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Abstract

In this paper, we establish several decidability results for pseudo-
variety joins of the form V ∨ W, where V is a subpseudovariety of J or
the pseudovariety R. Here, J (resp. R) denotes the pseudovariety of all
J-trivial (resp. R-trivial) semigroups. In particular, we show that the
pseudovariety V∨W is (completely) κ-tame when V is a subpseudova-
riety of J and W is (completely) κ-tame. Moreover, if W is a κ-tame
pseudovariety which satisfies the pseudoidentity x1 · · ·xry

ω+1ztω =
x1 · · ·xryzt

ω, then we prove that R ∨ W is also κ-tame.
In particular the joins R ∨ Ab, R ∨ G, R ∨ OCR, and R ∨ CR are

decidable.

1 Introduction

A semigroup pseudovariety (a class of finite semigroups closed under finite
direct product and quotient) is said to be decidable if there is an algorithm to
test membership of a finite semigroup in that pseudovariety. The notion of
tameness has been introduced by Steinberg and the first author as a tool for
proving decidability of the membership problem for semidirect products of
pseudovarieties of semigroups and monoids [13] and provides some nontrivial
connections with group theory and model theory [24, 9, 8]. Other notions
play similar roles with respect to various other operators on pseudovarieties
[5]. To be able to prove tameness of a specific pseudovariety one needs in
general a thorough knowledge about its free objects within a suitable alge-
braic setting, namely to be able to solve the word problem as well to be able

1The authors acknowledge partial support by the project POCTI/32817/MAT/2000
which is funded in part by the European Community Fund FEDER.

2Partial support by FCT, through the Centro de Matemática da Universidade do
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to reduce the existence of profinite solutions of certain systems of equations
with generalized rational constraints to the free objects in question.

The join V ∨ W of two semigroup pseudovarieties V and W is the least
semigroup pseudovariety containing both V and W. A well-known result
by Albert, Baldinger and Rhodes [1] states that the join of two decidable
pseudovarieties may not be decidable (see [19] for a recent short proof which
applies to many other natural operators on pseudovarieties). Yet, many
pseudovarieties obtained from tame pseudovarieties using the join operator
(or other natural operators) are expected to be decidable, although this
is in general apparently not trivial to show. We show in this paper how to
successfully tackle the problem in special cases in which both pseudovarieties
are tame.

The tameness property is parameterized by an implicit signature σ, and
we speak of σ-tameness. The implicit signature which is most commonly
encountered in the literature is the canonical signature κ, containing the
semigroup multiplication and the (ω − 1)-power. Informally, σ-tameness
consists in two properties: the first one is the word problem for σ-terms; the
second one is called σ-reducibility.

It was already known that the decidability of some pseudovariety joins
(e.g., J ∨ B, a result proved in [28]) follows very easily from the tameness
of the pseudovariety J of all J-trivial semigroups. This paper further devel-
ops this idea giving new methods for using the tameness property to show
decidability of joins. In fact, we prove stronger results for certain joins of
pseudovarieties: the tameness property itself is preserved for the pseudova-
rieties considered in this paper.

We establish σ-reducibility of joins of the form V∨W, where V is a sub-
pseudovariety of J, and W is a σ-reducible pseudovariety. This extends a
result of Steinberg [26, 27] where the author proved that J ∨ W is hyperde-
cidable if W is a hyperdecidable subpseudovariety of CR, the latter denoting
the pseudovariety of completely regular semigroups, that is, such that every
element is a group element. Hyperdecidability is a property of pseudova-
rieties which was introduced in [4] and later shown in [12] to follow from
tameness. This extends also the particular case of the decidability of J ∨ G,
where G is the pseudovariety of groups, a result established independently
in [7].

Furthermore, our proofs are very elementary and adapt to a stronger
property than σ-reducibility, namely complete σ-reducibility, a notion re-
cently introduced by the first author [5]. Since the complete κ-tameness
of Ab, the pseudovariety of Abelian groups, is already known [10], this
establishes in particular the complete κ-tameness of J ∨ Ab and Com =
(A∩Com)∨Ab, where Com and A∩Com are the pseudovarieties of commu-
tative semigroups and of group-free commutative semigroups, respectively.
The decidability of J ∨ Ab, along with a nice basis of pseudoidentities, had
previously been established by Azevedo [20].
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The same tools can also be applied to the case of the pseudovariety R

of all finite R-trivial semigroups. We prove that R∨W is κ-reducible when-
ever W is κ-reducible and satisfies the pseudoidentity x1 · · · xry

ω+1ztω =
x1 · · · xryzt

ω. This shows in particular that the pseudovariety R is κ-tame,
and extends and simplifies earlier results of Silva and the first author [11]
in which a weaker form of tameness had been established for R. Examples
of pseudovarieties W to which this result may be immediately applied in-
clude the pseudovarieties Ab of Abelian groups [10], G of groups [18], OCR of
orthodox completely regular semigroups [14], and CR of completely regular
semigroups [15] (the validity of the conjecture left open in [15], upon which
the proof of tameness of CR depends, has been observed by K. Auinger, in
private communication with the first author, using the methods of [8, 9]).

The same kind of ideas have been applied by the second author [21]
to prove in particular reducibility of joins involving the pseudovariety K of
semigroups in which idempotents are left zeros.

2 Preliminaries

We assume that the reader is familiar with notions and basic results on
(finite, profinite) semigroups and pseudovarieties. See [3, 5]. If S is a semi-
group, we denote by SI the semigroup S ] 1, where 1 /∈ S, 1.s = s.1 = s
and the multiplication of SI coincides with that of S on S × S.

For a pseudovariety V, we denote by ΩAV the free pro-V semigroup on
the finite alphabet A. Elements of ΩAV are called pseudowords (over V) and
may be regarded as |A|-ary implicit operations on V [3]. We denote by ΩAV

the subsemigroup of ΩAV generated by A. We denote by S the pseudovariety
of all finite semigroups, and by pV the canonical projection from ΩAS into
ΩAV. For V = Sl, the pseudovariety of semilattices, we write c instead of
pSl and we call c(π) the content of π. The semigroup ΩASl is isomorphic to
(P(A),∪) and c(a) = {a} for all a ∈ A. Given pseudowords πi, ρi over S, we
denote by Jπi = ρiK the pseudovariety satisfying all pseudoidentities πi = ρi.
The pseudovarieties J and R can be defined by pseudoidentities as follows.

J = J(xy)ωx = (yx)ω = y(xy)ωK;

R = J(xy)ωx = (xy)ωK.

Recall that an implicit signature is a set of pseudowords over S con-
taining binary multiplication ab ∈ Ω{a,b}S (see [12]). It is non-trivial if it
contains at least one non-explicit pseudoword. We let κ be the signature
{aω−1, ab} containing the unary (ω − 1)-power and the binary semigroup
multiplication. Given an implicit signature σ, we denote by Ωσ

AV the free
σ-semigroup generated by A. Elements of Ωσ

AV are called σ-words (over V).
The following result [3, Theorem 8.1.10] characterizes idempotents over J.

3



Proposition 2.1 A pseudoword π ∈ ΩAS is idempotent on J if and only
if, for every n > 1, π admits a factorization in n factors with the same
content.

We also recall the solution of the word problem for J, given by the first
author in [2].

Theorem 2.2 Every pseudoword π ∈ ΩAS admits a factorization of the
form π = π0π1 · · · πn where:

1) each factor πi is either explicit or is idempotent on J;

2) no two consecutive non-explicit factors πi, πi+1 have comparable contents;

3) if πi is explicit and i < n, then πi+1 is non-explicit and the last letter of
πi is not in c(πi+1);

4) if πi is explicit and i > 0, then πi−1 is non-explicit and the first letter of
πi is not in c(πi−1).

If ρ ∈ ΩAS is another pseudoword and ρ = ρ0ρ1 · · · ρm is a factorization
of ρ satisfying the above properties, then J satisfies π = ρ if and only if
n = m and, for each i: πi is explicit if and only if ρi is explicit, and in this
case, πi = ρi; πi is non-explicit if and only if ρi is non-explicit, and in this
case, c(πi) = c(ρi).

Now we slightly refine a statement of [3, Corollary 5.6.2].

Lemma 2.3 If π ∈ ΩAS is a non-explicit pseudoword, then there exists a
factorization π = π1ρ

ωπ2. Moreover, if J |= π = π2, then one can choose ρ
such that c(ρ) = c(π).

Proof. Consider the equation π = xyωz in the variables B = A]{x, y, z}
subject to the constraints given by c(y) = c(π), c(x) ∪ c(z) ⊆ A, which may
be expressed in terms of a continuous homomorphism from ΩBS into a finite
semilattice. The lemma will be proved once we show that the equation
has a solution in ΩBS subject to these constraints, that is the equation
is S-inevitable, in the terminology of [5]. In view of a general compactness
theorem [5, Theorem 8.3], it suffices to show that the equation is inevitable in
every finite semigroup in the sense that, for every continuous homomorphism
ϕ : ΩBS → S into a finite semigroup, there exist π1, ρ, π2 ∈ ΩBS such that
ϕ(π) = ϕ(π1ρ

ωπ2), c(ρ) = c(π) and c(π1) ∪ c(π2) ⊆ A.
Now, by Proposition 2.1, for every n > 1 there exists a factorization of

the form π = u1 · · · un with c(ui) = c(π). If we take n > |S| then, by the
pigeonhole principle, we may write

ϕ(π) = ϕ(u1 · · · ui−1(ui · · · uj−1)
ωuj · · · un)

for some i and j with 1 < i < j 6 n. To prove the claim, put π1 = u1 · · · ui−1,
ρ = ui · · · uj−1, and π2 = uj · · · un.
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3 Reducibility

We recall in this section the key notions of reducibility and tameness and
we develop a general method to prove reducibility.

3.1 Key notions

Definition 3.1 (σ-solution, σ-reducibility, σ-tameness) Let A be a fi-
nite alphabet, let V be a pseudovariety and let X and P be finite disjoint sets.
Elements of X are called variables and elements of P are called parameters.
Assume that we are given the following mappings, pictured in Figure 1:

X Ωσ
X∪PSI P

ΩASI

SI
ϕ

↪ ↩

γζθ
ψ

Figure 1: Solution θ and involved mappings

− ψ : ΩASI → SI is a continuous morphism in a finite semigroup, such
that ψ−1(1) = {1}.

− ϕ : X → SI is a mapping giving a constraint in SI for each variable.

− γ : P → ΩAS is an evaluation of the parameters such that γ(P ) ⊆ Ωσ
AS.

− θ : X → ΩASI is an evaluation of the variables by pseudowords.

• Let ζ : Ωσ
X∪PSI → ΩASI be the σ-morphism defined by ζ|X = θ and

ζ|P = γ. Let S ⊆ Ωσ
X∪PSI × Ωσ

X∪PSI be a finite set of σ-equations. We say
that θ is a solution of the system S over V with respect to (ϕ, γ, ψ) if

{

∀(u, v) ∈ S, V |= ζ(u) = ζ(v)

ψ ◦ θ = ϕ.

If in addition θ(X) ⊆ Ωσ
ASI, we call θ a σ-solution of S over V with respect

to (ϕ, γ, ψ).

• Let C ⊆ 2Ωσ

X∪P
SI×Ωσ

X∪P
SI

. We say that V is σ-reducible for C if every
system of C having a solution over V with respect to a tuple (ϕ, γ, ψ) also
has a σ-solution over V with respect to (ϕ, γ, ψ).

• A graph equation system is associated to a finite graph Γ = (V,E).
The set of variables is X = Γ and ϕ−1(1) ⊆ V . There are no parameters.

Finally, each edge x
y
−→ z yields the equation xy = z. A pseudovariety V is:

− completely σ-reducible if it is σ-reducible for the class of all finite systems
of σ-equations.
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− σ-reducible if it is σ-reducible for the class of all graph equation systems.

The σ-word problem for V consists in determining whether two σ-terms rep-
resent the same σ-word on V. We say that a recursively enumerable pseudo-
variety V is (completely) σ-tame if it is (completely) σ-reducible and the
σ-word problem for V is decidable.

The triple (ϕ, γ, ψ) will be sometimes understood. If P = ∅ (i.e., as for graph
equation systems) we just speak about solutions with respect to (ϕ,ψ).

Connections between tameness and the classical membership problem
have been obtained in [12] using standard enumeration arguments. These
results imply in particular the following statement.

Proposition 3.2 Any κ-tame pseudovariety is decidable.

3.2 A general technique to prove reducibility

The main idea to show that some join V∨W is, say, completely σ-reducible,
may be described as follows. Assume that W is completely σ-reducible.
Assume also that pseudowords of ΩAV have a normal form (which is a fac-
torization) and that syntactic properties of the factors, like for instance their
contents, completely determine the value of the corresponding pseudoword
over V. For example, over J, simple syntactic properties of normal forms
determine the values of the pseudowords, as stated in Theorem 2.2. Then,
given a system and a solution over V∨W, we transform the system so that it
takes into account these normal form factorizations: for each factor of such
a factorization, we add a variable to our system, and corresponding equa-
tions. The original solution also yields a solution of the modified system.
The main ingredient is then to apply the reducibility of W, thus replacing
pseudowords by σ-words, but preserving syntactic properties of each factor,
to guarantee that equalities over V between factors of normal forms will be
preserved. Since the original system was a solution over V, what we end up
with is again a σ-solution over both V and W.

How do we preserve syntactic properties? Definition 3.1 says that in
a completely σ-reducible pseudovariety, the existence of a solution θ for a
system given a parameter evaluation and constraints in a finite semigroup
implies the existence of a σ-solution θ ′ for the same system, parameter eval-
uation and constraints. Yet, this tells nothing about possible relationships
between θ and θ′. As argued earlier, one may want θ′ to preserve the con-
tent, that is, that c◦θ′ = c◦θ. To enforce such relationships, the idea, which
has already been used in other papers such as [14, 15, 21] is the following:
start from a solution θ of a system S over a σ-reducible pseudovariety V,
with constraints ϕ into a semigroup S. Then build another system S1, with
constraints ϕ1 in a new semigroup S1, and derive from θ a solution θ1 of
S1 respecting the constraints ϕ1. Next, use the σ-reducibility of V to get a
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σ-solution θ′1 of S1 respecting the constraints given by ϕ1. The important
point is that the new system together with the new constraints shall be built
to enforce relevant relationships between θ1 and θ′1. Finally, recover from θ′1
a solution θ′ of the original system, preserving the additional properties of
θ′1 we are interested in.

The next lemma illustrates this technique. It extends [21, Lemma 2.3]
with basically an identical proof. It will be crucial to prove that joins in-
volving R or subpseudovarieties of J preserve κ-reducibility.

Lemma 3.3 With the notation of Definition 3.1, assume that σ is a non-
trivial implicit signature and that C is the class of all finite systems (resp.
of all finite graph equation systems) of σ-equations.

If V is σ-reducible with respect to C and θ is a solution of S ∈ C over V

with respect to (ϕ, γ, ψ), then there exists a σ-solution θ ′ of S over V with
respect to (ϕ, γ, ψ) such that for each x ∈ X,

1) c ◦ θ′(x) = c ◦ θ(x);

2) if θ(x) is explicit, then θ′(x) = θ(x);

3) if J |= θ(x) = θ(x)2, then J |= θ′(x) = θ′(x)2.

Proof. We first prove the result when C is the class of all finite systems
of σ-equations. If x is a variable such that θ(x) is an idempotent on J, then
θ(x) is non-explicit and by Lemma 2.3 it admits a factorization

θ(x) = π1π
ω
2 π3 with c(π2) = c ◦ θ(x). (3.1)

For each such variable x, add to X three new variables x1, x2, x3 and add to
S two new σ-equations x = x1x2x3, x2 = x2x2. Denote by X1 and S1 these
extensions of X and S respectively. Let θ1 be the extension of θ to X1 such
that θ1(x1) = π1, θ1(x2) = πω2 and θ1(x3) = π3.

Let m be an integer greater than the maximal length of the values under
θ which are explicit, let Nm = [[a1a2 · · · am = 0]] and let S1 be the semigroup
S × Nm × P(A), where Nm = ΩANm and P(A) = ΩASl is the power set of
A. Notice that Nm may be seen as the set of all words of length at most
m on the alphabet A, augmented with a 0 element, where the product of
two words evaluates to their usual product if it is shorter than m and to 0
otherwise. Therefore the semigroup S1 is finite.

Let ψ1 : ΩASI → SI1 be the morphism defined, for each π ∈ ΩAS, by
ψ1(π) = (ψ(π), pNm

(π), c(π)). Let ϕ1 = ψ1 ◦ θ1. Since θ is a solution of S

with respect to (ϕ, γ, ψ), it is clear that θ1 is a solution of S1 with respect
to (ϕ1, γ, ψ1).

Since C is the class of all finite systems of σ-equations, S1 ∈ C. Since V is
σ-reducible with respect to C, there exists a σ-solution θ ′1 of S1 with respect
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to (ϕ1, γ, ψ1). In particular, ψ1 ◦ θ
′
1 = ϕ1 = ψ1 ◦ θ1 whence

ψ ◦ θ′1 = ψ ◦ θ1 = ϕ,

pNm
◦ θ′1 = pNm

◦ θ1,

c ◦ θ′1 = c ◦ θ1.

For each variable x such that θ(x) is an idempotent on J and each i ∈
{1, 2, 3}, let txi

= θ′1(xi). Since θ′1 is a σ-solution of S1 with respect to
(ϕ1, γ, ψ1) and x2 = x2x2 is a σ-equation of S1, V satisfies tx2

= tnx2
for

every positive integer n. Therefore, since x = x1x2x3 is a σ-equation of S1,
V also satisfies

θ′1(x) = tx1
tx2
tx3

= tx1
tnx2
tx3

(n > 1). (3.2)

On the other hand, since ψ is a morphism and verifies ψ ◦ θ ′1 = ψ ◦ θ1,

ψ(tx1
tnx2
tx3

) = ψ(tx1
)ψ(tx2

)nψ(tx3
) = ψ(π1)ψ(πω2 )nψ(π3) = ψ(π1π

ω
2 π3),

whence
ψ(tx1

tnx2
tx3

) = ψ ◦ θ(x). (3.3)

Let now %(a1, . . . , ar) be a non-explicit element of the implicit signature
σ and let (wi(a1, . . . , ar))i be a sequence of explicit pseudowords converging
to %(a1, . . . , ar). Then (wi(tx2

, . . . , tx2
))i is a sequence which converges to the

non-explicit σ-word %(tx2
, . . . , tx2

). Since for each i there exists an integer ni
such that wi(tx2

, . . . , tx2
) = tni

x2
, we deduce from (3.3) that the non-explicit

σ-word
tx = tx1

%(tx2
, . . . , tx2

)tx3

is such that ψ(tx) = ψ ◦ θ(x). Moreover, by (3.2), V |= θ′1(x) = tx. Let
θ′(x) = tx whenever θ(x) is idempotent on J and let θ ′ coincide with θ′1 on
the other variables of X. By construction θ ′ is a σ-solution of S with respect
to (ϕ, γ, ψ). Let us now show that θ′ verifies conditions 1) to 3).

If x ∈ X is such that θ(x) is explicit, then

Nm |= θ′(x) = θ′1(x) by definition of θ′

= θ1(x) since pNm
◦ θ′1 = pNm

◦ θ1

= θ(x) since θ1 and θ coincide on X.

Since θ(x) is a word of length at most m− 1, we deduce that θ ′(x) = θ(x),
which proves 2).

If x ∈ X is such that θ(x) is not an idempotent on J, then the proof that
c ◦ θ′(x) = c ◦ θ(x) is analogous to the one above for 2) since in this case θ′

coincides with θ′1. Suppose now that θ(x) is an idempotent on J so that, by
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(3.1), θ(x) = π1π
ω
2 π3 and c ◦ θ(x) = c(π2). Therefore,

c(π2) = c(πω2 )

= c ◦ θ1(x2) by definition of θ1

= c ◦ θ′1(x2) since c ◦ θ′1 = c ◦ θ1

= c(tx2
).

We show similarly that c(π1) = c(tx1
) and c(π3) = c(tx3

). Hence,

c ◦ θ(x) = c(tx2
) by (3.1)

= c(%(tx2
, . . . , tx2

))

= c(tx) since c(tx1
tx3

) = c(π1π3) ⊆ c(tx2
) = c ◦ θ(x)

= c ◦ θ′(x).

This proves 1). Moreover, since c ◦ θ′(x) = c(tx2
) and θ′(x) = tx, it is clear

that, for each n > 1, θ′(x) admits a factorization in n factors with the same
content. By Proposition 2.1, θ′(x) is an idempotent on J and 3) is proved.
This concludes the proof of the lemma when C is the class of all finite systems
of σ-equations.

The proof when S is a graph equation system is similar. The additional
difficulty is that, to be able to apply the σ-reducibility of V, the system S1

constructed from S has to be a graph equation system as well. If θ(x) is not
explicit, say θ(x) = π1π

ω
2 π3, then:

• if x is an edge z
x
−→ z′, then we add a new vertex y and we replace x

in the graph defining S by three edges: z
x1−→ y

x2−→ y
x3−→ z′. We let

θ1(x1) = π1π
ω
2 , θ1(x2) = πω2 , θ1(x3) = π3, and θ1(y) = θ(z)π1π

ω
2 ;

• if x is a vertex, then we add two new vertices y1 and y2 and three edges
y1

x1−→ y2
x2−→ y2

x3−→ x to the graph defining S, with the constraint that
y1 is sent to 1 ∈ SI . We extend θ to θ1 similarly.

The proof then goes as above, see [21, proof of Lemma 2.3] for details.

Remark 3.4 More generally, if a pseudovariety is σ-reducible with respect
to C, then we can constrain the values under θ ′ of each variable with respect
to properties which, as those of 1) and 2) of Lemma 3.3, can be tested in a
finite semigroup.

We now define the notion of refinement of a graph system according
to factorizations of the values of variables under a solution of this system.
This provides a useful tool (similar to that used in the end of the proof of
Lemma 3.3) that will be used several times in the rest of the paper.

Let θ be a solution over V of a graph equation system given by a graph
Γ, with the notation of Definition 3.1. Consider, for each variable x, a fac-
torization π1 · · · πk of θ(x) (where k depends on x). We modify the original
graph adding some new vertices and edges and the constraint ϕ as follows.
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(a) If x is a vertex, then we add the path

y1
x1−→ y2

x2−→ · · ·
xk−1

−−−→ yk
xk−→ x.

We let ϕ1(x) = ϕ(x), ϕ1(xi) = ψ(πi), ϕ1(y1) = 1 and ϕ1(yi+1) =
ϕ1(yi)ϕ1(xi).

(b) If x is an edge y
x
−→ z, then we replace it by the path

y
x1−→ y1

x2−→ · · ·
xk−1

−−−→ yk−1

xk−→ z.

We let ϕ1(x) = ϕ(x), ϕ1(xi) = ψ(πi), ϕ1(y1) = ϕ(y)ϕ1(x1) and ϕ1(yi+1) =
ϕ1(yi)ϕ1(xi+1).

Define θ1 by θ1(x) = θ(x), θ1(xi) = πi and, in case (a), by θ1(yi) = π1 · · · πi−1

(i = 1, . . . , k) and in case (b), by θ1(yi) = θ(y)π1 · · · πi (i = 1, . . . , k − 1).
It is straightforward that θ1 is a solution of the new system with respect
to (ϕ1, ψ). Observe that the tuples (θ1(xi))16i6k for x ∈ X completely
determine θ1.

We call the new graph equation system (resp. the new solution θ1) the re-
finement of the original graph equation system (resp. the original solution θ)
according to the factorization of variable values under θ.

4 Joins involving J

In this section, we show that the property of being (completely) σ-reducible
is preserved under joins with subpseudovarieties of J.

Theorem 4.1 Let V be a pseudovariety contained in J and let σ be a non-
trivial implicit signature. If W is a completely σ-reducible (resp. σ-reducible)
pseudovariety, then V ∨ W is completely σ-reducible (resp. σ-reducible).

In particular, since the trivial pseudovariety is completely σ-reducible,
any subpseudovariety of J is completely σ-reducible.

Proof. We first prove the result when W is completely σ-reducible. With
the notation of Definition 3.1, let ψ : ΩASI → SI be a continuous morphism
into a finite semigroup. Fix an evaluation γ : P → ΩAS of parameters by
σ-words, and constraints on the variables given by a mapping ϕ : X → S I .
Let θ : X → ΩASI be a solution over V ∨ W of a system S of σ-equations
with respect to (ϕ, γ, ψ). Notice that this implies that θ is both a solution
over V and over W of S with respect to (ϕ, γ, ψ).

For each variable x, there exists a factorization of θ(x) of the form

θ(x) = π0π1 · · · πn (4.1)
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satisfying properties 1) –4) of Theorem 2.2. For each x add to X variables
x0, x1, . . . , xn and add to S the σ-equation x = x0x1 · · · xn. Call S1 the
resulting system. Let θ1 be the extension of θ to X1 such that θ1(xi) = πi
for all i. Finally, let ϕ1 = ψ ◦ θ1, so that ϕ(x) = ϕ1(x0)ϕ1(x1) · · ·ϕ1(xn).

By construction, θ1 is a solution of S1 over W with respect to (ϕ1, γ, ψ)
and by hypothesis W is completely σ-reducible. Therefore, there exists a
σ-solution θ′1 of S1 over W with respect to (ϕ1, γ, ψ) satisfying conditions
1) –3) of Lemma 3.3.

Let θ′ be the evaluation of the variables defined, for each x ∈ X, by

θ′(x) = θ′1(x0)θ
′
1(x1) · · · θ

′
1(xn)

and let ζ ′ : Ωσ
X∪PSI → Ωσ

ASI coincide with γ on P and with θ′ on X. Since
θ′1 is a σ-solution of S1 with respect to (ϕ1, γ, ψ) we have ψ ◦θ′1 = ϕ1. Hence
we get ψ ◦ θ′(x) = ψ ◦ θ′1(x0) · · ·ψ ◦ θ′1(xn) = ϕ1(x0) · · ·ϕ1(xn) = ϕ(x) for
each x ∈ X, so that

ψ ◦ θ′ = ϕ. (4.2)

Since θ′1 is built using Lemma 3.3, we have, for each i, θ′1(xi) = πi when πi
is explicit, and θ′1(xi) is a pseudoword with the same content as πi which is
idempotent on J when πi is idempotent on J. This implies by Theorem 2.2
that J satisfies θ′(x) = θ(x). As V is a subpseudovariety of J, V also satisfies
θ′(x) = θ(x). Since θ is a solution of S over V, we obtain

∀(u = v) ∈ S, V |= ζ ′(u) = ζ ′(v). (4.3)

On the other hand, since θ′1 is a σ-solution of S1 over W and since x =
x0x1 · · · xn is a σ-equation of S1, we deduce that

W |= θ′(x) = θ′1(x0)θ
′
1(x1) · · · θ

′
1(xn) = θ′1(x). (4.4)

Since θ′1 is a solution of S1, which contains S, we get:

∀(u = v) ∈ S, W |= ζ ′(u) = ζ ′(v). (4.5)

Finally, (4.2), (4.3) and (4.5) show that θ′ is a σ-solution of S over V ∨ W

with respect to (ϕ, γ, ψ). Hence, V ∨ W is completely σ-reducible.

In case W is σ-reducible, we start from a graph equation system S. The
only additional difficulty is that the system S1 has to be a graph equation
system, too. It suffices to let S1 (resp. θ1) be the refinement of S (resp. of
θ) according to the factorization (4.1). The proof then proceeds as above.

Since the σ-word problem for the join V ∨ W of two pseudovarieties
is decidable if and only if it is decidable for both V and W, we deduce
immediately the following corollary from Theorem 4.1.

Corollary 4.2 Let σ be a non-trivial implicit signature and let V be a sub-
pseudovariety of J. If W is a (completely) σ-tame pseudovariety and the
σ-word problem for V is decidable, then V ∨ W is (completely) σ-tame.

11



This corollary applies, for instance, to the pseudovarieties J and A ∩ Com

with σ = κ. In fact it is well known that the κ-word problem is decidable
for J [2] and A ∩ Com. The κ-word problem for A ∩ Com can be reduced to
the κ-word problem on one generator for the same pseudovariety, and this
problem is trivial (see for instance [3]).

Therefore, since Ab [10] is completely κ-tame, we deduce in particular
that Com = (A∩Com)∨Ab and J∨Ab are completely κ-tame. On the other
hand, since G is κ-tame [18, 12], the pseudovariety J∨G is κ-tame. Similarly,
the pseudovariety ZE, of semigroups whose idempotents are central, is also
κ-tame since ZE = Com ∨ G = (A ∩ Com) ∨ G [3, Section 9.1]. Note that, as
observed in [5] it follows from an example of Coulbois and Khélif [23] that
G is not completely κ-tame. Applications of the corollary include also the
pseudovariety LSl of semigroups which are locally semilattices. Since it is
κ-tame [22], V ∨ LSl is also κ-tame for each subpseudovariety V of J with a
decidable κ-word problem.

5 Joins involving R

In this section, we prove the main result of this paper.

Theorem 5.1 If W ⊆ Jxyω+1z = xyzK is κ-reducible, then so is R ∨ W.

The proof relies on intermediate results presented in sections 5.1 to 5.4. Since
the κ-word problem is decidable for V ∨ W if it is decidable for both V and
W, and since it is also decidable for R (see Theorem 5.5 below) Theorems 5.1
and 5.5 immediately imply

Corollary 5.2 If W ⊆ Jxyω+1z = xyzK is κ-tame, then so is R ∨ W.

Taking into account the tameness results already quoted in the introduction,
we deduce from Corollary 5.2 that R ∨ Ab, R ∨ G, R ∨ OCR and R ∨ CR are
κ-tame.

5.1 The κ-word problem for R

For π ∈ ΩAS, a factorization of the form π = π1aπ2 with a /∈ c(π1) and
c(π1a) = c(π) is said to be a left basic factorization of π. Using compactness
of ΩAS, continuity of the content function, and the fact that ΩAS is dense
in ΩAS, it is easy to show that every pseudoword admits at least one left basic
factorization. The following result from [6] is the fundamental observation
for the identification of pseudowords over R.

Proposition 5.3 Let π, ρ ∈ ΩAS and let π = π1aπ2 and ρ = ρ1bρ2 be
left basic factorizations. If R |= π = ρ, then a = b and R satisfies the
pseudoidentities π1 = ρ1 and π2 = ρ2.

12



Moreover, [15, Proposition 3.5] shows that the left-basic factorization is
unique not only over R, but also over the pseudovariety S of all finite semi-
groups.

Proposition 5.4 Let π, ρ ∈ ΩAS and let π = π1aπ2 and ρ = ρ1bρ2 be left
basic factorizations. If π = ρ, then a = b, π1 = ρ1 and π2 = ρ2.

One can iterate the left-basic factorization to the right until the content
possibly decreases, as follows. Let

π = π1a1π2a2 · · · πnanπ
′
n (5.1)

where each πiai(πi+1ai+1 · · · πnanπ
′
n) is a left basic factorization (of the prod-

uct) and c(πiai) is constant. We call (5.1) the n-iterated left basic factor-
ization of π. If n is maximum for such a factorization of π, in which case
c(π′n) 6= c(π), then we write ‖π‖ = n. If there is no such maximum, then we
write ‖π‖ = ∞.

To solve the κ-word problem for R, the idea is then to proceed by iter-
atively taking left basic factorizations of the factors of the κ-word π. The
factors πi have a smaller content than that of π. If ‖π‖ is finite, then the
content of some π′n also decreases. Otherwise, one can show [17] that the in-
finite sequence π′i is ultimately periodic and that this can be algorithmically
detected. More precisely, one can show the following statement.

Theorem 5.5 The κ-word problem for R is decidable in linear time.

We introduce now a relevant parameter of pseudowords which will be
important in the sequel. By the cumulative content of π ∈ ΩAS we mean
the set ~c(π) of all a ∈ A such that there exists a factorization of the form
π = π1π2 with ‖π2‖ = ∞ and a ∈ c(π2). Note that, for a ∈ A,

a ∈ ~c(π) if and only if R |= πa = π. (5.2)

The next result characterizes pseudowords which are idempotents over R. It
is an immediate corollary of (5.2) and of Proposition 5.3.

Proposition 5.6 Let π ∈ ΩAS. The following conditions are equivalent:

(i) R satisfies π2 = π;

(ii) ‖π‖ = ∞;

(iii) ~c(π) = c(π);

(iv) J satisfies π2 = π.

13



5.2 Decomposition trees

We now introduce trees whose vertices are labeled by pseudowords used to
describe truncated left basic factorizations iterated to the right. A vertex
labeled π will have children labeled π1, a1, . . . , πk, ak, π

′
k, in this order, such

that π1a1 · · · πkakπ
′
k is a left basic factorization of π iterated on the right.

We insist in ending up with finite trees: if π is idempotent, we stop this
factorization at some point.

Let ` be a positive integer. An `-decomposition tree is a tuple T =
(V,E, λ, η) where (V,E) is a finite tree, and where λ : V → ΩASI and
η : E → N are mappings, such that

(i) If a vertex v ∈ V has k children, then the edges from v to its children
are labeled 0, 1, . . . , k−1 under η. The child v ′ of v such that η(v, v′) =
k − 1 is called its last child.

(ii) If v ∈ V is such that λ(v) ∈ A ∪ {1}, then v has no child.

(iii) If v is the last child of w where λ(w) is idempotent over R, then v has
no child, either. We call such a vertex, and its label, a remainder.

(iv) In all the other cases, v has at least one child. Let π = λ(v), let

k =

{

‖π‖ if ‖π‖ is finite

` otherwise
(5.3)

and let
π = π1a1 · · · πkakπ

′
k (5.4)

be the k-iterated left basic factorization of π. Then, v has 2k+ 1 chil-
dren, v0, . . . , v2k labeled under λ by π1, a1, . . . , πk, ak, π

′
k respectively.

Moreover, η(v, vi) = i.

Observe that λ(v) uniquely determines the subtree rooted at v. Hence,
one can associate to each π ∈ ΩAS a unique `-decomposition tree T`(π),
such that π labels the root of T`(π). Note also that this tree is similar to
the one introduced in [16], but we insist here in ending up with a finite tree
with branching at most 2`+ 1 at each vertex.

Example 5.7 The 2-decomposition tree of π = a3(bcωb)ω is shown on Fi-
gure 2. Since ‖π‖ = 1, the children of the root are labeled according to the
left basic factorization a3b · c · cω−1(bbcω)ω−1 of π, yielding three children.
Among them, the second one is labeled by the letter c, so it is a leaf. The last
one, labeled by ρ = cω−1(bbcω)ω−1 is not a remainder. Therefore, the process
iterates from the first and last children at the next level. As ‖ρ‖ = ∞, the
2-iterated left basic factorization cω−1 · b · b · c · [cω−1(bbcω)ω−2] of ρ produces
five children. Since ρ is idempotent over R, the last one is a remainder.
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a3(bcωb)ω

a3b c cω−1(bbcω)ω−1

cω−1 b b c cω−1(bbcω)ω−2

1 c 1 c cω−3

a3 b 1

1 a 1 a 1 a 1

Figure 2: The 2-decomposition tree of a3(bcωb)ω

By definition, is v is a child of w and v also has children, then c ◦λ(v) (
c ◦ λ(w). Therefore, the height of an `-decomposition tree is bounded by
the number of letters in the alphabet. Since it has also finite branching, an
`-decomposition tree is always finite.

The `-decomposition tree of π ∈ ΩASI induces a factorization f`(π) of π,
called the `-decomposition factorization of π, defined by reading the labels of
leaves of the tree from left to right, skipping those labeled by 1 when π 6= 1.
Formally, the `-decomposition factorization of π is defined as follows:

• If π = a ∈ A (resp. π = 1), then f`(π) = a (resp. f`(π) = 1).

• Otherwise, let k be defined by (5.3) and consider the κ-iterated fac-
torization (5.4) of π. For each i ∈ {1, . . . , k}, let

ρi =

{

f`(πi) · ai if πi 6= 1

ai otherwise

Then,
f`(π) = ρ1 · ρ2 · . . . · ρk−1 · ρ

′
k,

where

ρ′k =















ρk if ‖π‖ is finite and π′
k = 1

ρk · f`(π
′
k) if ‖π‖ is finite and π′

k 6= 1

ρk · π
′
k if ‖π‖ is infinite.

Notice that f`(π) depends only on the associated decomposition tree T`(π).
Observe also that, for π 6= 1, the factors involved are letters and remainders,
that is, non-empty labels of the leaves of the `-decomposition tree of π. For
instance, the 2-decomposition factorization of the pseudoword π = a3(bcωb)ω

of Example 5.7 is

f`(π) = a · a · a · b · c · c · c · cω−3 · b · b · c · cω−1(bbcω)ω−2.

15



Two `-decomposition trees T = (V,E, λ, η) and T ′ = (V ′, E′, λ′, η′) are
said to be equivalent, denoted T ∼ T ′, if there exists a graph isomorphism
f : (V,E) → (V ′, E′) such that λ(v) = λ′ ◦ f(v) for all leaves v ∈ V which
are not remainders and η(e) = η′ ◦ f(e) for every edge e ∈ E.

The following technical result is a refinement of equation systems of the
form x1 = · · · = xn, which are related with pointlike sets [5] and which will
be useful to establish κ-tameness for R.

Lemma 5.8 Let W ⊆ Jxyω+1z = xyzK be a pseudovariety, let ψ : ΩASI →
SI be a morphism, let u1, . . . , un be κ-words, and let finally ` > |S|n + 2.
Assume that T`(ui) ∼ T`(uj) for all i, j. Then there exist κ-words w1, . . . , wn
such that

R |= w1 = · · · = wn (5.5)

W |= ui = wi (5.6)

ψ(ui) = ψ(wi) (5.7)

c(ui) = c(wi) (5.8)

~c(ui) = ~c(wi) (5.9)

Proof. For each i, let T`(ui) = (Vi, Ei, λi, ηi). Since T`(ui) ∼ T`(uj) for
all i, j, there exists an isomorphism fi,j from (Vi, Ei, ηi) to (Vj , Ej , ηj). Note
that this isomorphism is in fact unique. In particular fj,k ◦ fi,j = fi,k and
fi,i is the identity on (Vi, Ei, ηi).

We modify the λi-labeling of each `-decomposition tree T`(ui), thus ob-
taining a new tree Ti = (Vi, Ei, µi, ηi), which will be an `-decomposition tree
of the κ-word wi, that is Ti = T`(wi). We define µi from T`(ui) bottom-
up, from the leaves to the root, treating simultaneously all vertices in a set
{yi | yi = f1,i(y1), i ∈ 1, . . . , n} for some y1 ∈ V1. That is, we define µi(yi)
only when µj is already defined on all children of the vertices yj, for all
j = 1, . . . , n. Along the construction, we verify that, for each i = 1, . . . , n:

(a) If yi is not a remainder, then R satisfies µi(yi) = µ1(y1);

(b) W satisfies λi(yi) = µi(yi);

(c) ψ ◦ λi(yi) = ψ ◦ µi(yi);

(d) c ◦ λi(yi) = c ◦ µi(yi).

(e) ~c ◦ λi(yi) = ~c ◦ µi(yi).

If y1 is a leaf, then we let µi(yi) = λi(yi). Let us verify (a)–(e). Since
T`(ui) and T`(uj) are equivalent, then R satisfies λi(yi) = λ1(y1) if yi is not
a remainder, so R satisfies also µi(yi) = µ1(y1) in this case. Items (b)–(e)
follow immediately from the equality µi(yi) = λi(yi).
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If y1 is not a leaf, then let zi,0, . . . , zi,k be the consecutive children of yi,
and assume that all values µi

(

zi,j
)

have been defined and satisfy (a)–(e).
Since all T`(ui) are equivalent, either zi,k is a remainder for all i = 1, . . . , n
(in case λi(yi) is idempotent over R for all i), or none of the zi,k’s is a
remainder. In the latter case, let µi

(

yi
)

= µi
(

zi,0
)

· · · µi
(

zi,k
)

. Items (a)–(e)
are then obviously fulfilled.

Otherwise, z1,k, . . . , zn,k are remainders, which means that λi(yi) is idem-
potent over R for all i = 1, . . . , n. Therefore, in this case, k = 2`. By defi-
nition of an `-decomposition tree, λi(zi,2j−1) is a letter. Since all T`(ui) are
equivalent, this letter does not depend on i, and we denote it by aj. By the
definition of µi on leaves, µi(zi,2j−1) = aj. We also let ti,j = µi(zi,2j−2) for
i = 1, . . . , n and j = 1, . . . , k. Finally, we let vi = µi(zi,2`). Consider, for
each 2 6 r 6 `, the n-tuple of elements of S

(

ψ(t1,1a1 · · · t1,rar), . . . , ψ(tn,1a1 · · · tn,rar)
)

(5.10)

For each of the `− 1 values 2, . . . , ` of r, the corresponding n-tuple belongs
to Sn, which has |S|n 6 `−2 elements. Hence, at least two of these n-tuples
are equal, that is, there exist 2 6 r < s 6 ` such that, for all i = 1, . . . , n,

ψ
(

ti,1a1 · · · ti,rar
)

= ψ
(

ti,1a1 · · · ti,rar · (ti,r+1ar+1 · · · ti,sas)
)

= ψ
(

ti,1a1 · · · ti,rar · (ti,r+1ar+1 · · · ti,sas)
ω+1

)

. (5.11)

Define µi(yi) as:

µi(yi) = ti,1a1 · · · ti,rar(ti,r+1ar+1 · · · ti,sas)
ω+1ti,s+1as+1 · · · ti,`a`vi. (5.12)

Let us verify (a)–(e). Since zi,2` is a remainder (hence a leaf), we have
vi = µi(zi,2`) = λi(zi,2`), which by definition of the `-decomposition tree has
content c ◦ λi(yi). By (d), which is assumed to hold on the children of yi,
we get c(ti,jaj) = c(µi(zi,2j−2)µi(zi,2j−1)) = c(λi(zi,2j−2)λi(zi,2j−1)), which
is also c(λi(yi)), again by definition of an `-decomposition tree. To sum up:

∀j ∈ {1, . . . , `}, c(ti,jaj) = c(vi). (5.13)

Hence, R satisfies µi(yi) = ti,1a1 · · · ti,rar(ti,r+1ar+1 · · · ti,sas)
ω+1. Moreover,

by (a) applied on zi,j , we know that R satisfies ti,j = t1,j. This implies that
R satisfies µi(yi) = µ1(y1), which proves (a).

Finally, (b)–(e) follow immediately from the expression (5.12) of µi(yi),
from the fact that all the zi,j ’s satisfy (b)–(e), respectively, and

• for (b), from the fact that W satisfies xyω+1z = xyz.

• for (c), from (5.11).

• for (d) and (e), from the equality (5.13).

Let wi = µi(ri) where ri is the root of T`(ui). Then, properties (5.5)–(5.9)
follow immediately from (a)–(e) respectively, applied to ri.
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5.3 Splittings

We use the notation of Definition 3.1 for a graph equation system S. In par-
ticular we consider a finite graph Γ = (V,E) associated to S and a solution
θ of S over R. For an edge e ∈ E of the graph Γ, we let αe be the beginning
vertex of e and ωe be its end vertex. Let us examine more closely each
equation, which is of the form xy = z. The following result is immediate
from the uniqueness of left basic factorizations over R (Proposition 5.3) and
over S (Proposition 5.4), and from (5.2).

Lemma 5.9 Let π, ρ, τ ∈ ΩAS be such that R |= πρ = τ and c(ρ) * ~c(π).
Factorize ρ as ρ = ρ1aρ2 where a /∈ ~c(π) and c(ρ1) ⊆ ~c(π). Then τ has a
factorization τ = τ1aτ2 such that R satisfies the pseudoidentities π = τ1 and
ρ2 = τ2.

Hence, under the above assumptions, for each edge e ∈ E such that
c ◦ θ(e) * ~c ◦ θ(αe), there are factorizations θ(e) = ρ1aρ2 and θ(ωe) = τ1aτ2
such that a /∈ ~c◦θ(αe) and R satisfies the pseudoidentities θ(αe) = τ1 = τ1ρ1

and τ2 = ρ2. We call such factorizations the direct splittings associated with
the edge e and a the corresponding marker. Now, for instance if there are
two edges arriving at the same vertex q, there may be two different splittings
of θ(ωe). We claim such splittings may be merged into multiple splittings.
Again the proof of the following result is immediate in view of the uniqueness
of left basic factorizations over R and over S.

Lemma 5.10 Suppose that a pseudoword π has two factorizations π =
π1aπ2 = π3bπ4 such that a /∈ ~c(π1), b /∈ ~c(π3). Then exactly one of the
following conditions holds:

1) there are factorizations π1 = π1,1bπ1,2 and π4 = π4,1aπ4,2 such that R

satisfies π1,1 = π3, π1,2 = π4,1, and π2 = π4,2;

2) there are factorizations π2 = π2,1bπ2,2 and π3 = π3,1aπ3,2 such that R

satisfies π1 = π3,1, π2,1 = π3,2, and π2,2 = π4;

3) the pseudovariety R satisfies π1 = π3 and π2 = π4, and a = b.

In case 1), we say that the splitting determined by the marker b precedes
the splitting determined by a and vice versa in case 2). By Lemma 5.10 the
splitting points in a pseudoword are totally ordered under the precedence
relation. The following further consequence of Proposition 5.3 will be useful.

Lemma 5.11 There can be no infinite descending sequence of splitting points
of a pseudoword.

18



Proof. This is a consequence of the fact, shown in [16], that each pseu-
doword π can be represented by a labeled ordinal, and that if π = π1aπ2 is
a factorization such that a /∈ ~c(π1), then the ordinal associated with π1 is
smaller than the ordinal corresponding to π. Since the class of ordinals is
well-ordered, and so there is no infinite descending sequence of ordinals, the
result follows.

The structure of the graph Γ together with the fact that θ is a solution
over R yield multiple splittings on the θ-labels of each vertex and edge. Thus,
besides the direct splittings, one finds that splittings propagate throughout
the connected components of the graph through the edges: a splitting point
in the label of a vertex αe propagates forward to the label of ωe, while a
splitting point in the label of a vertex ωe may propagate backward to the
label of αe, if it occurs in the factor preceding the direct splitting point in
case there is one, and to the rightmost factor of the label of e, otherwise.
Splitting points in the label of an edge e other than its direct splitting can
only come from and only propagate to the label of the vertex ωe. The
splitting points which do not come from direct splittings are called indirect
splitting points.

Lemma 5.12 Given a solution θ over R of a graph equation system, there
is only a finite number of splitting points in the values of variables under θ.

Proof. In view of the above observations about the propagation of split-
tings to the labels of edges, since the graph is finite, if there are infinitely
many splitting points, then infinitely many splitting points can be found at
the label of some vertex. Each indirect splitting point at the label of a vertex
comes from another splitting point by following one edge either forward or
backward. Moreover, each splitting point at the label of a vertex propagates
in one step to the labels of the adjacent vertices, and the number of these
is at most the vertex degree of the graph Γ. Finally, note that every split-
ting point can be traced back to a direct splitting point in a finite number
of steps, and there are at most |E| direct splitting points altogether at the
labels of vertices.

Arguing by contradiction, assume that there are infinitely many split-
ting points. By König’s Lemma [25], there is an infinite path p1, p2, . . . of
distinct splitting points such that each pi+1 is obtained in one step from the
preceding pi. Since the graph Γ and the alphabet A are both finite, there
are indices k and l such that k < l and the splitting points pk and pl occur
at the label π of the same vertex q and involve the same marker a ∈ A. We
have two associated factorizations π = π1aπ2 = π3aπ4.

We first claim that R satisfies the pseudoidentity π1 = π3. Indeed, since
θ is a solution of the system over R, whenever a splitting point at a label of
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an edge is propagated either forward or backward along an edge, the R-value
of the factor before the corresponding marker is preserved.

Next, by Lemma 5.10, one of the splittings pk and pl must come before
the other; they do not coincide by the assumption that all the splittings in
the sequence p1, p2, . . . are distinct. Say, π1 = π1,1aπ1,2 with R |= π1,1 = π3 =
π1. Then there is a factorization π1,1 = π1,1,1aπ1,1,2 with R |= π1,1 = π1,1,1,
this new splitting point being again obtained following an undirected cycle
at the vertex q; and so on. This leads to a infinite descending sequence of
splitting points at the label of q, in contradiction with Lemma 5.11. Hence
the overall number of splitting points associated with the graph must be
finite.

For each variable x ∈ Γ, we call the finite factorization of θ(x) given by
the splitting points of θ(x) the splitting factorization of x, and its factors
the splitting factors of θ(x).

5.4 Proof of Theorem 5.1

We are now ready to complete the proof of Theorem 5.1. Let W be κ-
reducible and, with the notation of Definition 3.1, let θ be a solution over
R ∨ W with respect to (ϕ,ψ) of a graph equation system S given by a finite
graph Γ. Since θ is in particular a solution over R, the label θ(g) of each
variable g ∈ Γ admits a finite splitting factorization over ΩAS. Let S1 (resp.
θ1) be the refinement of S (resp. θ), defined on page 9, according to the
splitting factorizations of all θ(g), and let Γ1 = (V1, E1) be the finite graph
associated with S1. Notice that, by definition of this construction, each edge
gi ∈ E1 corresponds to some splitting factor of θ(g) for some g ∈ Γ.

Let x
y
−→ z be an edge of Γ, and let

θ(x) = π1 · · · πk (5.14)

θ(y) = ρπk+1 · · · πk+n (5.15)

be the splitting factorizations of θ(x) and θ(y), where c(ρ) ⊆ ~c(πk) and
the first letter of πk+1 is not in ~c(πk). In view of how the splitting points
propagate, the splitting factorization of θ(z) is of the form

θ(z) = π′1 · · · π
′
kπ

′
k+1 · · · π

′
k+n (5.16)

and R satisfies πi = π′i for each i. Let ei (resp. e′i) be the variable of E1

associated with πi (resp. with π′i). Let ≡ be the smallest equivalence relation

on E1 such that ei ≡ e′i for each edge x
y
−→ z of Γ and each i. It is immediate

that, for each e, f ∈ E1:

e ≡ f =⇒ R |= θ1(e) = θ1(f). (5.17)
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Notice that, by definition of the refinement θ1 of θ, for each g ∈ Γ and
each edge gi ∈ E1 corresponding to some splitting factor πi of θ(g), the
label θ1(gi) is precisely πi. Therefore, the next lemma directly follows from
(5.14), (5.15) and (5.16).

Lemma 5.13 Under the above assumptions and with the above notation,
suppose that θ′1 : E1 → Ωκ

ASI is a mapping such that, for each e, f ∈ E1:

(i) if e ≡ f , then R satisfies θ′1(e) = θ′1(f);

(ii) ψ ◦ θ′1(e) = ψ ◦ θ1(e);

(iii) c ◦ θ′1(e) = c ◦ θ1(e);

(iv) ~c ◦ θ′1(e) = ~c ◦ θ1(e).

For each g ∈ Γ, let θ(g) = π1 · · · πr be the splitting factorization of θ(g) and,
for each i, let gi ∈ E1 be the variable corresponding to the factor πi. Let
θ′ : Γ → Ωκ

ASI be defined, for each g ∈ Γ, by

θ′(g) = θ′1(g1)θ
′
1(g2) · · · θ

′
1(gr).

Then θ′ is a κ-solution of S over R with respect to (ϕ,ψ).

Our goal is now to define such a mapping θ ′1 in order to obtain a κ-
solution θ′ of S over R. The additional requirement we want to guarantee is
that θ′ is also a solution over W.

Let m = max{|Y | | Y is a ≡-class} and let ` > |S|m + 2. By (5.17),
R satisfies θ1(e) = θ1(f) when e ≡ f . Therefore, the `-decomposition trees
of θ1(e) and θ1(f) are equivalent.

The `-decomposition factorization f`(θ1(e)) of each θ1(e), where e ∈ E1,
yields a new refinement S2 of the system along with a solution θ2. By the
κ-reducibility of W and Lemma 3.3, there exists a κ-solution θ′2 of S2 over
W, which preserves the content, explicit factors and idempotency over R.
Observe however that θ′2 has no reason to be a solution over R of S2.

This mapping θ′2 translates back to a κ-solution θ′′1 of S1 over W. Since
the change from θ2 to θ′2 preserved the content, explicit factors and idem-
potency over R, if e, f ∈ E1 are ≡-equivalent then the `-decomposition trees
of θ′′1(e) and θ′′1(f) are equivalent.

By the choice of `, one can apply Lemma 5.8 in each ≡-class. For each
such class {e1, . . . , en}, with θ′′1(ei) = ui, there exist κ-words w1, . . . , wn sa-
tisfying properties (5.5)–(5.9). Define θ′1(ei) = wi, and extend θ′1 to a func-
tion θ′1 : Γ1 → Ωκ

ASI by letting θ′1(v) = θ′′1(v) for each v ∈ V1. By (5.5), (5.7),
(5.8) and (5.9), θ′1 satisfies conditions (i)–(iv) of Lemma 5.13. Therefore,
the evaluation θ′ of the variables of Γ defined in that lemma is a κ-solution
of S over R with respect to (ϕ,ψ). On the other hand, by (5.6) and (5.7) and
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since θ′′1 is a solution of S1 over W, θ′1 is a solution of S1 over W, too. Hence
θ′ is clearly a κ-solution of S over W. This proves that θ ′ is a κ-solution of
S over R ∨ W and concludes the proof of Theorem 5.1.

6 Final remarks

Theorem 5.1 can be extended to more general pseudovarieties W. For in-
stance, if W is a κ-reducible pseudovariety defined by a pseudoidentity of the
form x1 · · · xry

ω+1ztω = x1 · · · xryzt
ω, which obviously contains Jxyω+1z =

xyzK, one can easily adapt the proof of Lemma 5.8 to this pseudovariety
(it would suffice to choose a convenient n-tuple (5.10)). Since the proof of
Theorem 5.1 only depends on Lemma 5.8 in what concerns W, one deduces
the following:

Theorem 6.1 If W is a κ-tame pseudovariety which satisfies the pseu-
doidentity x1 · · · xry

ω+1ztω = x1 · · · xryzt
ω, then so is R ∨ W.

One might wonder whether a weaker property than tameness is preserved
by joins with R or J. A natural property to try would be tameness with
respect to the class of equation systems of the form x1 = x2 = · · · = xn.
Our proof techniques do not cope with this weaker form of tameness since
we need to introduce factorizations of a given solution, and to encode these
factorizations in a new system: we need at least graph equation systems to
do that.

An apparently difficult extension of the results of this paper would be
to prove the complete tameness of R. The main problem is the fact that,
unlike for graph equation systems, it is much more difficult to control the
propagation of splitting points.
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[23] T. Coulbois and A. Khélif, Equations in free groups are not finitely
approximable, Proc. Amer. Math. Soc. 127 (1999), 963–965.

[24] B. Herwig and D. Lascar, Extending partial automorphisms and the
profinite topology on free groups, Trans. Amer. Math. Soc. 352 (2000),
1985–2021.

[25] K. Kunen, Set theory, North-Holland, Amsterdam, 1980.

[26] B. Steinberg, On pointlike sets and joins of pseudovarieties, Internat.
J. Algebra Comput. 8 (1998), no. 2, 203–234, With an addendum by
the author.

[27] , On algorithmic problems for joins of pseudovarieties, Semi-
group Forum 62 (2001), 1–40.

[28] M. Zeitoun, On the decidability of the membership problem of the
pseudovariety J ∨ B, Internat. J. Algebra Comput. 4 (1994), no. 4,
47–64.

24


	Introduction
	Preliminaries
	Reducibility
	Key notions
	A general technique to prove reducibility

	Joins involving J
	Joins involving R
	The -word problem for R
	Decomposition trees
	Splittings
	Proof of Theorem 5.1

	Final remarks

