n)

)
≤ e−

1−5β

2
ρ

Proof. Since Aj,s
ρ (n) ⊂ ⋃ρi≥∆

i6=j

As
ρ1,...,ρj−1,ρ,ρj+1,...,ρs

(n), then by proposition 6.1 we have

λ∗ (Aj,s
ρ (n)

)
≤ e−

1−5β

2
ρ

( ∞∑

η=∆

e−
1−5β

2
η

)s−1

≤ e−
1−5β

2
ρ,

as long as ∆ is sufficiently large so that
∑∞

η=∆ e−
1−5β

2
η ≤ 1. �

Remark 6.1. Observe that the bound for the probability of the event Aj,s
ρ (n) does not

depend on the j ≤ s chosen.

7. Conclusion of the proof of theorem A

According to section 3 to finish the proof we only need to show that

λ (E1(n)) ≤ e−τ1n, ∀n ≥ N∗
1

for some constant τ1(α, β) > 0 and an integer N ∗
1 = N∗

1 (∆, τ1).
In order to accomplish this we define the following events:

As
ρ(n) =

{
x ∈ I : sn(x) = s and ∃j ∈ {1, . . . , s} : |f tj

a (x)| ∈ Iρ

}
,

for fixed n ∈ N, s ≤ n and ρ ≥ ∆;

Aρ(n) =
{
x ∈ I : ∃t ≤ n : t is essential return time and |f t

a(x)| ∈ Iρ

}
,

for fixed n and ρ ≥ ∆.
Now, because As

ρ(n) ⊂ ⋃s
j=1 Aj,s

ρ (n), by corollary 6.2, we have

λ∗ (As
ρ(n)

)
≤

s∑

j=1

λ∗ (Aj,s
ρ (n)

)
≤ se−

1−5β

2
ρ. (7.1)

Observing that Aρ(n) ⊂ ⋃n

s=1 As
ρ(n), then by (7.1) we get

λ∗ (Aρ(n)) ≤
n∑

s=1

λ∗ (As
ρ(n)

)
≤

n∑

s=1

se−
1−5β

2
ρ ≤ n(n+1)

2
e−

1−5β

2
ρ. (7.2)

Since we know, by lemmas 5.1 and 5.2, that the depths of inessential and bound returns
are not greater than the depth of the essential return preceding them we have, for all
n ≥ N ′

1, where N ′
1 is such that αN ′

1 ≥ ∆,

E1(n) =
{
x ∈ I : ∃i ∈ {1, . . . , n}, |f i

a(x)| < e−αn
}
⊂

∞⋃

ρ=αn

Aρ(n),
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and consequently, for τ1 = 1−5β

4
α

λ∗(E1(n)) ≤ n(n+1)
2

∞∑

ρ=αn

e−
1−5β

2
ρ

≤ const · n(n+1)
2

e−2τ1n

≤ e−τ1n,

for n ≥ N∗
1 , where N∗

1 is such that N∗
1 ≥ N ′

1 and for all n ≥ N ∗
1 we have

const
n(n + 1)

2
e−τ1n ≤ 1. (7.3)

8. Conclusion of the proof of theorem B

As referred on section 3, we are left with the burden of having to show that for all n ∈ N,

λ∗{E2(n)} ≤ λ∗
{

x : Bn(x) >
εn

5

}
≤ e−τ2

√
n,

in order to complete the proof.
We achieve this goal, by means of a large deviation argument. Essentially we show

that the moment generating function of
√

Bn is bounded above by 1; then we use the
Tchebychev inequality to obtain the desired result.

Lemma 8.1. For 0 < t < 1−5β

6
we have that E

(
et

√
Bn

)
≤ 1.

Proof.

E
(
et

√
Bn

)
= E

(
et
√

Ps
i=1 η2

i

)
=

∑

s,(ρ1,...,ρs)

et
√

Ps
i=1 ρ2

i λ∗ (As
ρ1,...,ρs

(n)
)

≤
∑

s,(ρ1,...,ρs)

et
√

Ps
i=1 ρ2

i e−3t
Ps

i=1 ρi , by proposition 6.1

≤
∑

s,(ρ1,...,ρs)

et
Ps

i=1 ρie−3t
Ps

i=1 ρi

≤
∑

s,R

ζ(s, R)e−2tR,

where ζ(s, R) is the number of integer solutions of the equation x1 + . . .+xs = R satisfying
xi ≥ ∆ for all i.

We have

ζ(s, R) ≤ #{solutions of x1 + . . . + xs = R, xi ∈ N0} =

(
R + s − 1

s − 1

)
.

By the Stirling formula, we have

√
2πmmme−m ≤ m! ≤

√
2πmmme−m

(
1 +

1

4m

)
,
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which implies that (
R + s − 1

s − 1

)
≤ const

(R + s − 1)R+s−1

RR(s − 1)s−1
.

So, if we choose ∆ large enough we have

ζ(s, R) ≤
(
const

s
R

(
1 + s−1

R

) (
1 + R

s−1

) s−1
R

)R

≤ etR.

The last inequality derives from the fact that s∆ ≤ R, and so each factor on the middle
expression can be made arbitrarily close to 1 by taking ∆ sufficiently large.

Recovering where we stopped,

E
(
et

√
Bn

)
≤
∑

s,R

etRe−2tR

≤
∑

R

R

∆
e−tR, because s∆ ≤ R

≤ 1, for ∆ sufficiently large.

�

Now, observe that, for all n ∈ N

λ∗{E2(n)} ≤ λ∗
{

x : Bn >
εn

5

}
= λ∗

{
x :
√

Bn(x) >

√
εn

5

}
.

so we only need to find an upper bound for the last probability:

λ∗
(√

Bn >

√
εn

5

)
≤ e−t

√
εn
5 E
(
et

√
Bn

)
, by Tchebychev’s inequality

≤ e−t
√

εn
5 , by lemma 8.1.

Thus, λ∗{E2(n)} ≤ e−
t
√

ε

2

√
n = e−τ2

√
n, where τ2 = τ2(β, ε) = t

√
ε

2
.

Remark 8.1. The problem of obtaining only sub-exponential volume decay of E2(n) is due
to the fact that we can only bound the moment generating function of

√
Bn and not the

moment generating function of Bn. This is connected to our inability of providing a better
bound for the time spent by the orbit of a point x ∈ I inside U∆, between two consecutive
essential returns. Any attempt on improving the result of lemma 5.3, resulted again on a
bound of order η (γη for a positive small constant γ), where η > 0 stands for the depth of
the first essential return considered. We note that, for example, the length of the bound
period following the first essential return is also of order η, so it seems hopeless to obtain
a significantly tighter bound for Tn than 5

n

∑s

i=1 η2
i that we used on the proof.

Remark 8.2. Since the growth properties of the space and parameter derivatives along
orbits are equivalent (see lemma 4 of [BC85] or lemma 3.4 of [Mo92]), it is possible to build
a similar partition on the parameters as Benedicks and Carleson ([BC85, BC91]) did when
they built Ω∞. Then, using the same kind of arguments of sections 6 and 8 it is not difficult
to bound, on a full Lebesgue measure subset of Ω∞, the value of 5

n
Bn(ξ0) = 5

n

∑s
i=1 η2

i ,
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where ηi stands for the depth of the i-th essential return of the orbit of ξ0. In fact, when
Benedicks and Carleson ([BC85]) computed the distribution of the returns they managed to
control 1

s

∑s
i=1 ηi, for Lebesgue almost all parameter a ∈ Ω∞. If one remembers that they

accomplished this with sub-exponential estimates e−τ
√

η for the probability of occurrence
of an essential return hitting the depth η, it is not hard to convince ourselves that it is also
possible to control 5

n
Bn(ξ0) having the exponential estimate e−τη for the depth probability

and thus obtain the validity of condition (1.2) for the critical point ξ0, on a full Lebesgue
measure subset of Ω∞.

9. Uniformness on the choice of the constants

As referred on remark 1.1 all constants involved must not depend on the parameter
a ∈ Ω∞. Because there are many constants in question and because they depend on each
other in an intricate manner we dedicate this section to clarify their interdependencies.

We begin by considering the constants appearing on (EG) and (BA) that determine the
space Ω∞ of parameters. So we fix c ∈ [ 2

3
, log 2] and 0 < α < 10−3.

Then we consider β > 0 of definition 3.1 concerning the bound period, to be a small
constant such that α < β < 10−2. A good choice for β would be considering that β = 2α.

Afterward we fix a sufficiently large ∆ such that we have validity on all estimates through-
out the text. Most of the times the choice of a large ∆ depends on the values of α and
β. Note that at anytime does the choice of a large ∆ depends on the parameter value
considered.

After fixing ∆ we choose 2
3
≤ c0 ≤ log 2 (take, for example, c0 = c), and compute a0

given by lemma 3.1 and such that (4.3) holds. Note that this might bring some contraction
on the set of parameters since we will only have to consider parameter values on Ω∞∩[a0, 2]
which still is a positive Lebesgue measure set. If necessary we redefine Ω∞ to be Ω∞∩[a0, 2].

Finally, we fix any small ε > 0 referring to (1.2) and explicit the dependence of the rest
of the appearing constants on the table below

Constant Dependencies Main References
d α, β (1.1) and (3.2)
γ ∆ section 2
τ1 α, β theorem A and section 7
N∗

1 ∆, τ1 (7.3)
N1 ∆, α, B1, d, N∗

1 section 3
C1 N1, τ1 theorem A and (3.6)
τ2 β, ε theorem B and section 8
C2 τ2 theorem B and section 3
B1 α, β lemma 3.2
C α, β lemma 4.2

Table 1. Constants interdependency



28 J.M.FREITAS

In conclusion, all the constants involved depend ultimately on α, β, ∆ and ε, which
were chosen uniformly on Ω∞, thus we may say (fa)a∈Ω∞ is a uniform family in the sense
referred on [Al03].
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